Department of Mathematics
Carnegie Mellon University

21-301 Combinatorics, Fall 2005: Test 3

Name: ______________________________

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Q1: (33pts)
Let n, p be positive integers and let $N = n^2p + 1$. Suppose that x_1, x_2, \ldots, x_N are real numbers. Show that either (i) there is a strictly increasing subsequence of length $n + 1$ or (ii) a strictly decreasing subsequence of length $n + 1$ or (iii) a constant subsequence of length $p + 1$.

Solution Assume that there is no constant sequence of length $p + 1$ i.e. no real value appears more than p times in the sequence. Then the number of distinct values appearing is at least $\lceil \frac{N}{p} \rceil = n^2 + 1$. Choose a subsequence consisting of these $\geq n^2 + 1$ distinct values. By the Erdős-Szekeres theorem this subsequence contains a monotone subsequence of length $\geq n + 1$. Since the values are distinct, such a monotone subsequence is strict.
Q2: (33pts)
A tree T has $n = 2m$ vertices. All vertices of T have degree one or three. There are n_1 vertices of degree one and n_3 vertices of degree three. Determine the values of n_1, n_3 in terms of m. Justify your claim.
How many such trees are there on vertex set $\{1, 2, \ldots, n\}$?

Solution We have $n_1 + n_3 = n$ and $n_1 + 3n_3 = 2n - 2$ (sum of degrees = twice number of edges). Solving these equations gives

$$n_1 = m + 1 \text{ and } n_3 = m - 1.$$

The number of such trees is

$$\binom{2m}{m+1} \binom{2m-2}{2, 2, \ldots, 2, 0, 0, \ldots, 0} = \binom{2m}{m+1} \frac{(2m - 2)!}{2^{m-1}}$$

where in the multi-nomial there are $m - 1$ 2’s and $m + 1$ 0’s.
The factor $\binom{2m}{m+1}$ counts the number of ways of choosing the vertices of degree 1 and the multi-nomial coefficient is the number of trees with a fixed degree sequence, consisting of $m - 1$ 3’s and $m + 1$ 1’s.
Q3: (34pts)
Let p, q be positive integers and $n = p + q - 1$. Let T be a fixed tree with q vertices. Show that if we color the edges of K_n Red or Blue then either (i) there is a vertex with Red degree p or (ii) there is a Blue copy of T.

Solution If there is no vertex of Red degree p then every vertex has Blue degree at least $n - 1 - (p - 1) = q - 1$. Thus the Blue sub-graph contains a copy of every tree with $q - 1 + 1 = q$ vertices. (See HW6,Q3).