Department of Mathematics
Carnegie Mellon University

21-301 Combinatorics, Fall 2006: Test 4

Name: ________________________________

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Q1: (33pts) A is an $n \times n$ matrix with entries 0 or 1. Let k be a positive integer. Show that if $n \geq R(2k, 2k)$ then there exists a set of rows I and columns J such that (i) $|I| = |J| = k$ and (ii) $i, i' \in I$ and $j, j' \in J$ implies $A(i, j) = A(i', j')$.

Solution This is HW9, Q2. Given A we construct a coloring τ of the edges of K_n as follows. If $i < j$ then we give the edge (i, j) of K_n the color Red if $A_{i,j} = 0$ and Blue if $A_{i,j} = 1$.

Since $n \geq R(2k, 2k)$ we see that K_n contains a mono-colored copy of K_{2k}. If the set of vertices of this copy is S, divide S into two parts S_1, S_2 of size k where $\max S_1 < \min S_2$. It follows that the sub-matrix given by $I = S_1, J = S_2$ satisfies our requirements.
Q2: (33pts) $A_1, A_2, \ldots, A_{mn+1}$ are non-empty subsets of $[n]$. Show that there exists $I \subseteq [mn+1]$ such that (i) $|I| = m+1$ and (ii) if $i, j \in I$ then $A_i \nsubseteq A_j$ and $A_j \nsubseteq A_i$.

Solution Consider the poset on $\{A_1, A_2, \ldots, A_{mn+1}\}$ with \leq equal to \subseteq. The maximum length of a chain $X_1 \subset X_2 \subset \cdots \subset X_k$ in this poset is at most n, since $|X_k| \geq k$. Applying Dilworth’s theorem, we see that there is an anti-chain $\{A_i : i \in I\}$ of size $\lceil (mn+1)/n \rceil = m+1$.

Q3: (34pts) Consider the following game: There is a pile of \(n \) chips. A move consists of removing \(3^k \) chips for some \(k \geq 0 \).

(a) Compute the Sparague-Grundy numbers \(g(n) \) for \(n = 0, 1, 2, \ldots, 10 \).

(b) Make a guess at the general form of \(g(n) \).

(c) Give an inductive proof of your conjecture in (b).

Solution

\[
\begin{array}{cccccccccccc}
 n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
g(n) & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
\end{array}
\]

(b) \(g(n) = n \mod 2 \).

(c) This is true for \(0 \leq n \leq 10 \). Because \(3^i \) is odd for \(i \geq 0 \) we see that for \(k > 5 \) we have

\[
g(2k - 1) = \text{mex}\{g(2k - 1 - 3^i) : i \geq 0, 3^i \leq 2k - 1\} = \text{mex}\{0, 0, \ldots, 0\} = 1.
\]

\[
g(2k) = \text{mex}\{g(2k - 3^i) : i \geq 0, 3^i \leq 2k\} = \text{mex}\{1, 1, \ldots, 1\} = 0.
\]