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Abstract
One of the most popular and fast methods of

generating "random"™ Sequence are linear

congruential generators., This paper discusses the
predictability of the sequence given only a
constant proportion o of the leading bits of the
first few numbers generated. We show that the
rest of the sequence is predictable in polynomial

time, almost always, provided o > 2/5.

One of the most popular and fast methods of

generating '"random™ sSequences are 1linear

congruential generators. These work as follows:
a modulas M, a multiplier a relatively prime to M

and an increment c¢ are picked. Then starting at a

random "seed" X1 one generates the sequence {Xi}
given by
(0)

X =a* Xi + c(mod M)

i+t 7

(Thus the X; are all integers between 0 and M
- 1) Knuth (Vol. 2)
discussion of linear congruential generators
(LCG).
shown to satisfy various statistical tests of

contains an elaborate

The sequences produced by LCG's have been

randomness for proper choices of the modulas and
multiplier. (Knuth-Vol. 2). However it does not
immediately follow from these that these sequences
are "unpredictable®” - which one would intuitively
expect a random sequence to be. This aspect of
randomness has been formalized by cryptographers
Shamir (1980), Blum and Micali (1982), Yao (1982)
and Goldreich, Goldwasser and Micali (1984).

Also, the thesis that problems that can be done in
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random polynomial time are essentially tractable
is based on the hypothesis that a deterministic
polynomial time bounded process can produce
sequences that are indistinguishable from truly
random sequences in deterministiec polynomial time.
(See Cook (1983) for a discussion of this thesis).
Indeed the general observation so far seems to be
that probabilistic (coin-tossing) algorithms work
well in practice. In view of this it is important
to analyse one of the most popular random number
generators - the linear congruential generator for
predictability.

It has been suggested (Knuth 1980) that a way
of producing secure sequences from an LCG is to
output the leading part of each of the Xi's - say
the leading half of the bits.; The main result of
this paper is to show that this sequence is not
Knuth. (1980), Plumstead (1982) and Reeds
(1977) have considered the question of whether

secure,

bits generated by linear congruential generators
are predictable. Plumstead (1982) uses a clever
idea to show that if all the bits of several
consecutive Xi's are known, then the multiplier a
can be inferred and with greater difficulty the
modulas too, thus demonstrating that when all bits
of Xi
predictable even if the modulas and multiplier are
Knuth (1980) considers the problem when

are announced, the sequence becomes

unknown.,

+Note that if the modulas is known it is certainly
insecure to output xi,x1+1.x +2 for any i, for

(xi*z-xi+1) and
Here the inverse is modulo

then a is given by (xi+1-xi)’
thence ¢ can be found.
M,

modification of the expression suffices to find a.

if the inverse does not exist, a simple



the multiplier and modulas are unknown and only a
small fraction of the bits of several consecutive
xi's are announced. For this case, he devises an
exponential time algorithm to infer the hidden
information. Reeds (1977) considers some special
Plumstead (1982)

also treats the case when the trailing 0(log(n))

cases with fixed multipliers.

bits of several consecutive xi's are unknown.

To describe our result we first introduce
2m be the number of bits
in M. We break Xi into two equal parts:

some notation: 1let n =

)
where 0 < y;,z; < 2" The problem we
consider is: given M, a, c, Yyr Yoo ya,...yn for
some 2, can one determine Z4 (and then of course
all the Xi can be easily computed.)
result is an algorithm A with the following
properties:

The main

1) A is deterministic polynomial time
bounded. Indeed A runs in time O(nalognloglogn).

2) It takes as input integers M, a and
integers y1.y2 and y3, 0 < y1,y2.y < 2" and
returns an integer z, between 0 and 2° or returns
the answer "cannot solve the instance", (See (3)
below)

3) For each M, there is a set SM containing
at least (1 - O(M'(1/5)) of the integers modulo M
such that

a) for any a in Sy» and any e, given
y1.y2,y3 integers in [0,YM], there is a unique Zs
2z, and 23 in [0,7M] such that Xqe X, and x3
defined by (1) satisfy (0).

b) there is a polynomial-time algorithm that
given a,M tests whether a is in SM'

c) whenever a ¢ SM’ the algorithm A gives
the correct (unique) answer; if a ) SM' A returns

"cannot solve",

Algorithm A
We use the algorithm of Kannan (1983) to find

an integer solution to

azy =z, + Mp1 =Y
az, - z3 +mMp2 =¥, (2)
0<z <2 i=1,2, 3.

]
(]

where Yi = zm(yi+1 - ay; - c) (mod M) for i = 1,2
and Py» P, are new integer variables. (We remark
that Lenstra's (1979) algorithm could take 8(nY)
time).

Now clearly if Z41 Zg 23 are the "mhidden
bits" of an LCG then they will form a solution to
The key
issue is whether or not there are any other

(2) with suitable values for Py p2.

solutions,
valid.

We define the set SM for which we know that
the solution is unique.

If there are none then our method is

Suppose that there is another solution (z%,

Zé. 25, P{. pé) to (2). Then putting ug =2y - 2f
for i = 1, 2, 3 we have
u, = au, (Mod M) (3
u3 z au2m+1 (Mod M)
gt <2 i=1,2,3

where we define (Mod M), as opposed to (mod M) to
be the least absolute value residue i.e. -M/2 ¢
y(Mod M) < M/2, We can assume without loss of
generality that u, > 0 (clearly if u, < 0 we

replace u1 by -u1. If u1 = 0 we find that u2 = u3
= 0 as :ui: < M. But then Py = P{ for 1 = 1,2
follows easily and our solutions are not
distinct.)

Thus if

By=(0¢<a <M1t 3x,0<x < 2™ such that
lalx (Mod M) < 271, 521,2)

and
SM=[0, 1, ...M-1}—BM

then we have



If a ¢ SM then there is at most one solution

to (2) and our algorithm finds it. (u)

Our next task is to bound the size of BM‘
For 0 ¢x <L =2 1et

B(x) =
L}.

Now

{0 < a < M-1:

(5)

as each a ¢ By is counted at least once in the sum
on the right hand side of (5).

Consider now a fixed x, 0 < x < L and assume
first that x and M are relatively prime. Let w =
x~! (Mod M).

Then putting y = ax (Mod M) and using a2x =

wyz (Mod M) we obtain

1B(x)} = :xw: (6)
where X = {-L <y < L: twy? (Mod M)} <L}

We now obtain a bound for the size of {Xw:
which will be used with (5) and (6) to bound :BM:.

Consider the function ¢: Xi ~=> 1 defined
by

oy, ¥5) = wy2 + ¥2) (Mod M) )

10 ¥p) = Wy  + v, .
Note that
e(yq, ¥ < 2L for yi, ¥5 € X0 (8)

Let now ¢ > 0 be an arbitrarily small

positive real number. We show that there exists

ac such that if }u} < 2L then

o7l <a_ 122 (9
\

e
W l¢ aLx e

tax(Mod M) i, :azx(Mod M) <

To see this consider a fixed (Yq0¥5) € ¢'1(u)

2

having the smallest value of ¥y o+ yg. Then (y{,

vy € 67 W)

if and only if

wyi® + y3%) = wiyZ 4 vd) (od M)
if and only if
y;z + yéz = yf + yg (Mod M)
if and only if
y%e + yéz = ¥y + yg + pM
for some integer p, 0 < p < P = |,(2L2 - y2 -

1
2
YZ)/MJ.

Now for non-negative integer n, let ¥(n) denote
the number of distinet integer solutions (x,y) to
the equation

x2+y2=n.

It follows that

5
TR C I S O I

0

(10)

p

Now it is known (Le Veque (1956) for example) that
for any ¢ > 0 there exists be such that y(n) <
bcne. It follows from (10) that (9) holds with a
= 2™+ ©
= .
It then follows from (8) and (9) that

X1 < (na L3212 (1

which completes the case for x and M relatively
prime.

If d=d(x) = ged(x,M)>1 we find that

*
IB(x)| = d(x) | {-L<y<L :
where M = M/d, L =

|ay2 (Mod M)| < L}|
[L/d| and §=(x/d)~ (Mod M).

0eB8X) > gaiMeBX
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It follows from (11) that |B(x)| < d(x)
(Ha£L3+25/M)1/2 and hence that
L
Byl < r d(x)Tea L3*2e/m)1/2 (12)
€
X =1
<e W12
= e
where ¢ = 231/2.
€ € m+1
Substituting L = 2 and putting ¢ = 1/20

ﬂ/S) as stated.

yields EBMI = O(M
We note that if we are given slightly fewer

than n/2 bits i.e. iqni bits where o > 2/5 then

simply putting m = {(1=g)n{ in the above analysis

shows that our method works except on a set of a's

of size 0(M2~%¢/2*e) for any ( > 0.

We now consider the problem of testing for a ¢
This is again an integer program in a fixed

Thus a ¢ BM if and

BH’
number of variables.
there is a solution to

only if

1

in

x <L
=L {ax + pM <L
-L < a +pM<L

"N

Xy Pys Pp integer.

Extensions the problem naturally arises: what if
instead of half the bits we are only given a much
smaller fraction of them? Then, of course we may
require portions of more than 3 of the Xi's, but
will a fixed number depending only on 4 do? We
show that the answer is affirmative provided the
following number theory conjecture is true:

Corresponding to any fraction 4 ¢ (0,1) there
exists a natural number g and a fraction g§ ¢ (0,1)
such that the cardinality of the set B M defined
below is 0(M), u'

B : 0<a<M-1;3x,0 < x < M® such that

M= {a :
a? i
ta"x(Mod M)} £ M%, i = 1,2,...3}).

We have proved the conjecture when M is square
free, However the conjecture is open for general
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We next consider the case where the constant c¢

in (0) is not known. As it turns out, we can
proceed in a similar manner to the above. This
time we need the first 3 numbers generated. Using

the decomposition (1) we will be looking for an
integer solution to

azy -z, + ¢ + Mp, = Y, (13)

az, - zZg +c+ Mp2 = Y2

az3 -zZy+c+ Mp3 = Y3

“M<e <M

2"z <" 1=1,2,3,4
where Yi = 2m(yi+1 - ayi) (mod M) for i = 1,2,3.
We show next that if we change the definition of
BH slightly by replacing 2m+1 by 2m+2 then

a ¢ Sy implies (13) has a unique solution (14)

Suppose (z{, zé, zi. zj, ', p{, pé. pé) is an
alternative solution. Put vy = Zq - zi for i =
1,2,3,4 and the ug = vy Vil for 1 = 1,2,3. It
follows that (3) holds with Pad replaced by 2m+2.

Finally the case when a and possibly M are also
unknown in addition to a fraction of the bits of

Xi, remains an interesting open problem.

The ideas used in this paper will yield an
algorithm for the case when M is odd and the
trailing half of the bits are given to us. (When
M is even these bits do not form a random sequence
- this can be seen from basic considerations.)

The sets BM' SM do not change.
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MATHEMATICS OF COMPUTATION
VOLUME 50, NUMBER 181
JANUARY 1988, PAGES 235-250

Polynomial Factorization and Nonrandomness
of Bits of Algebraic and Some Transcendental Numbers

By R. Kannan, A. K. Lenstra, and L. Lovész

Abstract. We show that the binary expansions of algebraic numbers do not form secure
pseudorandom sequences; given sufficiently many initial bits of an algebraic number, its
minimal polynomial can be reconstructed, and therefore the further bits of the algebraic
number can be computed. This also enables us to devise a simple algorithm to factor
polynomials with rational coefficients. All algorithms work in polynomial time. '

Introduction. Manuel Blum raised the following question: Suppose we are
given an approximate root of an unknown polynomial with integral coefficients and
a bound on the degree and size of the coefficients of the polynomial. Is it possible
to infer the polynomial? We answer his question in the affirmative. We show that
if a complex number « satisfies an irreducible polynomial A(X) of degree d with
integral coefficients in absolute value at most H, then given O(d? + d - log H) bits
of the binary expansion of the real and complex parts of a, we can find A(X) in
deterministic polynomial time (and then compute in polynomial time any further
bits of ). Using the concept of secure pseudorandom sequences formulated by
Shamir [23], Blum and Micali [3] and Yao [25], we then show that the binary (or
m-ary for any m) expansions of algebraic numbers do not form secure sequences in
a certain well-defined sense.

We are able to extend our results with the same techniques to transcendental
numbers of the form log(a),cos™! (), etc., where « is algebraic.

The technique is based on the lattice basis reduction algorithm from [16]. Our
answer to Blum’s question enables us to devise a simple polynomial-time algorithm
to factor polynomials with rational coefficients: We find an approximate root of
the polynomial and use our algorithm to find the irreducible polynomial satisfied
by the exact root, which must then be a factor of the given polynomial. This is
repeated until all the factors are found. This algorithm was found independently
by Schonhage [22], and was already suggested in [16].

The technique of the paper also provides a natural, efficient method to compute
with algebraic numbers.

This paper is the final journal version of [13], which contains essentially the entire
contents of this paper.

1. A Polynomial-Time Algorithm for Blum’s Question. Throughout this
paper, Z denotes the set of the integers, Q the set of the rationals, R the set of the
reals, and C the set of the complex numbers. The ring of polynomials with integral

Received December 23, 1985; revised October 13, 1986 and April 6, 1987.
1980 Mathematics Subject Classification (1985 Rewision). Primary 68Q15, 68Q25, 68Q40.

©1988 American Mathematical Society
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(complex) coefficients will be denoted Z[X] (C[X]). The content of a polynomial
p(X) in Z[X] is the greatest common divisor (abbreviated ged) of its coefficients. A
polynomial in Z[X] is primitive if its content is 1. A polynomial p(X) has degree d
if p(X) = S0, piX® with pg # 0. We write deg(p) = d. The length |p| of p(X) =
Z?:o p:X* is the Euclidean length of the vector (pg,p1,...,pq); the height |p|oo
of p(X) is the Loo-norm of the vector (po,p1,...,pd), S0 |ploo = Maxo<i<a |pi|- An
algebraic number is a root of a polynomial with integral coefficients. The minimal
polynomial of an algebraic number « is the irreducible polynomial in Z[X] satisfied
by @. The minimal polynomial is unique up to units in Z (see, for example, [11]).
The degree and height of an algebraic number are the degree and height, respectively,
of its minimal polynomial. The real and complex parts of a complex number 2z will
be denoted Re(z) and Im(z) respectively.
A lattice in R™ is a set of the form

k
{Z/\ibi: ,\iez},
=1

where by,bs,...,b; are linearly independent vectors in R™. The lattice is said
to be generated by the vectors by, bs,..., bk, which form a basis for the lattice.
The lattice is denoted L(by,bs,...,bk). An important result we need is the basis
reduction algorithm from [16, Section 1]. We will only state the consequence of this
algorithm used in this paper. Denote by | - | the ordinary Euclidean length on R™.

(1.1) THEOREM (cf. [16, Propositions (1.11) and (1.26)]). Let
L =L(by,ba, ..., b)

be a lattice in Z" and let B € R, B > 2, be such that |b;|> < B for 1 <1 < k.
It takes O(n - k3 -log B) arithmetic operations (additions, subtractions, multiplica-
tions, and divisions) on integers having O(k - log B) binary bits to transform the
basis by,ba,...,bx by means of the basis reduction algorithm into a reduced basis
v1,v2,...,V for L. The first vector v; in the reduced basis has length at most
2(k=1)/2 . A (L), where A1(L) is the length of a shortest nonzero vector in L.

Now we are ready to describe the idea behind our main result. Suppose upper
bounds d and H on the degree and height, respectively, of an algebraic number o
are known. Then we show that a sufficiently close rational approximation @ to «
enables us to determine the minimal polynomial h(X) of a.

Given @, we compute rational approximations @; to the powers of of a. For
a polynomial ¢ = Y, g;X* € C[X] we introduce the following notation for the
approximated evaluation of ¢ at a:

(1.2) ga = Z gi ;.
i

Suppose the degree of h(X) isn, n < d. We try the valuesof n = 1,2, ...,d in order.
With n fixed, we define for each positive integer s the lattice L, in R**3 generated
by bo, b1,...,bs, which are the rows (in order) of the following (n + 1) x (n + 3)
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matrix:
(1 0 0 0 2°-Re(ap) 2° -Im(ap)T
010 0 2°-Re(@;) 2°-Im(ap)
0 01 0 2°-Re(az) 2°-Im(as)
(1.3) . . .
(0 0 0 - - - 1 2°-Re(dn) 2° -Im(ayp)d

Corresponding to a polynomial g = "7  g;X* in Z[X] of degree at most n (where
some of the g; are possibly zero), we have a vector § in the lattice L, defined by

n

(1.4) g=)_gibi.
=0
Clearly,
n 2 n 2
G = @+ g2+ 4 g2 4+ 25 (Re (Z “’"‘5‘")) w2 (Im (Z gfa’))
=0 1=0
= |gI* + 2%°|ga*.

This correspondence between polynomials in Z[X] of degree at most n and vectors in
the lattice L, is easily seen to be 1-1 onto and readily invertible. We will strongly
separate the minimal polynomial h(X) of o from all other polynomials g(X) of
degree n or less with g(a) # 0 by showing that for a suitable choice of s and small
enough |o* — &,
1% > 27 [Af2.

We run the basis reduction algorithm on bg, by, ..., b, to get a reduced basis. Sup-
pose ¥ is the first vector of this basis, and v(X) the corresponding polynomial.
Because the degree of h was supposed to be equal to n, we have that h is contained
in L, so that A;(L,) < |k|. Theorem (1.1) now yields |3|2 < 2"|h|?, and therefore
v(a) = 0 by the strong separation. This implies that h is a factor of v. Combining
this with deg(v) < deg(h), we see that v and h are associates; further, the fact that
¥ belongs to a basis for L, implies that v = +h.

The s needed will be bounded by a polynomial function of d and log H. Here is
a short intuitive description of how the strong separation is proved. If the powers
of o are sufficiently close to the &;, clearly hg is close to h(a) = 0 (quantified in
Lemma (1.5)). Thus |k|? = |h|>+(a small term) and can be bounded above. To
show that |g|? is large for other g, we consider two cases: If |g| is large, then of
course |g| is large. If |g| is small, then we show that |g(c)| has to be bounded from
below (Proposition (1.6)). Again, |gs| being close to |g(a)|, we are able to bound
it from below and hence bound also |§|? from below. '

(1.5) LEMMA. If o and &; for 0 £ ¢ < n are complex numbers such that
@ =1, and |o* — &;| <€ for 1 <i < n and f is a polynomial of degree at most n
in C[X], then

|f(a) = fal <€ n-|floo-

Proof. Immediate.
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(1.6) PROPOSITION. Let h and g be nonzero polynomials in Z[X] of degrees n
and m, respectively, and let o € C be a zero of h with |a| < 1. If h is irreducible
and g(o) # 0 then

lg(@)l 2 n™" - [A7™ - g 7"

Proof. Because h is nonzero and « is a zero of A we have that n > 1. If m =0,
then g(a) = |g|, so that the result follows. Now assume that m # 0. Define the
(n+m) x (n+m) matrix M as the matrix having ith column X*~!-hfor 1 <4 < m,
and X*~™~!.g for m+1 < i < n4+m, where the polynomials X*~!-h and X*"™"1.¢
are regarded as (n + m)-dimensional vectors. By R we denote the absolute value
of the determinant of M, the so-called resultant of h and g.

We prove that this resultant R is nonzero. Suppose on the contrary that the
determinant of M is zero. This implies that a linear combination of the columns
of M is zero, so that there exist polynomials a,b € Z[X] with degree(a) < m and
degree(b) < n such that a-h +b- g = 0. Because h is irreducible, any nontrivial
common factor of h and g must have & as a zero, so that with g(a) # 0 we have
that ged(h, g) = 1. Therefore, we have that h divides b, so that with degree(b) < n,
we find b = 0, and also a = 0. This proves that the columns of M are linearly
independent, so that R # 0. Because the entries of M are integral, we even have
R>1.

We add, for 2 < 7 < n + m, the ith row of M times T%~! to the first row of
M. The first row of M then becomes (h(T),T - h(T),..., T™ 1 - h(T),9(T), T -
g(T),...,T™"1. g(T)). Expanding the determinant of M with respect to the first
row, we find that

R=|hT) (ao+ar T+ - +am_1 -T"“l)+g(T)~(b0+b1 T+ +bp_1q -T"‘1)|,

where the a; and b; are determinants of (n +m — 1) X (n + m — 1) submatrices of
M. Evaluating the above identity for T = « yields

(1.7) R=|g(a)| |bo+b1 -0+ - +bp_y ‘an_1|,

because h(a) = 0. From Hadamard’s inequality it follows that [b,| < |h|™ - |g|"!.
Combining this with |a| < 1 we get

lbo+b1 @+ +bog o™ <n-|h]™-|gI",
so that (1.6) follows from (1.7) and R > 1:
lg(@)] > n™" - [R|7™ - g7+

This proves Proposition (1.6).

(1.8) Remark. Proposition (1.6) implies that two algebraic numbers that are
not conjugates (conjugates are roots of the same irreducible polynomial in Z[X])
cannot get very close. More precisely, suppose o and (3 satisfy distinct irreducible
primitive polynomials h(X) and g(X), respectively, in Z[X], each of degree at most
n. Without loss of generality suppose that || < |a| < 1, and let | — 3| be ~. It
is easy to see that |g(a) — 9(8)| £ ¥ |gloo - n(n — 1)/2. Now a lower bound on =
follows from Proposition (1.6). This kind of separation result also holds if & and 8
are conjugates (see for instance [21, Section 20]).
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(1.9) LEMMA. Suppose a is a complez number with |a| < 1 and with mini-
mal polynomial h of degree at most d > 1 and height at most H, and suppose &;
satisfies g = 1 and |o* — &;| < 27° for 1 < ¢ < d. Let g be a polynomial with
integral coefficients of degree at most d such that g(a) # 0. Then with the notation
introduced in (1.4), the following inequalities hold:

(1.10) |h| < (d+1) - H,

(1.11) 1§] >2¢% - (d+1)-H,

provided

(1.12) 2° > 24/2 . (d+1)@d+9/2. g2,
Proof. First notice that

(1.13) IfI?<d+1)-1fl5

h~olds for any polynomial f of degree at most d. To prove (1.10), we combine
|h|2 = |h|? + 22°|hs|? and |hs| = |h(a) — hs| < 27°-d- H (Lemma (1.5)):
|h|? < |h|? +d? - H?
<(d+1)-H*+d? H? (cf (1.13))
< (d+1)%-H2
This proves (1.10). We now prove (1.11). Clearly, if |g| > 24/2 - (d + 1) - H, we
are done because |§|2 = |g|? + 22°|ga|®. So assume |g| < 2¢/2.(d+1)- H. By
Proposition (1.6) and (1.13),
gla) 2d™' - ((d+1)- H?)~2. (292 (d +1) - H)"*H!
> 2—d(d—l)/2 . (d+ 1)—3d/2 . H_2d+1,
so that, with Lemma (1.5) and |o* — a;| < 27
gl > 2° - |gal
(1.14) >2°. (2—d(d—1)/2 (d+ 1)—3d/2 L2441 _9-s 4. |g|oo)
= 95. 2—d(d—l)/2 . (d+ 1)—3d/2 . H—2d+l —d- |g|°o
From (1.12) and [2%/2 - (d + 1) - H| > |g| > |g9|co We get
23 . 2—d(d—l)/2 . (d+ 1)—3d/2 . H—2d+l
>2Y2 . (d+1)2 - H=(d-(d+1)+(d+1))-2¥2. H
2dgloo +2¥2 - (d+ 1) H,
which, combined with (1.14), yields (1.11). This proves Lemma (1.9).

(1.15) THEOREM. Let a,h(X),d,H, and &; € 27°Z [/=1], for 0 < i < d,
satisfy the hypothesis of Lemma (1.9), where s is such that (1.12) holds. Let n be
an integer satisfying 1 < n < d, and suppose that the basis reduction algorithm on
input by, by, ..., b, defined in (1.3) yields a reduced basis with ¥ = Z?:o v;b; as the
first vector. Then the following three assertions are equivalent:

(i) [o] <2¢% - (d+1) - H;

(i) o satisfies the polynomial v(X) = > 1, vi X"
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(iil) the degree of o is at most n.
Furthermore, if n equals the degree of a, then h(X) = +v(X).

Proof. First notice that the lattice Ly = L(bg, b1,...,b,) is contained in Z"+3,
so that Theorem (1.1) can be applied to Ls, and that the conditions for Lemma
(1.9) are satisfied.

Assume (i). From Lemma (1.9) we get v(e) = 0, which is (ii).

Next, assume (ii). Then « satisfies a polynomial of degree at most n, which is
(ii).

Finally, assume (iii). This implies that h has degree at most n, so that hisa
well-defined vector in L,. Lemma (1.9) yields |h| < (d + 1) - H, so that in the
notation of Theorem (1.1) we have A;(Ls) < (d + 1) - H. It then follows from
Theorem (1.1) that || < 2%/2-(d+1) - H, which is (i). This proves the equivalence
of (i), (ii), and (iii).

If n equals the degree of «, then (iii) is satisfied, so that « satisfies v(X) (from
(ii)). Because deg(h) = n,deg(v) < n, and h is irreducible, we then have that v is
an integral multiple of h. It follows that h = v because both % and © are contained
in Ly, and because 9 belongs to a basis for Ls. This proves Theorem (1.15).

This theorem leads to the following algorithm for finding the minimal polynomial
of a:

(1.16) ALGORITHM MINIMAL POLYNOMIAL. Suppose we get on input upper
bounds d and H on the degree and height, respectively, of an algebraic number «
with |a| < 1 and a complex rational number & approximating « such that |&| < 1
and |o — @&| £ 27°/(4d), where s is the smallest positive integer such that

2 > 9d*/2 (d+ 1)(3d+4)/2 . g2,

First compute &; € 27°Z [/=1], for 0 < 1 < d, such that o = 1 and |&* — & <
279=1/2 for 1 < 1 < d. This can be done by rounding the powers of @ to s bits aftéer
the binary point. (It is easily verified that the &; satisfy the conditions in Theorem
(1.15), see Explanation (1.17).)

For n=1,2,...,d in succession we do the following:

— Apply the basis reduction algorithm to the lattice Ly = L(bo, b1,...,bs) as
defined in (1.3).

— If the first basis vector © in the reduced basis satisfies |3 < 24/2-(d+1)-H,
then let v(X) be the polynomial corresponding to 9 by the relation defined
in (1.4), return v(X) as the minimal polynomial of o, and terminate the
execution of Algorithm (1.16).

This finishes the description of Algorithm (1.16).
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(1.17) Ezplanation. We show that the &; for 1 < ¢ < d satisfy the conditions in
Theorem (1.15), i.e., [a* — &;| < 27%:

lof — & < |of — & |+ |af — &

(2
<la—a|- Z la)i=9 - |al’~! +27°"/2  (due to the rounding)

7=1
d
< = .978 2—8—1/2
*u +
<277

(1.18) Ezplanation. It is no major restriction to consider @ with || < 1 only.
Namely, if a # 0 satisfies the polynomial hA(X) = Zfzo h;X*, then 1/a satisfies
E?:o hq—;X*. Furthermore, an ¢-approximation & to o with |a| > 1 easily yields
a 3 - e-approximation 3 to # = 1/a. Let |o — @| < € with € such that 0 < e < 1/2.
Determine 3 such that |3 — 1/&| < ¢; then

= 1 a—a
/B_T
a

< —[+¢€
(e’ N4

1B—B| < lﬂ—él+

€
< = +¢.
| - &

Now |&| > (1 —¢€)|al,s0 |@ > |a|/2>1/2. So |B—B| <e[2+1]=3-¢.

(1.19) THEOREM. Let o be an algebraic number and let d and H be upper
bounds on the degree and height, respectively, of o.. Suppose that we are given an
approzimation & to o such that |o—a&| < 27°/(12d), where s i3 the smallest positive
integer such that

2 > 2d2/2 (d+ 1)(3d+4)/2 . H24.

Then the minimal polynomial of o can be determined in O(ng - d* - (d + log H))
arithmetic operations on integers having O(d? - (d + log H)) binary bits, where ng
18 the degree of c.

Proof. In order to be able to apply Algorithm (1.16), we replace o by 1/« if
necessary. It follows from Explanation (1.18) that & then yields an approximation
B to B = 1/a such that |3 — 3| < 27¢/(4d).

Now apply Algorithm (1.16). For a particular value of n the logarithm of the
length of the vectors b; in the initial basis for the lattice Ly = L(bg,by,...,b,) is
O(d?+d-log H) due to the choice of s. Application of the basis reduction algorithm
to L, can therefore be done in O(n-d*-(d+log H)) arithmetic operations on integers
having O(d? - (d + log H)) binary bits.

When going from n to n + 1 in Algorithm (1.16), we do not have to restart
the basis reduction algorithm for the new lattice: We just add a new vector b, 1
and a new dimension in which all the old vectors have a zero component, whereas
bn+1 has component 1. It follows from this observation and [16, (1.37)] that the
applications of the basis reduction algorithm for all n < ng together can be done in
O(ng -d* - (d +log H)) arithmetic operations on integers having O(d? - (d + log H))
binary bits.

This bound clearly also holds for the computation of the &;, which proves The-
orem (1.19).
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(1.20) Remark. A. Schonhage [22] has shown that for the lattice and the basis
in (1.3), the basis reduction algorithm only needs O(n - d® - (d + log H)) arithmetic
operations on integers having O(d - (d + log H)) binary bits. This implies that
Algorithm (1.16) actually needs O(nq-d3-(d+log H)) operations on O(d-(d+log H))-
bit integers.

A further improvement of a factor d in the number of operations can be obtained
by means of Schonhage’s improved basis reduction algorithm [22]. The formula-
tion of Algorithm (1.16) should however be modified slightly to incorporate this
improvement, as the analogue of [16, (1.37)] does not hold for the improved basis
reduction algorithm; for details we refer to [22]. For a more efficient algorithm for
basis reduction see also a paper by Schnorr [20].

2. Ramifications. The algorithm of the preceding section can be interpreted as
saying the following: Polynomially many bits of an algebraic number are sufficient
to specify it completely (polynomially in the number of bits needed to write down
its minimal polynomial). In a vague sense, then, the bits of algebraic numbers are
not random, but are completely determined by the first polynomially many bits.
We will not make this sense very precise here—the cryptography papers referred to
below undertake this task, but we will attempt to provide an intuitive description
of why the results of the previous section show that the bits of algebraic numbers
are not ‘(secure) pseudorandom’ bits in the terminology of cryptographers.

The question of when an (infinite) sequence of ‘bits’ (0’s and 1’s) is random has
been raised for a long time, and various reasonable definitions have been provided.
Since any such sequence may be considered to be the binary expansion of a real
number between 0 and 1, a rewording of the question is: When are the bits of
a real number random? (The phrase ‘the bits of a real number’ will mean the
binary expansion of the fractional part of the number.) The classical definition
was provided by Borel in 1909 [4]. The gist of it follows: Define a real number
o to be normal with respect to the base 2 if for any natural number k, each of
the 2% possible 0-1 strings of length k occur with equal probability in the bits of
o. A similar definition can be made for other bases. It was not difficult to show
that most real numbers are normal. It was shown by Champernowne [7] in 1933
that the real number ag which equals the infinite decimal .123456789101112...
(whose digits are obtained by juxtaposing the digits of the integers 1,2,3,4,...) is
normal to the base 10. Copeland and Erdéds [6] generalized this to any basis and a
class of reals including a9 and o; = .2357111317... whose digits are obtained by
juxtaposing the digits of successive primes. An excellent discussion of the various
classical definitions of when a sequence is random appears in [14, Section 3.5].

In several applications related to computer science one would like a notion of
randomness that implies some kind of unpredictability. The importance of this for
cryptography as well as complexity theory is discussed in (23], [3], and [25]. Some
other relevant papers related to this discussion are [9] and [8]. Of course, the bits
of the real number ag above are eminently predictable; thus intuitively, normalcy
does not seem to be a good criterion for randomness in this setting. Besides this
objection, there is another—we cannot really define randomness for one single real
number and still have unpredictability. The model we have in mind is one where
a player A presents a player B with some bits of a real number and B is trying to

This content downloaded from 128.2.113.111 on Mon, 20 Apr 2015 18:58:40 UTC
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

ALGEBRAIC AND TRANSCENDENTAL NUMBERS 243

predict the next bit. If there is one fixed real, B can compute the bits as fast as A
can, and all bits are clearly predictable. So we will have to consider a set of numbers.
The simplest set is the set of rationals. Blum, Blum and Shub [2] have shown the
following: If A announces that he is giving out the bits of a rational number with
denominator at most H, then after seeing 2 - log, H bits of the rational number,
B can figure out its fractional part and thus compute the other bits in polynomial
time. Since A needed at least log, H bits to store the rational, he cannot get a
pseudorandom sequence of length more than a constant (2) times the length of the
‘seed’.

The main result of the preceding section may be restated as follows:

If A announces that he is giving the bits of an algebraic number which s the root
of an irreducible primitive polynomial of degree d or less with integral coefficients
each of absolute value at most H, then after seeing O(d? + d - log, H) bits, B can
compute 1n deterministic polynomial time the polynomial and hence find for any n
the nth bit of the algebraic number in time polynomial in the data and n (for the
latter statement see also Section 3).

Intuitively, our result can be interpreted as saying that the bits of algebraic
numbers cannot form very long pseudorandom sequences, because after seeing a
number of bits that is polynomial in the length of the seed (the seed in this case
would be the polynomial held by A) the sequence can be easily and uniquely in-
ferred. As mentioned earlier, the question of whether this can be done was first
raised by M. Blum (private communication) who foresaw the importance of the
notion of predictability.

Another ramification of the result of the preceding section is that computations
involving algebraic numbers can be done in a natural way by representing alge-
braic numbers by suitable rational approximations. The traditional representation
of algebraic numbers is by their minimal polynomials (see, for example, [24] or
[17]). We now know an efficient method of converting the rational approximation
representation to the minimal polynomial representation. (For the conversion in
the other direction, see Section 3.) While it is not hard to see that computations
in either representation can be changed to computations in the other without loss
of efficiency (the running time will not change by more than a polynomial), the
rational approximation method is closer to the intuitive notion of computation.
For this reason we briefly sketch as an example a polynomial-time algorithm for
finding a primitive element (see definitions below) of the rationals extended by two
algebraics. Landau and Miller [15] gave in 1983 a polynomial-time algorithm for
the same problem as part of their algorithm for testing solvability by radicals.

First we remark that if o and § are two algebraic numbers, then given sufficiently
close approximations to both, we can find the minimal polynomial of 8 over Q(a)—
the least-degree polynomial p(X) with coefficients in Q(«) satisfied by 8. This is
done as follows. Suppose the degree of a over Q is d; then clearly each coeflicient
of p(X) can be taken to be a polynomial in o of degree at most d — 1 with integral
coefficients. Suppose the degree of 3 over Q(a) is m (we try m = 1,2,... in order).
Then p(X) = Y10, ?;3 pijo? X* for some p;; € Z. We can turn the problem of
finding the p;; (i.e., the problem of finding the minimal integral dependence among
the o/ for 0 < 5 < d—1 and 0 < ¢ < m) into a lattice problem in exactly the
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same way as we turned the problem of finding the minimal integral dependence
among o’ for 0 < j < d into a lattice problem in the preceding section. In the
interest of space we do not elaborate.

Suppose that « is algebraic over Q of degree d, and (3 is another algebraic number
whose degree over Q(a) is m, where d and m are determined as described above.
The field Q(e, §) obtained by adjoining a and S to the set of rationals is the set of
all complex numbers expressible as polynomials in o and @ with rational coefficients.
It is known that this field has a primitive element ~, i.e., an element v with the
property that Q(a, 8) = Q(7), and indeed v = a + { - 8, where [ is a nonnegative
integer at most d-m. It is also easy to see that if the degree of a+1{- 3 is d - m over
Q, then Q(a + ! - 8) must be equal to Q(e, 8). Thus we can use the algorithm of
Section 1 to find the degree of a+!{-F over Q for { = 0,1,...,d-m, given sufficiently
close approximations to o and (3, and thereby find the primitive element. It would
be interesting to cast the entire algorithm for testing solvability by radicals into
one that deals with explicit approximations to the algebraic numbers involved.

The idea of computing with algebraic numbers in this fashion needs to be ex-
plored further. While it is too early to say if the algorithms will be better in
practice, they should yield good theoretical and/or empirical insights.

The method of finding the minimal polynomial of 3 over Q(a) can be ex-
tended to finding algebraic dependence between any number of complex num-
bers. More exactly, let a1, a2,...,a; be (possibly transcendental) complex num-
bers given by sufficiently good approximations. Assume that we know an upper
bound d on the degree and an upper bound H on the coefficients of a polynomial
f € Z[X,,X,,...,X:] with f(o1,02,...,0¢) = 0. Then we can compute such a
polynomial f in time polynomial in log H and (**%~!). (This latter number is poly-
nomial in d for fixed ¢t and in ¢ for fixed d.) The precision to which the numbers a;

must be known is also a polynomial number of bits in log H and (d+fi_1).

This yields a factorization algorithm for multivariate polynomials: Given f € .

Z[(X,,Xa,...,Xt], substitute sufficiently large random numbers so, s3,...,s; for
X2,Xs,...,Xt, compute an s; such that f(si,s2,...,8:) ~ 0, and then find an
algebraic dependence between sy, sq,...,s:. For t = 2, a slight variant of this idea

is worked out in detail in [12].

Applications to Some Transcendental Numbers. The same technique can be ap-
plied to transcendental numbers of the form cos™!(a),sin™!(«),log(a) etc., where
o is an algebraic number. The number 7 is included in this class since it is the
principal value (i.e., the value belonging to the interval (0, 7]) of cos™1(—1).

Suppose (3 is the principal value of cos™!(a) for some unknown o, which is,
however, known to be algebraic of degree and height at most d and H, respectively.
The question is: Can we infer (in deterministic polynomial time) the minimal
polynomial of o from an approximation 3 to 3?7 We show that if |3 — §] is at most
€ = 27°/(24d), this can be done, where s is such that

2 > 2d2/2 (d+ 1)(301+4)/2 |24
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as usual. The argument is as follows. First we show that a good approximation to
B gives us a good approximation to a = cos(f3):

| cos(B) — cos(B)| < € - max { Hd_dz_ cos(z)

] : 12 between 3 and 3 } <e.
=y

This can be utilized if we can compute cos(3) at least approximately. To do this,
we employ the Taylor series expansion of the cosine function and the argument that
the tail of the series is small, once we consider several terms of the series. For all y
with 0 < y < 27 we have

cos(y) =1 —y2/2! +y*/al — B /6! + yB/81 — ...,

and further

cos(y) = (1= y?/2! +y* /4 = +y**/(4k)))]
< |y|4k+1 {H d4k+1 ( )jl b 0 and }
< 5/ -max —— 7 cos(z : T between 0 and y
(4k +1)! dz%k+1 e

< (2m)**+1/(ak + 1)

Let k equal the maximum of [—(loge)/4] and [me?/2]. Then using Stirling’s for-
mula, we see that (2m)%*+1/(4k + 1)! < . Denoting

g(y) =1 —y?/2 +yt/al — - + y*F/(4k)!,
we find that

|9(B) = cos(B)| < |g(B) — cos(B)| + | cos(B) — cos(B)| < 2-e.

Thus, in polynomial time we can compute from $ an approximation & to an un-
known algebraic number « such that | — & < 2-€ = 27%/(12d), with s as above.
Now Theorem (1.19) guarantees that we can find the minimal polynomial of « in
polynomial time. This argument can be extended to the inverses of functions that
satisfy the following two definitions.

(2.1) Definition. A complex-valued function f defined on a subset D of the
complex numbers is approrimable if there is a deterministic algorithm that, given
a complex number z in D with rational real and imaginary parts and a natural
number ¢, computes a complex number o« satisfying |a@ — f(z)| < 27 in time
bounded by a polynomial function of ¢ and the number of bits of z.

(2.2) Definition. A complex-valued function f defined on a subset D of the
complex numbers satisfies the uniform Lipschitz condition if there exist 6, M > 0
such that |f(z) — f(y)| < M - |z — y| for any z,y in D with |z —y| < 6.

(2.3) THEOREM. Suppose a complez-valued function f defined on a subset D of
the complex numbers is approzimable and satisfies the uniform Lipschitz condition,
for certain 6, M > 0. There is an algorithm which, given a complex number
in D with rational real and imaginary parts and two natural numbers d and H,
determines whether or not there is a complex number 8 in D satisfying

(i) |8 — B| <&, with e = min((24d - 2¢°/2M (d + 1) B4+972 24)~1 §) and

(i) f(B) is an algebraic number of degree at most d and height at most H.
Further, if such a B exists, then f(B) is unique, and the algorithm determines the
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minimal polynomial of f(B). The algorithm works in time bounded by a polynomial
function of d,log H, and the number of bits of f5.

Proof. First we show that if a 3 satisfying (i) and (ii) exists in D, then f(8) is
unique. Suppose not; then let 8 and ~ satisfy (i) and (ii) and f(8) # f(7). Because
|8 — B| < e, we have that |f(8) — f(B)| < e+ M by the Lipschitz condition, and
similarly |f(v) — f(8)| < e- M. But then, f(G) and f(7) are two algebraic numbers
of degree at most d and height at most H with |f(8) — f(v)| < 2¢- M, contradicting
the fact that distinct algebraic numbers cannot come too close (cf. Remark (1.8)).
This proves the uniqueness of f(03).

By the approximability of f we can compute & such that |&@— f(f8)| <e-M. Ifa
suitable 3 exists, then the Lipschitz condition gives |f(8) — f(B)| < € - M, so that
|f(B) — @] < 2e- M. The proof now follows by Theorem (1.19).

The exponential function, sine function, hyperbolic sine and cosine functions,
etc., when restricted to a finite interval (note that we need such a restriction for
the exponential function), satisfy both definitions, and thus the theorem can be
applied to them. At present, the only interesting consequence is the statement that
the bits of reals of the form cos™!(a),sin™!(a), log(a), where « is algebraic, do not
form a pseudorandom sequence.

Notice that complex numbers of the form log(a), where « is an algebraic number
(# 0,1), cannot be algebraic. This follows from the famous theorem of A. Baker
(1] (on log linear forms).

3. Factorization of Polynomials. In this section we describe an algorithm
to factor primitive polynomials over the integers in polynomial time. The first
polynomial-time algorithm for this was provided in [16]. As described in the in-
troduction, our algorithm is conceptually simple—we find the roots of the given
polynomial to a certain accuracy, and then find the minimal polynomials of the
roots using the algorithm of Section 1. These must then be the irreducible factors
of the given polynomial. Rabin [19, Section 3] first used such an idea to factor over
finite fields, where it is possible to find the minimal polynomial of a root (which
in general lies in an extension field) by solving a system of simultaneous linear
equations. For polynomials with integral coefficients, an algorithm similar to ours
is described in [5], without being polynomial-time, however.

Throughout this section, f(X) € Z[X] is the given primitive polynomial to be
factored, deg(f(X)) =d. Let H = (d‘/i2) -|f|. In [18] it is shown that this H bounds
the height of any factor in Z[X] of f (see also [14, Exercise 4.6.2.20]). The factoring
algorithm now follows immediately from Algorithm (1.16).

(3.1) ALGORITHM FACTOR. Let f,d and H be as above. If d < 1, then return
that f is irreducible and terminate the execution of the algorithm. Otherwise, do
the following as long as d > 2:

~ Let s be the smallest positive integer such that
25 > 2d2/2 (d+ 1)(3d+4)/2 . g2

~ Compute an approximation @ to a root « of f such that |a—a| < 27°/(12d)
(this can be replaced by 27°/(4d) if |a| < 1, cf. Explanation (1.18)), apply
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Algorithm (1.16) to determine the minimal polynomial h(X) of «, and
return h as an irreducible factor of f.

- Replace d by d — deg(h), put g(X) = f(X)/h(X) and return g as an
irreducible factor of f if d = 1. Terminate the execution of the algorithm
if d < 1; otherwise, replace f by g and go on.

This finishes the description of Algorithm (3.1).

It follows from Explanation (1.18), Theorem (1.19) and the definition of H that
all application of Algorithm (1.16) together can be done in O(d® - (d+log | f|)) arith-
metic operations on O(d?-(d+log |f]))-bit integers. A. Schénhage’s observation (cf.
Remark (1.20)) even brings this down to O(d* - (d + log | f|)) arithmetic operations
on O(d - (d + log|f|))-bit integers.

It remains to analyze the cost of the computation of an approximation to a root
of f. In [21] it is shown that the cost of computing approximations to all roots
of f simultaneously, up to the precision needed in Algorithm (3.1), is dominated
by the cost of the applications of Algorithm (1.16). This paper is however not yet
published, and therefore we sketch how an approximation to a root of f € Z[X]
of degree d can be found in time polynomial in d,log|f| and the number of bits
needed. The algorithm is due to A. Schonhage and is considerably slower than
his method in [21]; we only include it to show that the problem can be solved in
polynomial time. We need the following lemma, which follows from [10, Theorems
6.4b and 6.4¢].

(3.2) LEMMA. Letg(X)= E?:o 9:X* € C[X], and let a be the root of g which

is smallest in absolute value. If R(g) = min{|go/gm|"/™ : m > 1, gm # 0}, then
1
2

Proof. If go = 0, then X = 0 is a root, and the lemma is obviously true. So
assume gg # 0. First, suppose that the lower bound on |a| is violated. Then

-R(g) < |of <d- R(g).

o] < =
2ig

m

for all m with g, # 0. So

d
E gma™

m=1

d d
1
<Y lgmllo™ < lgol gm < lgol-
m=1

m=1

This implies that we cannot have 3°%_ g;a* = 0, a contradiction.
Now suppose that |a| > d- R(g). Let @ = a1, aa,..., 04 be the roots of g. Then

I9m = 9d * Z ai1'ai2""'aid_m

11,82,.50d—m

for m =0,1,...,d — 1, and in particular

d
90 = gd * H 0.
i=1
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So,

m_ oy L1 1
- Q;, Oy, (o7

go o .
21,225-.9%m

form=0,1,...,d —1,d. Since |o;| > d- R(g) for : =1,2,...,d, we have

m
< () ) =m
9o m/ \d- R(g) R(g)™
for any m. It follows that
go 1/m
| > R(g)
gm

for all m with g,, # 0. This is in contradiction with the definition of R(g). This
proves Lemma (3.2).

We now show how to approximate a root in polynomial time. We may assume
that among the roots aj,az,...,a4 € C of f there is an o; satisfying |o;| < 1
(otherwise, replace f(X) by X?- f(1/X)). Let t € Z»¢ and a; € 27Z [\/—1] such
that

(3.3) min |a; — o;| < 4d- 27
2

Initially, this condition is satisfied for ¢t = 0 and ag = 0. We show how to compute
ar+1 € 27D Z [\/=1] such that (3.3) holds with ¢ replaced by ¢ + 1.
For all a € 2~(*VZ [\/=1] such that

(3.4) la —a;| <4d-27t 427 (D

we compute the coefficients of g,(X) = f(X + a) and an approximation r(g,) to
d- R(g,) such that

(3'5) d- R(ga) < T(ga) <2d- R(ga),

where R(g,) is defined as in Lemma (3.2). Define a;4; as the a for which 7(g,) is
minimal.

To prove that a4 satisfies (3.3) with ¢ replaced by ¢t + 1, notice that the roots
of go(X) are the a; — a, and that it follows from (3.3) and (3.4) that there is an a’
among the a such that min, |a’ — a5 < 2~ (¢+1). This yields:

min |a;41 — o] < 7(ga,,,) (Lemma (3.2) and (3.5))
2
< 7(gs) (choice of a441)
<2d-R(g,) (due to (3.5))
<4d min|a’ — ;] (Lemma (3.2))
(2
< 4d-2=(*1  (choice of a').

It is clear that the computation of a;4; can be done in time polynomial in d, ¢,
and log |f|. It follows that an approximation to a root of f can be found in time
polynomial in d,log|f| and the number of bits needed.

We have shown the following theorem.
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(3.6) THEOREM. A primitive polynomial f of degree d in one variable with
integral coefficients can be completely factored over the integers in time polynomial
in d and log |f].

Using A. Schonhage’s observation mentioned in Remark (1.20) and his improved
version of the polynomial-time root finding algorithm described above (cf. [21]), we
get the following theorem.

(3.7) THEOREM. A primitive polynomial f of degree d in one variable with
integral coefficients can be completely factored over the integers in O(d*-(d+log|f|))
arithmetic operations on O(d - (d + log | f]))-bit integers.

As mentioned in Remark (1.20), the number of operations can be reduced to
O(d®- (d +1log|f])) if we use Schénhage’s improved basis reduction algorithm. The
description of the algorithm should in that case be slightly modified; we refer to
[22] for details.
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In this paper we present a polynomial-time algorithm to solve the following
probiem: given a non-zero polynomial fe@[X] in one variable with rational
coefficients, find the decompaosition of f into irreducible factors in Q[X7. It is well
known that this is equivalent to factoring primitive polynomials feZ[X] into
irreducible factors in Z[X]. Here we call fe Z[X] primitive if the greatest common
divisor of its coefficients (the content of f)is 1.

Our algorithm performs well in practice, cf. [8]. Its running time, measured in
bit operations, is O{n'? +n°log|f])*). Here feZ[X] is the polynomial to be
factored, n=dep(f) is the degree of f, and

B =(T4”

for a polynomial ¥ e X* with real coefficients a;.

An outline of the algorithm is as follows, First we find, for a suitable small
prime number p, a p-adic irreducible faetor h of f, to a certain precision. This is
done with Berlekamp’s aigorithm for factoring polynomials over small finite fields,
combined with Hensel's lemma. Next we look for the irreducible factor h, of f in
Z[X] that is divisible by h. The condition that h, is divisible by # means that f,
belongs to a certain lattice, and the condition that k, divides f implies that the
coefficients of k, are relatively small. It follows that we must look for a “small”
element in that lattice, and this is done by means of a basis reduction algorithm. It
turns out that this enables us to determine h,. The algorithm is repeated until all
irreducible factors of f have been found.

The basis reduction algorithm that we employ is new, and it is described and
analysed in Sect. 1. It improves the algorithm given in a preliminary version of [9,
Sect. 3], At the end of Sect. 1. we briefly mention two applications of the new
algorithm to diophantine approximation.

The connection between factors of f and reduced bases of a lattice is treated in
detail in Sect. 2. The theory presented here extends a result appearing in [8,
Theorem 2]. Tt should be remarked that the latter result, which is simpler to prove,
would in principle have sufficed for cur purpose.

0025-5831/82/0261/0515/304.00
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Section 3, finally, contains the description and the analysis of our algorithm for
factoring polynomials.

It may be expected that other irreducibility tests and factoring methods that
depend on diophantine approximation (Cantor [3], Ferguson and Forcade [5],
Brentjes [2, Sect. 4A], and Zassenhaus [16]) can also be made into polynomial-
time algorithms with the help of the basis reduction algorithm presented in Sect. 1.

Splitting an arbitrary non-zero polynomial fe Z[X] inte its content and its
primitive part, we deduce from our main result that the problem of factoring such a
polynomial is polynomial-time reducible to the problem of factoring positive
integers. The same fact was proved by Adleman and Odlyzko [1] under the
assumption of several deep and unproved hypotheses from number theory.

The generalization of our result to algebraic number fields and to polynomials
in several variables is the subject of future publications.

1. Reduced Bases for Lattices

Let # be a positive integer. A subset L of the n-dimensional real vector space IR" is
called a lattice if there exists a basis b, by, ..., b, of R" such that

L=} Zb= {2 rib e Zil gign)}.
i=1 i=1
1n this situation we say that by, b5, ..., b, form a basis for L, or that they span L. We
call n the rank of L. The determinant d(L) of L is defined by
{11) d(L)=|det(h,, b, ....B,),
the b, being written as column vectors. This is a positive real number that does not
depend on the choice of the basis [4, Sect. 1.2].

Let b,,b,,....b,eR” be lineatly independent. We recall the Gram-Schmidt
orthogonalization process. The veetors b¥ (1 i Zn}and the real numbers p, (12
<i<n) are inductively defined by

i—-1

(12) bF=b,— ¥ mbt,
i=1

(13) s = by BVBE ),

where {,) denotes the ordinary inner product on R". Notice that b} is the
i—1 i-1
projection of b; on the orthogonal complement of 3 Rb, and that 3 Rb,
i=1 =1
i—1

= 3 Rb¥ for 1=i<p. It follows that b}, b¥, .., b¥ is an orthogonal basis of R".
JI;r; this paper, we call 4 basis b, b,, ..., b, for a lattice L reduced if

(1.4) luyl 2172 for 1Z£j<iZn

and

1.5) [b* 4 g, b 223X |2 lor 1<iZn,
i TG00 al?i
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where || denotes the ordinary Euclidean length. Notice that the vectors b¥

+ - b, and b | appearing in (1.5) are the projections of b;and b,_, on the
i—-2

orthogonal complement of ¥ RE,. The constant § in (1.5) is arbitrarily chosen,
i=1

and may be replaced by any fixed real number ywith i<y<l,

(1.6} Proposition. Let b, b, - b, be a reduced basis for g lattice L in R", and let
bY,bE, ..., b} be defined as above. Then we have

a7 BLRS2TUBE for 1Sjign,

(8 dD)s []ps2= 4L,
i=1

(1.9 b 1< 20 s g yiin,

Remark. 1f 2 in (1.5} is replaced by y, with < y<, then the powers of 2 appearing
in (1.7), (1.8} and (1.9) must be replaced by the same powers of 4/(4y—1).

Remark. From (1.8) we see that a reduced basis is also reduced in the sense of [9,
(73
Progf of (1.6). From (1.5) and (1.4) we see that
BFF 2@ —ul ) IbE 22t 2
for 1<i<n, so by induction
1B =270 0%)? for 1=j<i<n,
From (1.2) and (1.4) we now obtain
i-1
b=+ T bt
i=1

i—1
LA I
j=1
=L+ =22
§2i—1‘|b?‘2.
[t follows that
o> 205 o2 < 2o
for 1£j=i<n. This proves (1.7}
From {1.1), (1.2) it follows that
d(L)=|det(b}. b%, ... b})|

and therefore, since the b are pairwise orthogonal

n

L= TT Ip¥.
i=1
From |5 <|b and |b] = 2"~ 12 |b¥| we now obtain (L.8). Putting j= in (1.7) and
taking the product over i=1,2,...,n we find (1.9). This proves (1.6).
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Remark. Notice that the proof of the inequality
(L.10) dir)= 11l
i=1

did not require the basis to be reduced. This is Hadamard's ineguality.
(1.11) Proposition. Let LCR" be a lattice with reduced basis by, by, ...,b, Then
by [P =2t |x?

Jor every xe L, x=+0.

n n
Proof. Write x= Y rp,= ¥ rib¥ with r,eZ vieR (15i<n). If i is the largest
i=1 i=1
index with r,#0 then ri=r¢, so

FEETANCIEFI
By (1.7, we have |b,|2 227 1-|p¥2 2"~ !-|b¥|%. This proves {1.11}.
(1.12) Proposition. Let LCIR" be a lattice with reduced basis b,. by, ... b,. Let x,,
Xqr .. X,€ L be linearly independent. Then we have
b2 €2 emax{lx, 12 bl o bl
for j=1,2,...,t
Proof. Write x,= i rib, with ryeZ (1=i<n) for 12j=¢. For fixed j, let i(j)

[}

denote the largest i_for which r,;#0. Then we have, by the proof of {1.11)
{1.13) b 2B,

for 1=<j=: Renumber the x, such that (=D =, Li(t). We claim that j=i(j)
for | £j <t Tfnot, then x,, X5, ..., X; would all belong to Ry +Rb, +...+Rb,_ .2
contradiction with the linear independence of x, x4, ..., From j<i{j) and (L.7}
we obtain, using (1.13):

b2 <240 by S 2n T bl E 2
for j=1,2,...,t. This proves {1.12).

Remark. Let 4,,4,, ..., 4, denote the successive minima of ||* on L, see [4, Chap.
VIIL], and let b,,b,,...,b, be a reduced basis for L. Then (1.7) and (1.12) easily
imply that

207 = Re2 ), for 1ZiZs,
so |b/? is a reasonable approximation of 4.

(1.14) Remark. Notice that the number 2°~' may in (1.11) be replaced by
max{|b, |}/|p¥|?: 1 Li<n} and in (1.12) by max{lb|*/p}*: 1 £j=i<n}.

(1.15) We shall now describe an algorithm that transforms a given basis
by by, ... b, for a lattice L into a reduced one. The algorithm improves the
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algorithm given in a preliminary version of [9, Sect. 3]. Our description
incorporates an additional improvement due to J. J. M. Cuppen, reducing our
running time estimates by a factor n.

To initialize the algorithm we compuie br{(l=ign)and #i (LEj<iZn)using
(1.2) and (1.3). In the course of the algorithm the vectors b Jho, b, will be
changed several times, but always in such a way that they forin a basis for £.. After
every change of the b, we shall update the b} and gi;; in such a way that (1.2) and
(1.3) remain valid.

At each step of the algorithm we shail have a current subscript
ke{1,2,...,n+1}. We begin with k=2.

We shall now iterate a sequence of steps that starts from, and returns to, a
situation in which the following conditions are satisfied :

(1.16} I =3 for 1=j<i<k,

(1.17) [bF + 1y BF P2 3bF )2 for 1<i<k.

These conditions are trivially satisfied if k=2,

In the above situation cne procesds as follows. If k=r+1 then the basis is
reduced, and the algorithm terminates. Suppose now that kZn Then we first
achieve that

(1.18) i 27 i k>1.

If this does not hold, let r be the integer nearest to M- 1> and teplace b, by b,
—rb,_,. The numbers ty; with j<k—1 are then replaced by ;= THy_y  and
My y— 1 bY . ~7. The other #and all bF are unchanged. After this change (1.18}
holds.

Next we distinguish two cases.

Case 1. Suppose that k=2 and
(1.19} BF o BE_ {17 <3 bE .

Then we interchange #,_, and &, and we leave the other b; unchanged. The
vectors b and b and the numbers g, _,, By 1 p By Mgy Mo Tor j<k—1and
for i >k, have now 1o be replaced. This is done by formulae that we give below. The
most important one of these changes is that b yisteplaced by b¥ + . b¥ ;50
the new value of [b¥_ |2 is less than 2 times the old one. These changes being made,
we replace k by k— 1. Then we are in the situation described by (1.16) and {1,17),
and we proceed with the algorithm from there.

Case 2. Suppose that k=1 or i
(1.20) o AP -+ 11
In this case we first achieve that
(1.21) =3 for 1<j<k—1,

[For j=k—1 this is already true, by (1.18).] If (1.21) does not hold, let { be the
largest index <k with |r,,| >4, let r be the integer nearest to u,,, and replace b, by
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b - rb, The numbers y,, with j<1 are then replaced by W rig, and g by g, —r;
the other y,; and all &} are unchanged. This is repeated untit (1.21) holds.

Next we replace k by k+ 1. Then we are in the situation described by {1.16} and
(1.17), and we proceed with the algorithm from there.

Notice that in the case k=1 we have done no more than replacing k by 2.

This finishes the deseription of the algerithm. Below we shall prove that the
algorithm terminates.

(1.22) For the sake of completeness we now give the formulae that are needed in
casc 1. Let by, b,. ... b, be the current basis and bf, p;; as in (1.2) and (1.3). Let k be
the current subscript for which (1.16), (1.17), (1.18), and {1.19) hold. By ¢, ¢¥, and vi;
we denote the vectors and numbers that will replace b, b}, and u,, respectively.
The new basis ¢,,c,,..., ¢, is given by

ey =by, ¢=b,_,, ¢=h for i+k—L1k.
k-2
Since ¢f_, is the projection of &, on the orthogonal complement of Y Rb; we
i=1
have, as announced ;

e =btu,bf
{cf. the remark after (1.5)]. To obtain ¢ we must project b*_, on the orthogenal
complement of Ref . That leads to
Vew— =0 - Wl aeds )
TP - - B
=B =Vt
For i+k—1, k we have ¢} =b}. Let now i>k. To find v,,_, and v, we substitute
[ VY -
e Vel NI A - S TR
=B ek (1) et — iy

i—1

in by=h¥+ 3 u,b* That yields
=1

Virm 1 =Hix ugmy 0P R
Vi = Mg g bl -1 -
Finally, we have

Ve jT Mg Vep=Io g
fortgj<k—1 and v,;=p, if 1 £j<ign, {ij}n{k—L k} =8.

We remark that after the initialization stage of the algorithm it is not necessary
to keep track of the vectors b}. It suffices to keep track of the numbers |bF|2, in
addition to p;; and the vectors b, Notice that [ef2 =1bj_ | ib212/lc¥_,|* in the
above, and that the left hand side of (1.19), (1.20) equals [b¥[* + 42, _,|bfF_ %

The entire algorithm is represented in Fig. 1, in which B, =]b¥%
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b i=by,
s (b B¥VB
Hiy? (b"b‘)"gj’} for j=1,2,..,i=1;% for i=1,2,...n;
oF by it
B =(b}.bY)
k=2,

{1

perform (#) for =k—1;

it Be<(I—pi )Bioy, poto (2
perform (*) for I=k—2, k-3, .1,

if k=n, terminate;

ki=k+1;

go to (1};

(@) =ty i Bi=B +p'B,_; Hru-1 =B /B
B.=B_,B/B;B _,:=8;

(5,‘_.)_:( b, )
by by
(Fk—u)::(p-“’u ) for j=1,2,....k—2;
VMg k-1

T L e TN
Hig, 0 1 1o—p/h oy ' "

if k=2 then k:=k—1;

go to (1).
(+) M )>%  then:

ri=integer nearest to ;b1 =h, —rhy;
My =Hg—ry for j=1,2,00-1;
Pyt = Mg —F-

Fig. 1. The reduction algorithm

(1.23)  To prove that the algorithm terminates we introduce the quantities

(1.24) di=det{tb, b)), <; (<

for 0=i=n. It is easily checked that )

{1.25) di= T[] |b¥2
i=1

for 0=i=n. Hence the 4; are positive real numbers. Notice that dy=1 and d,
=d(L)% Put

n—1

. D=1]]4.
i=1
By (1.25), the number D only changes if some b¥ is changed, which only occurs in
cas¢ L. In case 1, the number d, _ | is reduced by a factor <3, by (1.25), whereas the
other d; are unchanged, by (1.24); hence D is reduced by a factor <3, Below we
prove that there is a positive lower bound for d, that only depends on L. It follows
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that there is also a positive lower bound for D, and hence an upper bound for the
number of times that we pass through case 1.

In case 1, the value of k is decreased by 1, and in case 2 it is increased by 1.
Initially we have k=2, and k<n+1 throughout the algorithm. Therefore the
number of times that we pass through case 2 is at most n— 1 more than the number
of times that we pass through case 1, and consequently it is bounded. This implies
that the algorithm terminates.

To prove that 4, has a lower bound we put

m(L)=min{|x|?:xe L, x+0}.

This is a positive real number. For i>0, we can interpret 4, as the square of the
determinant of the lattice of rank i spanned by b, bs,....b; in the vector space

¥ Rb, By {4, Chap. I, Lemma 4 and Chap, 11, Theorem I, this lattice contains a
=1

non-zero vector x with [x[2 < (4/3)¢" ¥2dM:. Therefore 4,2 (344 ¥2m(L), as
required.

We shall now analyse the running time of the algorithm under the added
hypothesis that beZ" for 1£iZn By an arithmetic operation we mean an
addition, subtraction, multiplication or division of two integers. Let the binary
length of an integer a be the number of binary digits of |aj.

{1.26) Proposition. Let LCZ" be a lattice with basis by, by, ..., b, and let BeR,
B2, be such that |b)*£ B for 1Zi=<n. Then the number of arithmetic operations
needed by the basis reduction algorithm deseribed in (1.15) is Ol log B), and the
integers on which these operations are performed each have binary length OnlogB).

Remark. Using the classical algorithms for the arithmetic operations we find that
the number of bit operations needed by the basis reduction algorithm is
O(n(log B)®). This can be reduced to O(r®* {log B)***), for every ¢ >0, il we employ
fast multiplication techniques.

Proof of (1.26). We first estimate the number of times that we pass through cases 1
and 2. In the beginning of the algorithm we have d, < B, by (1.25),50 D < prin— V2,
Throughout the algorithm we have Dz 1, since d,2Z by {1.24) and d;>0 by (1.23).
So by the argument in (1.23) the number of times that we pass through case 1 is
O(n*logB), and the same applies to case 2.

The initialization of the algorithm takes Q(n*) arithmetic operations with
rational numbers: below we shall see how they can be replaced by operations with
integers.

For (1.18} we need Q(n) arithmetic operations, and this is alse true for case 1. In
case 2 we have to deal with O(r) values of /, that each require O(n) arithmetic
operations. Since we pass through these cases O{n* log B) times we arrive at a total
of O(r* log B} arithmetic operations.

In order to represent all numbers that appear in the course of the algorithm by
means of integers we also keep track of the numbers 4; defined by (1.24). In the
initialization stage these can be calculated by (1.25), After that, they are only
changed in case 1. In that case, d,_ is replaced by d,_ -lef_,[*/ib¥ > =d, ,
-le¥_,|? [in the notation of (1.22)] whereas the other &; are unchanged. By (1.24),
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the d; are integers, and we shall now see that they can be used as denominators for
all numbers that appear:

(1.27) brP=dfd,_, (i),
(1.28) d_ el (1<isny,
(1.29) dpcZ  (12j<isn).

=1
The first of these follows from (1.25). For the second, we write b¥=b,— ¥ Aib;
with A €R. Solving 4;,,...,4,,_, from the system !

i—-1
bub)= ¥ Afbby (12igi—1
i=
and using (1.24) we find that d;_,4;;€Z, whence (1.28). Notice that the same
argument yields
i-1

d:‘—l(bk_ E#“b}‘)el‘r’" for i<k;
Ji=1

this is useful for the calculation of b} at the beginning of the algorithm. To prove
(1.29} we use (1.3), (1.27), and (1.28):
dyi;=d (b, BB, BT = di_ (b, b¥y=1b,d

fL i _lb;‘)EZ.

To finish the ptoof of (1.26) we estimate all integers that appear. Since no d, is
ever increased we have d,<B' throughout the algorithm. This estimates the
denominators. To estimate the numerators it suffices to find upper bounds for
'b:ﬂz) |bg|2, and |i4'-;'j|~

At the beginning we have [b¥|* £|b[*<B, and max{b*?:12i<n) is non-
increasing; io see this, use that [cf_ | <3|b¥_|* and I} < |bF_ 1% in (1.22), the
latter inequality because ¢ is a projection of b¥ . Hence we have [b¥*<B
throughout the algorithm.

To deal with |b|*> and u;; we first prove that every time we arrive at the
situation described by (1.16) and (1.17) the following inequalities are satisfied :

J

(1.30) B> <nB for i+k,

(1.31) [Be|? < n?(4B) if  k$n+l,

(1.32) PRES: for 1zj<i, i<k,

{1.33) |t £ (nBH!2 for 1gj<i, i>k,

(1.34) o S2°74nB* Y2 for 1<j<k, if ken+1.

Here (1.30), for i <k, is trivial from (1.32), and {1.31) follows from (1.34). Using that
(1.35) 1 Z[bPbY P =4, |b)/d, < B [b)?

we see that (1.33) follows from (1.30), and (1.32) is the same as (1.16), It remains to
prove (130} for ik and to prove (1.34). At the beginning of the algorithm we even

have |5|*< B and ,ufjg BY, by (1.35), so it suffices to consider the situation at the
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end of cases 1 and 2. Taking into account that k changes in these cases, we see that
in case 1 the set of vectors {h,:i=k} is unchanged, and that in case 2 the set
{b.:i>k} is replaced by a subset. Hence the inequalities (1.30) are preserved. At
the end of case 2, the new values for p (if k+n+ 1) are the old values of p, , , ; 50
here (1.34) follows from the inequality (1.33) at the previous stage. To prove (1.34)
at the end of case | we assume that it is valid at the previous stage, and we follow
what happens 10 ;. To achieve (1.18) it is, for j<k— 1, replaced by i — ity
with [rl<<2lp | and lu,_, | =3, 50

(1.36} bt — i j|§‘.ukj|+‘:ukk—ﬁ
ézm-k+1(n8nf 1)1]2 b)‘ (134)
In the notation of {1.22) we therefore have
h’j‘—i jléz"_(k— ll(an—l)le‘Z for j(kf i

and since k—1 is the new value for k this is exactly the inequality (1.34) to be
proved.

Finally, we have to estimate [b|* and p,; at the other points in the algorithm.
For this it suffices to remark that the maximum of [, ], lftal, -, [ 5 - | 15 at most
doubled when (1.18) is achieved, by (1.36), and that the same thing happens in
case 2 for at most k—2 values of L Combining this with (1.34) and (1.33) we
conclude that throughout the course of the algorithm we have

=2 (B ) for 1Zj<ign
and therefore
[b)*Zn*4ByY for 1Zign.

This finishes the proof of (1.26).

{1.37) Remark. Let 1 ¢ <n. Ifk, in the situation described by (1.16) and {1.17), is
for the first time equal to 1" + 1, then the first n’ vectors b, b,, ... b, form a reduced
basis for the lattice of rank #' spanned by the first »' vectors of the initially given
basis. This will be vseful in Sect. 3.

(1.38) Remark. 11 is easily verified that, apart from some minor changes, the
analysis of our algorithm remains valid if the condition LCZ" is replaced by the
condition that {x, ye Z for all x, ye L ; or, equivalently, that (b, b e Zfor 1=ij=n.
The weaker condition that (b, b)e @, for 1 <4, j<n, is also sufficient, but in this
case we should clear denominators before applying (1.26).

We close this section with two applications of our reduction algorithm. The
first is to simultancous diophantine approximation. Let n be a positive integer,
%5, 0 ..., 0, real numbers, and ¢ IR, 0 <z < 1. It is a classical theorem [4, Sect.V.10]
that there exist integers p,, Py, ... Py, 4 satisfying

lp,—qa)2e for 1=Zigwm,
1=g=e™".

We show that there exists a polynomial-time algorithm to find integers that satisfy
a slightly weaker condition.
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{1.39) Proposition. There exists a polynomial-time algorithm that, given a positive
integer n and rational mumbers o, o,, ..., a,, & satisfying 0<e<1, finds integers p,,
Pas - Pus 4 Sfor which
Ip:—axl <e for 1Zizn,
]. ngzmjui- 1)_‘"4E*n .

Proof. Let L be the lattice of rank n+1 spanned by the columns of the
(n+ 1) % (n+ 1)-matrix

1 ¢ ... 0 —a, |
01 0 -,
00 .1 —a,

O | B | B

The inner product of any two columns is rational, so by {(1.38) there is a
polynomial-time algorithm to find a reduced basis b by,.nb, . for L. By (1.9)
we then have .

|b1|§2’”4-d(L)1"”+”=8.
Since b, € L, we can write

by =(p,—qay,p5—qu,, vy Py g, @27 g T

with p,,pa, ..., g€ Z. [t follows that
lpi—gzl<e for 1Zi<a,
|q|§_2n(n+ l).*4H—n‘

From g< 1 and b, +0 we see that ¢=+0. Replacing b, by —b,, if necessary, we can
achieve that g>0.

This proves (1,39).

Another application of our reduction algorithm is to the problem of finding
Q-linear relations among given real numbers «,, &y, ---n &, For this we take the
lattice L to be Z" embedded in R"*} by

-
{my, fiq, o om (ml,m,, M, C Y ml.a:.);
=1
here ¢ is a large constant and «} is a good rational approximation to ;. The first
basis vector of a reduced basis of L will give rise to integers m,, m,, ..., m, that are

not oo large such that ¥ ma, is very small,
i=1

Applying this to a;=a'" ! we see that our algorithm can be used to test a given
real number  for algebraicity, and to determine its irreducible polynomial. Taking
for o a zero of a polynomial feZ[X], f=+0, and generalizing the algorithm to
complex o, one finds in this way an irreducible factor of f in Z[X]. It is likely that
this yields actually a polynomial-time algorithm to factor fin Q[X7], an algorithm
that is different from the p-adic method described in Sect. 3.

In a similar way we can test given real numbers %, B. v ... for algebraic
dependence, taking the o, to be the monomials in o f, 7, ... up to a given degree.
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2. Factors and Lattices

In this section we denote by p a prime number and by k a positive integer.
We write Z/p*Z for the ring of integers modulo p¥, and FF, for the field
Z/pL. For g=7Y ¢X'c¢Z[X] we denote by {gmodp*) the polynomial

Z (a,modp")X’e (El/ka}[X]-

We fix a polynomial f£Z[X ] of degree », with n>>0,and a polynomial he Z[X]
that has the following properties:

(2.1) k has leading coefficient 1,

(2.2} (hmodp"y divides (f modp® in (Z/P*E)X],
2.3) (hmodp) is irreducible in T [X],

(2.4) (hmodp)? does not divide (fmodp) in F,[X].

We put I=deg{h): so 0<IZn

{2.5) Proposition. The polynomial f kas an irreducible factor hy in Z[X] for which
(hmodp) divides (hgmodp), and this factor is uniguely determined up to sign.
Further, if g divides f in ZLX], then the following three assertions are equivalent
(i) (hmodp) divides (gmodp) in F [X],
{ii) (hmodpY) divides (g mod p*) in (Z/p"*Z)[X ],
(i) h, divides g in Z[X].
In particular (hmodp*) divides (hy modp) in (Z/p*2)[X].

Proof. The existence of h, follows from (2.2) and (2.3}, and the uniqueness, up to
+1, from (2.4). The implications (i) = (i) and (iii) = (i) are obvious. Now
assume (i); we prove {iii) and {ii). From (i) and (2.4) it follows that (kmodp) does
not divide {f/g modp) in F [X]. Therefore hy does not divide ffg in Z[X], so it
must divide g. This proves (iii}. By (2.3) the polynomials (h mod p} and (f/g mod p)
are relatively prime in T [X7], so in [F [X] we have

(4, modp)-(hmodp) + (g, modp)-{figmodp)=1

for certain A, u,eZ[X]. Therefore Ah+p, flg=1—pv; for some vieZ[X].

Multiplying this by 1+pv, +p2i+...+p* %" and by g we obtain
P 1 1 1

Aoh+ p, f= gmod pZIX]

for certain 4,, i, Z[X 1. Since the left hand side, when taken modulo p*, is divisible
by (hmodp¥), the same is true for the right hand side. This proves (ii).
The final assertion of (2.5) follows if we take g=Hh,. This proves {2.5).

(2.6) Tn the remainder of this section we fix an integer #t with m= 1 and we let L be
the collection of all polynomials in Z{X ] of degree Zm that, when taken modulo p,
are divisible by (hmed p¥) in (Z/p*Z)[X]. This is a subset of the (m+ 1)-dimensional
real vector space R+R-X +... +R-X™ This vector space is identified with R"**

m

% X

i=0

by identifying ¥ X' with (a5, ....a,). Notice that the length of a
o
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polynomial, as defined in the introduction, is equal to the ordinary Euclidean
length of (a4, ay, ..., a,,). It is easy to see that L is a lattice in R"* ! and, using {2.1),
that a basis of L is given by

{FX0Zi<hUfhXY 0<jsm—1}.
From (1.1} it follows that d(L)= p*.
In the following proposition h, s as in (2.5).
(2.7} Proposition. Let be L satisfy
(2.8) P (1" 1Bl
Then b is divisible by hy in Z[X)], and in particular ged(f, b)Y+ 1.

Remark. A weaker version of (2.7), which could also be used to obtain a
polynomial-time factoring algorithm for polynomials, asserts that ged(f,b)+1
under the same conditions. The proof of this version is less complicated than the
proof given below, see [8, Theorem 2].

Proof of (2.7). We may assume that b+0. Let g=gcd(f, b). By (2.5) it suffices to
show that (hmodp) divides (g modp). Suppose that this is not the case. Then by
{2.3} we have

(29) Agh+fing =1 pr,
for certain A4, g, v,€ Z[X] We shall derive a contradiction from this.

Put e=degly) and m'=deg(bh). Clearly 0 <e<m' = m. We define

M={Af+pb: 4, ueZ[X],deg()<nr' —e,deglpp<n—c}
CZ+Z X +.. . +Z-X"m e,
Let M’ be the projection of M on
X HZ-X R X

Suppose that 2/ + ub projects to 0 in M', with 4, 4 as in the definition of M. Then
deg(2f +pub)<e, but g divides 1f + ub, s0 if +ub=0. From A-(f/g)= —u-(big)
and god(f/g.b/g)=1 it follows that f/g divides . But deg(u)<n—e=degif/g), so

#=0, and therefore also A=0.
This proves that the projections of

XY 0=i<m —epu{X/h:0Sj<n—e}
on M’ are linearly independent. Since these projections span M, it follows that M’

is a lattice of rank #4+m' —2e, From Hadamard's imequality {1.10) and (2.8) we
obtain .

(2.10) M) Z| ST B e | F17 - B < pM

Below we deduce from {2.9) that
(Z11) {veM deg(v)<e+{} Cp*E[X].
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Hence, if we choose a basis b, b, . (.-..0, 1y -, Of M" with deg(b)=j, see [4,
Chap. I, Theorem I.A], then the leading coefficients of b6, , ....b,,,_, are
divisible by p*. [Notice that e+i—1=n+m —e—1 because g divides b and
{hmod p) divides ( f/g modp).] Since d(M") equals the absolute value of the product
of the leading coefficients of b, b,y ....byymw—o—, We find that d(M")zp*.
Combined with {2.10) this is the desired contradiction.

To prove (2.11), let ve M, deg(v)<e +!. Then g divides v. Multiplying (2.9} by
v/g and by L+pv,+p"vi+ .. +p* "™ we obtain

{2.12) A+ pyv=v/gmod prELX ]

with A, u,€Z[X]. From ve M and be L it follows that (vmodp) is divisible by
{hmod p¥). So by (2.12) also (v/gmodp") is divisible by (hmodp*). But (hmodp*) is
of degree ! with leading coefficient 1, while (v/gmodp*) has degree <e+i—e=1
Thercfore v/g=0mod p*Z[X ], so also v=0modp*Z[X ]. This proves (2.11).

This concludes the proof of (2.7).

(2.13) Proposition. Ler p, k, f. o, h, | be as at the beginning of this section, hy as in
(2.5), and m, L as in (2.6). Suppose that by, b, ..., b, | is a reduced basis for L {see
(1.4) and (1.5)), and that

b) 2
(2‘]4] pk(>2mn;2( m) lflmv“'
m

Then we have deg{hy)Zm if and only if

(2.15) LARSFariF T R

Proof. The “if*-part is immediate from (2.7), since deg(b,} <#. To prove the “only
if*-part, assume that deg(hy}=m. Then hye L by (2.5), and |hy| £ (Zr;n)m |fl by a
result of Mignotte [10: ¢f. 7, Exercise 4.6.2.20]. Applying (1.11} to x=h, we find
that |b1|§2”'"2-\h0\§2m’2‘(2m)lsz-\‘[|. By (2.14) this implies (2.15). This proves
(2.13). "

(2.16) Proposition. Let the notation and the hypotheses be the same as in(2.13), and
assume in addition that there exists an index je{1,2,...,m+ 1} for which

217) bl < (PR
Let t be the largest such j. Then we have
deg(hg)=m+1—1,
ho=ged(b,.b,,....0),
and {2.17) holds for all j with 1 <j<t.

Progf. Let J={jec{1,2,...,m+1}: (217) holds}. From (2.7) we know that f,
divides b, for every jeJ. Hence if we put

h =ged(lp;:jel})
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then &y divides h,. Each b, jeJ, is divisible by h, and has degree <m, so belongs to
Zh +Z X+, +Z-h X st

Since the b; are linearly independent this implics that

(2.18) # JEm+1—deg(h,).

By the result of Mignotte used in the proof of (2.13) we have |h X'|=|h,|
< (2:)“2'”! for all iz0. For i=0,1,...,m—deg(h,) we have hX'e L. so from

(1.12) we obtain
o (2R
WﬂéZ“L(m) I

for 1=j=m-+1—deg(h,). By (2.14), this implies that
(219 {1,2,...m+1—deg(h)}CJ.
From (2.18), (2.19) and the fact that k; divides i, we now see that equality must
hold in (2.18) and {(2.19}, and that
deglhg)=deglh,)=m+1—-1t, J={1,2,...t}.

It remains to prove that b, is equal to h,, up to sign, and for this it suffices to check
that /s, is primitive. Choose jeJ, and let d; be the content of b, Then b/d, is
divisible by g, and hge L, so b/d,e L. But b, belongs to a basis for L, so d;=1and
b; is primitive, and the same is true for the factor b, of b, This finishes the proof of
(2.16).

Remark. If t=1 then we see from (2.16) that b, is an irreducible factor of f; and
that no ged computation is necessary.

Remark. From the proofs of (2.13) and (2.16) we see that {2.14) may be replaced by
AT

where ﬁ:max{\bj\,f\bg“l 1gjsiEm+ 1} [of (1.14)] and where 7 is such that |g| <4
for every factor g of f in ZTX] with deg({g)=m.

3. Description of the Algorithm

Denote by f a primitive polynomial in Z[X] of degree n, with n>0, In this section
we describe an algorithm that factors f inte irreducible factors in Z[X]. We begin
with two auvxiliary algorithms.

(3.1) Suppose that, in addition to f and n, a prime number p, 4 positive integer k
and a polynomial he Z[X] are given satisfying (2.1), (2.2), (2.3), and (2.4). Assume
that the coefficients of A are reduced modulo p* so

B> 1+ 1p,
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where I=deg(h). Let further an integer m ! be given, and assume that inequality
(2.14) is satisfied:

i ni2
ki o, qmni2 e
P " 1f1

We describe an algorithm that decides whether deg(h,) = m, with h; as in (2.5), and
determines by, if indeed deg(hg) Sm.
Let L be the lattice defined in (2.6), with basis

{PX0gi<ilulhXy 0sism -1},

Applying algorithm (1.15) we find a reduced basis b, b,,... b, Tor L. If |b|
2(p"/|f1™*" then by (2.13) we have deg{k,)>m, and the algorithm stops. If 16,1
<(p/1f1™)" then by (2.13) and (2.16) we have deg(h,)<m and

ho=god{b,, by ....b)

with ¢ as in (2.16). This ged can be calculated by repeated application of the
subresultant algorithm described in [7, Sect. 4.6.1]. This finishes the description of
algorithm (3.1).

(3.2) Preposition. The number of arithmetic operations needed by algorithm (3.1) is
Olm*klogp), and the integers on which these operations are performed each have
binary length O(mklogp).

Proof. We apply {(1.26) with m+ 1 in the role of # and with B=1+ip** From {<n
and (2,14} we see that m=0(klogp), so log! <!=<m implies that log B=klogp).
This leads to the estimates in (3.2). It is straightforward to verify that the ged
computation at the end satisfies the same estimates. This proves {3.2).

(3.3) Next suppose that, in addition to f and n, a prime number p and a
polynomial he Z[X] are given such that (2.1}, (2.2), (2.3), and {2.4) are satisfied with
k replaced by 1. Assume that the coefficients of & are reduced modulo p. We
describe an algorithm that determines hg, the irreducible factor of f for which
(hmodp} divides (k, modp), cf. (2.5).

Write I=deg(h). If I=n then h, =1, and the algorithm stops. Let now [ <n. We
first calculate the least positive integer k for which (2.14) holds with m replaced by
nb 1, otn— L2 (2("7 D
P> U IRTE

Next we modify h, without changing (Amodp), in such a way that (2.2) holds for
the value of k just calculated, in addition to (2.1), (2.3), and {2.4). This ¢an be
accomplished by the use of Hensel's lemma, see [7, Exercise 4.6.2.22; 14; 15; 13].
We may assume that the coefficients of # are reduced modulo p*.

Let u be the greatest integer for which { <{n— 1)/2*. We perform algorithm {3.1)
for each of the values m=[(n—1}2"], [(h—1)/2*""], ..,U(n—1)%2], n—1 in
succession, with [x] denoting the greatest integer < x; but we stop as scon as for
one of these values of m algorithm (3.1) succeeds in determining k. If this does not
occur for any m in the seguence then deg{i;)>n—1, so hy=f and we stop. This
finishes the description of algorithm (3.3).
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(3.4) Proposition. Denote by m, =deg(h,) the degree of the irreducible factor hy of
f that is found by algorithm (3.3). Then the number of arithmetic operations
needed by algorithm (3.3) is my{n®+n*log|f|+n3logp)), and the integers on
which these operations are performed each have binary length O(n®+n’loglf|
+nlogp).

Proof. From ez
gLl Dl g e 2 (2(::1] )) 112"t

it follows that
klogp=(k— 1)logp+logp=0(n? +nlog|f]+logp).

Let i, be the largest value of m for which algorithm (3.1) is performed. From the
choice of values for m it follows that m, < 2my, and that every other value for m
that is tried is of the form [m /2", with iz L. Therefore we have Y m*=0{m}).
Using (3.2) we conclude that the total number of arithmetic operations needed by
the applications of algorithm (3.1) is O(mgk logp), which is

O(mg(n? +nlog|f1+logp)),
and that the integers involved each have binary length Ofm, klogp), which is

Olmgin® +nlog|fl+logp).

With some care it can be shown that the same estimates are valid for a suitable
version of Hensel’s lemma. But it is simpler, and sufficient for our purpose, to
replace the above estimates by the estimates stated in (3.4), using that my < n; then
a very crude estimate for Hensel's lemma will do. The straightforward verification
is left to the reader. This proves (3.4).

(3.5) We now describe an algorithm that factors a given primitive polynomial
feZ[X] of degree n>0 into irreducible factors in Z{X].

The first step is to calculate the resultant R(f, ) of f and its derivative f*, using
the subresultant algorithm [7, Sect. 4.6.11. If R(f, /)=0 then f and f have a
greatest common divisor g in Z[X ] of positive degree, and g is also calculated by
the subresultant algorithm. This case will be discussed at the end of the algorithm.
Assume now that R(f, /") +0,

In the second step we determine the smallest prime number p not dividing
R(f, [, and we decompose ( f mod p) into irreducible factors in F_[X] by means of
Berlekamp's algorithm [7, Sect. 4.6.2]. Notice that R(J, f*) is, up to sign, equal to
the product of the leading coefficient of f and the discriminant of £ So
RUf, f1#£0moedp implies that {f modp) still has degree », and that it has no
multiple factors in IF [X]. Therefore (2.4) is valid for every irreducible factor
(hmodp) of (fmodp) in F[X]

In the third step we assume that we know a decompositien f= f] f; in Z[X]
such that the complete factorizations of f, in Z[X] and {f, modp) in IF [X] are
known. At the start we can take f; =1, f,=4 In this situation we proceed as
follows. If f, = =1 then f= + f, is completely factored in Z[X'], and the algorithm
stops. Suppose now that f, has positive degree, and choose an irreducible factor
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(hmodp) of (f, modp} in IF,[X]. We may assume that the coefficients of & are
reduced modulo p and that h has leading coefficient 1. Then we are in the situation
described at the start of algorithm (3.3), with f, in the role of f, and we use that
algorithm to find the irreducible factor i, of £, in Z[X] for which (h mod p) divides
(homodp). We now replace f, and f, by fh, and fy/h,, respectively, and from the
list of irreducible factors of (f, mod p) we delete those that divide {hymodp). After
this we return to the beginning of the third step.

This finishes the description of the algorithm in the case that R(f f)=0.
Suppose now that R{f, /)=0,let g be the ged of / and [ in Z[X], and put f,= f/g.
Then f, has no multiple factors in Z[X T, s0 R(f,, f5) +0, and we can factor f, using
the main part of the algorithm. Since each irreducible factor of g in Z[X ] divides Fo
we can now complete the factorization of f = f,g by a few trial divisions. This
finishes the description of algorithm (3.5).

(3.6) Theorem. The above algorithm fuctors any primitive polynomial feZ[X] of
positive degree n into irreducible factors in ZTX]. The number of arithmetic
operations needed by the algorithm is O(n® + n®log|f), and the integers on which
these operations are performed each have binary length O(n® +n*logif). Here |f| is
as defined in the iniroduction.

Using the classical algorithms for the arithmetic operations we now arrive at
the bound O(n'* + r®(log|f1)%) for the number of bit operations that was announ-
ced in the introduction. This can be reduced to O(r°** +n”*“(log| f1)* *4), for every
£>0, iff we employ fast multiplication techniques.

Proof of (3.6). The correctness of the algorithm is clear from its deseription. To
prove the estimates we first assume that R(f, ) +0. We begin by deriving an upper
bound for p. Singe p is the least prime not dividing R(f, f'} we have

(3.7 [T a=IRA.

4<p,qprime
It is not difficult to prove that there is a positive constant 4 such that
(3.8) 1 a>e*
< gprime

for all p=>2, see [6, Sect. 22.2]; by [12] we can take 4=0.84 for p>101. From
Hadamard’s inequality (1.10) we easily obtain

[ROL = w7 f127 .
Combining this with (3.7) and (3.8) we conclude that
(3.9) p<inlogn+(2n—1)log|fly4

or p=2. Therefore the terms involving logp in proposition (3.4) are absorbed by
the other terms, ’

The call of algorithm (3.3) in the third step requires O(m,-(n°+n* loglf;)
arithmetic operations, by (3.4), where m, is the degree of the factor h,, that is found.
Since f, divides £, Mignotte’s theorem [10; cf. 7, Exercise 4.6.2.20] that was used in
the proof of {2.13) implies that log}f,|= O(n+ log|f]). Further the sum Y, of the
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degrees of the irreducible factors of £ is clearly equal to . We conclude that the
total number of arithmetic operations needed by the applications of (3.3) is Ofn®
+n’log|f]). By (3.4), the integers involved in (3.3) each have birary length Q(n®
+n?log|f]).

We must now show that the other parts of the algorithm satisfy the same
estimates. For the subresultant algorithm in the first step and the remainder of the
third step this is entirely straightforward and left to the reader. We consider the
second step.

Write P for the right hand side of (3.9). Then p can be found with O(F)
arithmetic operations on integers of binary length O(P}; here one can apply [11]
to generate a table of prime numbers < P, or alternatively use a table of squarefree
numbers, which is easier to generate. From p < P it also follows that Berlekamp’s
algorithm satisfies the estimates stated in the theorem, see [7, Sect. 4.6.2}.

Finally, let R(f, f')=0, and f, = f/ged(f. 1) as in the algorithm. Since Jo divides
J. Mignotte’s theorem again implies that log|fol = O{n+ log|f)). The theorem now
follows easily by applying the preceding case to £,

This finishes the proof of (3.6).

(3.10) For the algorithms described in this section the precise choice of the basis
reduction algorithm is irrelevant, as long as it satisfies the estimates of proposition
(1.26). A few simplifications are possible if the algorithm explained in Sect. 1 is
used. Specifically, the gcd computation at the end of algorithm {3.1) can be
avoided. To see this, assume that m, = deg(hg) is indeed Zm. We claim that &,
aceurs as b, in the course of the basis reduction algorithm, Namely, by (1.37) it will
happen at a certain moment that b, h,, by form a reduced basis for the
lattice of rank my +1 spanned by (pPX*:0=i<lJU{AX/ 0% j<m,—1). At that
moment, we have h,=b,, by (2.13) and (2.16), applied with m, in the role of m. A
similar argument shows that in algorithm (3.3) one can simply try the values m=1,
i+1,...,n—1 in succession, until k,is found.

Acknowledgements are due to J. ], M. Cuppen for permission 1o include his improvement of our basis
reduction algorithm in Sect. 1.
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Tel Aviv University, Fall 2004 Lecture 2 Lecturer: Oded Regev
Lattices in Computer Science LLL AlgOl‘ithm Scribe: Eyal Kaplan

In this lectureﬂ we describe an approximation algorithm to the Shortest Vector Problem (SVP).
This algorithm, developed in 1982 by A. K. Lenstra, H. W. Lenstra, Jr. and L. Lovasz, usually called
the LLL algorithm, gives a (\%)n approximation ratio, where n is the dimension of the lattice. In
many of the applications, this algorithm is applied for a constant #; in such cases, we obtain a
constant approximation factor.

In 1801, Gauss gave an algorithm that can be viewed as an algorithm for solving SVP in two
dimensions. The LLL algorithm is, in some way, a generalization of Gauss’s algorithm to higher
dimensions. In 1987, Schnorr presented an improved algorithm for the SVP. This improved algo-
rithm obtains an approximation factor that is slightly subexponential, namely 2°("(log logn)?/logn),

The LLL algorithm has many applications in diverse fields of computer science. Some of these

will be described in the following lectures. Here is a brief description of some of these applications.

1. Factoring polynomials over the integers or the rational numbers. For example, given x?—1
factoritintox +1and x — 1.

2. Finding the minimal polynomial of an algebraic number given to a good enough approxima-
tion. For example, given 1.414213 output x2 — 2 = 0 and given 0.645751 output x*> + 4x —3 =
0.

3. Finding integer relations. A set of real numbers {xi,...,x,} is said to posses an integer
relation if there exist integers {a,...,a,} such thata;x; + ... +a,x, = 0, withnotall a; = 0.
As an example, try to find an integer relation among arctan(1) ~ 0.785398, arctan(%) ~
0.197395, and arctan(;@) ~ 0.004184. It turns that an integer relation exists:

arctan(1) — 4 arctan(1/5) + arctan(1/239) = 0
(this equality is known as Machin’s formula).

4. Integer Programming. This is a well-known NP-complete problem. Using LLL, one can
obtain a polynomial time solution to integer programming with a fixed number of variables.

5. Approximation to the Closest Vector Problem (CVP), as well as other lattice problems.

6. Various applications in cryptanalysis (i.e., breaking cryptographic protocols). For example,
there are many attacks on knapsack based cryptographic systems. Moreover, there are some
more recent attacks on some special cases of RSA such as the low public exponent attack.

For simplicity, we describe the LLL algorithm for full-rank lattices; it is easy to remove this
restriction. Moreover, our description only applies to the ¢, norm. Extensions to other norms are
known.

Let us now turn to describe LLL. The exposition is divided into three stages.

1. Define an LLL reduced basis.
2. Present an algorithm to find such a basis.

3. Analyze its running time.

ILast updated: 2013/2/5



1 Reduced basis

We first recall the Gram-Schmidt orthogonalization process.

DEFINITION 1 Given n linearly independent vectors by, ..., b, € R", the Gram-Schmidt orthogonal-

ization of by, ..., by is defined by b; = b; — Z;;% yi,jﬁj, where p;;j = %
1771

DEFINITION 2 A basis B = {by,...,b,} € R" isa §-LLL Reduced Basis if the following holds:
1. V1 <i<nj<ilu,l <3,
, -2 s r o 2
2. V1 <i<n bl < ||piz1,ibi + bisa|l”

REMARK 1 It is always possible to transform a basis to a reduced basis. Actually, this is what the
LLL algorithm does.

REMARK 2 It is helpful to consider the case § = 3. The algorithm works with any < 6 < 1.
REMARK 3 The second property in Definition 2| can be written as:

-2 ~ ~ 2 ~ 12 = 2

SlIBII™ < Nlpin,ibi + bisall” = pf i l1B:11” + i |
where the second equality follows since b; and b; | are orthogonal. It follows that
~ 2 ~ 2 1 ~ 2
1Bisall” > (6 = pia DIBl™ > (6= )IIB]

Put this way, the second property reads “b; | is not much shorter than b;”.

To better understand this definition, consider the orthonormal basis obtained by normalization
the Gram-Schmidt vectors by, . .., b,,. In this basis, B can be written as

Bal % *
0 b
*
o - 16

where column i shows the coordinates of b; in this orthonormal basis. The first condition in the
definition of an LLL-reduced basis guarantees that the absolute value of any off-diagonal element
is at most half the value written in the diagonal element on the same row. This can be written as

o]l < 3B < zlnil
0 b2l < 3 [lb2ll
< %H?rﬁl”

0 191



where < 1{|b;|| indicates that the absolute value of this coordinate is at most  ||5;||. For the second
property, consider the 2 x 2 submatrix of the above matrix, with the upper left entry indexed at

(i,).
<||5z‘|\ Plz‘+~1,i||5iH>
0 [Di1]]

Then the second property requires that the second column of this matrix is almost as long as its
tirst column. Let us mention that in Schnorr’s improvement to the LLL algorithm, this second
property is replaced with some condition on k X k submatrices for some k > 2.

One important property of LLL-reduced basis is that its first vector is relatively short, as shown
in the next claim.

CLAIM 1 Letby,..., b, € R" bea 6-LLL-reduced basis. Then ||by]| < (\/4{257_1)'171)\1(5).

REMARK 4 For 6 = 3 this gives ||by || < 2("=D/2);(L).

PROOF: Since for any basis by, ..., by, A1(L£) > min; 16:]|, we get that

~ 2 1.~ 2 1., 1.~ 12
1Bull™ 2 (6 = PlBuall” 2. 2 (6= )" B l" = (0 -

1

D e

where the last equality follows by the definition by = by. Then, for any i,

- 1\ —E=1/2 1y —(=1)/2
Il < (6-5)  lEl<(6-7) 16l
Hence,
1 —(n-1)/2 - 1 —(n—1)/2
<(6-= i N<(6=2= )
ol < (6-5) min 6] < (6 - ;) M(L)
0J

REMARK 5 LLL-reduced bases have many other good properties; some are mentioned in the
homework.

Claim [I| provides us with an approximation to the SVP problem. Assuming we can generate a
d-LLL-reduced basis from our input basis, we can then return b; as our answer. For § = 3/4 we
obtain a 2("~1)/2 approximation. In what follows, we describe how to transform an arbitrary basis
into a -LLL-reduced one.

2 The LLL Algorithm

INPUT: Lattice basis by,...,b, € Z"
OUTPUT: é-LLL-reduced basis for £(B)
Start: compute by,..., by
Reduction Step:
fori=2tondo
forj=i—1to1ldo
bi — bl' — Ci,]'b]' where Cij = Rbi/ E]>/<b], E]H

3



Swap Step:
e o z 2 S r 2
if di s.t. 5Hb,“ > Hyi-i-l,ibi +biq H then
bi <> bit1
goto start
Output by, ...,by,

REMARK 6 We use [-| to denote rounding to the nearest integer, e.g., [3.3| = 3, [3.8| = 4.

Let us make some important observations on this procedure. It is easy to see that the swap
step takes care of the second property of an LLL-reduced basis. Indeed, if the algorithm ever
terminates, then its output must satisfy the second property. The reduction step takes care of
the first property. In order to see this, first notice that throughout the reduction step, the Gram-
Schmidt basis does not change (hence the vectors by,...,b, need not be recomputed). This holds
since we only perform column operations of the form b; < b; + ab; fori > jand a € Z. Such
operations to not change the Gram-Schmidt orthogonalization. In the ith iteration of the outer
loop, the reduction step makes sure that the projection of b; on b; for any j < i is at most | bj].
It does so by subtracting from column i the right integer multiple of column j such that the jth
coordinate becomes at most 3 ||b;| in absolute value. Notice that it is crucial that the inner loop
goes from i — 1 down to 1.

To demonstrate the reduction step, let us write B in the orthonormal basis obtained by normal-
izing the Gram-Schmidt vectors. Consider, for example, the ith iteration of the outer loop and the
j = 2 iteration of the inner loop. Then at this point, the matrix B looks like

1Bl < 3lball < 31Ba ]| * *

0 (23 I—y |71 * *

0 Bsll - < 5llBs]l *

<glbial  #

0 14| X
0 [[Dis1]]

At this iteration, we subtract some integer multiple of the second column from column 7 to make
the second entry in the ith column at most ||b,|| in absolute value. Similarly, in the last iteration
of the inner loop, we subtract some integer multiple of the first column from column i.

LEMMA 3 (CORRECTNESS) If the LLL procedure described above ever terminates, then its output is a
0-LLL-reduced basis for the lattice spanned by the input basis by, . . ., by.

PROOF: We need to prove that the output of the LLL algorithm is a basis for £(B) that satisfies both
properties of a 6-LLL-reduced basis. The second property of a J-LLL-reduced basis is enforced by
the check during the swap step. The reason that the output of the algorithm is indeed a basis for
L(B), is that we only perform column operations of the form b; < b; + ab; fori # j,and a € Z.
We next show that after the reduction step, by, . . ., by satisfy |p; ;| < 3, foralli > j. First, notice
that throughout the reduction step, the Gram-Schmidt basis does not change. Now, consider some



i > j, and consider the jth iteration of the inner loop in the ith iteration of the outer loop. Then
|14 ;| can be written as

ci,j'bj15j>’ _ ‘<bi/ i) ﬂbhbﬁj {8 f>’ <l
i 5}) ( . { -2

gl = | 2=

il — = a——
] by bj, by)
where the first equality follows from the definition of the reduction step and the last inequality
follows from the fact that (b;, b;) = (b;, b;). O

3 Analyzing the Running Time

Our analysis consists of two steps. First, we bound the number of iterations. Second, we bound
the running time of a single iteration.

We show that the overall running time of the algorithm is polynomial in the input size. A
rough lower bound on the latter is given by M := max{n, log(max; ||b;||)} (because each of the n
vectors requires at least one bit to represents and a vector of norm r requires at least log r bits to
represent). In the following, we show that the running time of the algorithm is polynomial in M.

LEMMA 4 The number of iterations is polynomial in M.

PROOF: Our first step is to define a function mapping a lattice basis to some positive number. This
function can be thought of as a ‘potential function’.

DEFINITION 5 Let B = {by,..., by} be a lattice basis. The potential of B, denoted Dg, is defined by

e n—idl n B B B n
[Tl] = THeallIB2]l - [18:]l = T Ds,i
i=1 i=1 i=1

where Dp ; := det A; and A; is defined as the lattice spanned by by, . . ., b;

REMARK 7 Notice that more weight is given to the first vectors.

Our aim is to show that the initial value of Dp is not too large, and that it decays quickly. Since
|6;|| < ||b;]|, the initial value of Dg can be bounded from above by (max; ||b;||)"("+1)/2, Note that
the logarithm of this value is polynomial in M.

During the reduction step, Dp does not change, because the Gram-Schmidt basis does not
change. Now consider the swap step. Suppose that b; is swapped with b; ;. For all k # i, Ay does
not change, and so Dp ;. does not change; only Dp; changes. Let A}, D} . denote the new values of
A; and Dp, respectively. We have that ,

D;g/l' . det[\;
DB,i - det A;
o detﬁ(bl, .. .,bi,1, bi+1)
N detﬁ(bl,...,bi)
(LT 1671011 2i-01,007 + Bi-ea
[Tj=1 11551

_ ||Vi+1,i’l|7~lg"f" bia <3
i




where the last inequality follows from the condition in the swap step.

As shown above, in each iteration, Dg decreases by a multiplicative factor, V6. Let Dg be the
initial value of Dp. Since Dp is a nonzero integer, and in particular at least 1, this means that we
can bound from above the number of iterations by

_logDB,o< 1 nn+1)

log(max ]

For any constant § < 1, this is polynomial in M. []

REMARK 8 A somewhat tedious calculation shows that even for § = 3 L+ ( )71, which is closer to
1 than any constant, the running time is polynomial. For such J the approximation factor is (%)"
This approximation factor is essentially the best one can obtain with the LLL algorithm. For better

approximation factors, one needs to apply Schnorr’s algorithm.
LEMMA 6 The running time of each iteration is polynomial in M.

PROOF: It is not difficult to see that in each iteration we perform only a polynomial number
of arithmetic operations (i.e., additions, multiplications, etc.). Hence, in the rest of the proof,
it is enough to show that the numbers that arise in each iteration can be represented using a
polynomial number of bits.

To demonstrate why this is necessary, consider a repeated squaring algorithm that given a
number x, squares it n times. Even though the number of arithmetic operations is only 7, the
number of bits required to represent the resulting numbers quickly grows to 2°("). Hence, the
actual running time of the algorithm (measured in bit operations) is exponential in n.

We establish the bound on numbers arising during an iteration using two claims. The first
concerns the Gram-Schmidt vectors by, . .., b,, which are somewhat simpler to bound, as they do
not change during the reduction step. The second concerns the basis vectors by, .. ., by,.

CLAIM 2 The Gram-Schmidt vectors bi,...,by can be computed in polynomial time in M. Moreover, for
every 1 < i < n, we have that D%bz- € Z" and that ||b;|| < DzB.

REMARK 9 Notice that these two properties of the Gram-Schmidt vectors imply that they can be
represented in space polynomial in M. Indeed, the bound on the norm implies that each coor-
dinate of b; contains a number of absolute value at most D4. Moreover, since D3b; € Z" we
know that the denominators cannot be larger than D3. Hence each coordinate requires at most
O(log Dp) bits to represent and there are n? of them. Since the initial value of log Dg is poly-
nomial in M and later on it can only decrease, we obtain that the Gram-Schmidt vectors can be
represented in space polynomial in M.

PROOF: The calculation of the Gram—Schmidt basis may be performed as follows. Since b; — b; €
span(by, ..., bi_1), we can write b; = b; + ] 1 a]b], for some a3, ...,a;-1 € R. We are looking for

ay,...,a;_1 such that b; is orthogonal to each of by,...,bj_1. Forany 1 <[ <i—1, (b;,b;) = 0 can
be written as

i1
(bi,br) = (bi+ Y _ajb;, by) = (bj,by) + a1(by, by) + az (b2, by) + ... +a;_1(bi—1,b;) =0
i



Hence, we obtain the following system of i — 1 linear equations in i — 1 variables:

a1<b1,b1> + 112<b2, b1>+ .t aiq <bi,1,b1> = —<bi, b1>
a1(b1,ba) + az(bp, bo)+ ...+ a;_1(bi_1,bp) = —(b;, by)

a1(b1,bi—1) +ax(ba, bi_1)+ ...+ a;_1(bi—1,bi_1) = —(b;, bi_1).

It is possible to solve such a system in polynomial time.
For the second part of the claim, notice that using Cramer’s rule we can write

b det(some integer matrix) _ some integer _ some integer
J (b,b1) ... (bi_1,by) detB! |B; 4 (detA;_1)?
det : f
(b1,bi—1) ... (bi_1,bi_1)

Hence b; = b; + Z;-;i ajb; for some rational numbers a; whose denominator is (det A;_1)?. This
implies that D .b; and in particular also D3b; are integer vectors.
Now we show that the norm of the b;’s is not too large. By Definition

i-1
Dy = (L LIED - 18]
j=1

and so -
. Dg; -
I6ill = == < Da, 2
j=1 Hb]H

o ) ) ~ 1
where the first inequality follows since Hbj | > D} u

In the next claim we show that the basis vectors b; do not become too large. This is necessary
since these basis vectors change during the reduction step (and in fact, it is possible for vectors to
become longer by the reduction step). We first bound the length of each b; after the ith iteration of
the outer loop is done (i.e., once vector b; is reduced). We then bound the length of b; during the ith
iteration of the outer loop. For this we use the observation that to vector b; we only add vectors b;
for j < i; these vectors are already reduced and hence our first bound applies.

CLAIM 3 All vectors b; appearing during an iteration can be represented using poly(M) bits.

PROOF: First, we show that after the reduction step, the length of the b;’s is not too large. For each
1<i<n,

i-1
6l = B2 + Y- #1611 < Dh + 7 - D} < nD}
j=1
The first equality holds because by, ..., b, are orthogonal. The first inequality follows from the
bound on by, ..., by, proven in Claim and using the fact that | yi/j| < %

Our bound on the norm implies that each coordinate contains an integer of size at most /nD3.
For an integer vector, this means that it can be represented in log(1/nD3) bits. Our b;’s remain
integer vectors throughout the procedure — they are such as inputs, and we change their values



by adding integers. This means that after the reduction step, we can represent the b;’s in poly (M)
space.

Lastly, we need to show that during the reduction step, the b;’s are not too large. Consider a
vector b;, that is manipulated in the inner loop of the reduction step.

IBd0ED el I :
=[5 b1 =200 g < 1< 2D2||b;
il = Hb B) HE Bk o = 1y = 2Pal

where the first inequality follows by applying Cauchy-Schwartz and using the definition of the
rounding operator, and the second inequality uses Claim 2| Therefore,

16; — ci,jbjl| < [[bil] + |eijl 165
< (1+2D3]1b;11) bl
< (1+2D3/nD3) |||
< (4nDg)*||bi

where the first inequality follows by the triangle inequality, the second inequality by plugging in
the bound for |c; j|, and the third inequality by plugging in the bound on the length of ||b;|| after
the reduction step. Indeed, during the reduction step of b;, vectors b;, for j < i, have already
finished their reduction step, so we can use this bound. After at most n iterations of the inner
loop, the norm of b; has increased by a factor of at most (4nDp)*". This is of course representable
in poly (M) size. O

By Claims[2land Blwe have, that it is possible to represent the numbers in a polynomial number
of bits. This, together with the fact that in each iteration we perform a polynomial number of
arithmetic operations, proves the lemma. [

REMARK 10 The only place where we used that |p; ;| < % for all j < i was in the proof of Claim
For the rest of the proof, the weaker condition that |p;41,| < 3 foralliis enough. This suggests that
we might improve the running time by performing the reduction step only on pairs of consecutive
vectors so as to obtain the weaker condition. The number of iterations in this modified algorithm
is still polynomial, since all of our arguments above hold. However, it is not clear if this modified
algorithm still runs in polynomial time because Claim [3]does not seem to hold.

We combine Lemma ] with Lemma [f] to conclude that the running time of the LLL algorithm
is polynomial in the input size. This completes our analysis of LLL.

Open questions

The worst-case behavior of LLL and its generalization BKZ are reasonably well understood [1],
and it turns out that the analysis above is tight in the worst-case. However, according to extensive
experiments done by Gama and Nguyen [2], for “typical” lattices, the LLL algorithm (and its gen-
eralizations) appear to behave much better than the worst-case analysis suggests. Although the
dependence on the dimension is still exponential, the base of the exponent is much smaller than
the (6 — 1/4)~1/2 we obtained above. Explaining this phenomenon, even heuristically, is still an
open question. Another outstanding open question is to improve on LLL and its generalizations
for special families of lattices (e.g., rotations of Z" or so-called ideal lattices).
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CSE 206A: Lattice Algorithms and Applications Winter 2012

3: The LLL Algorithm
Instructor: Daniele Micciancio UCSD CSE

No efficient algorithm is known to find the shortest vector in a lattice (in arbitrary di-
mension), or even just computing its length \;. A central tool in the algorithmic study of
lattices (and their applications) is the LLL algorithm of Lenstra, Lenstra and Lovasz. The
LLL algorithm runs in polynomial time and finds an approximate solution x to the shortest
vector problem, in the sense that the length of the solution x found by the algorithm is at
most 7 - A, for some approximation factor 7. The approximation factor v = 29 achieved
by LLL is exponential in the dimension of the lattice. Later in the course, we will study
polynomial time algorithms that achieve (slightly) better factors. Still, the approximate
solutions found by LLL are enough in many applications. We design and analyze the LLL
algorithm in two steps:

(1) We first define a notion of “reduced” basis, and show that the first vector of a reduced
basis is an approximately shortest vector in the lattice.
(2) Next, we give an efficient algorithm to compute a reduced basis for any lattice.

1. REDUCED BASIS

Remember the Gram-Schmidt orthogonalization process:
. . (b;,b*)
bi = bl — 2j<i /Jli,jbj where Wi = W
Define the orthogonal projection operations m; from R™ onto ) > Rbjby

— (x,b})
mi(x) =Y Lohr
2 b b;)

Notice that the Gram-Schmidt orthogonalized vectors can be expressed as b} = m;(b;).
We can now define LLL-reduced basis. For reasons that will be clear in the running time
analysis of the algorithm, we introduce a real parameter 1/4 < § < 1 and define LLL-reduced

basis with respect to 9.

Definition 1. A basis B = [by,...,b,] € R™*" is §-LLL reduced if:
[} |,u2,]‘ S % for all ¢ > ]
e for any any pair of consecutive vectors b;, b; 1, we have

ollmi(bi)I* < flmi(bir)|I*

The first condition (usually called “size reduction”) is easy to achieve using an integer
variant of the Gram-Schmidt orthogonalization procedure, and it is discussed in the next
section. In order to understand the second condition it is useful to consider the case when
i =1and 06 = 1. For i = 1, the projection m; is just the identity function (over the linear
span of the lattice) and the condition becomes simply ||by| < ||bs||, i.e., the first two vectors
in an LLL reduced basis are sorted in order of nondecreasing length. (Introducing a factor
d < 1 relaxes the nondecreasing condition to allow a small decrease § in the norm.) For



1 > 1, the LLL reduced basis definition requires a similar condition to hold for the projected
basis 7;(B).
Another geometric interpretation of the second condition is the following. Notice that
2 * * (12 * 2 * 12 * 2 2 * (]2
i (biy )™ = by + priga by [ = b7y 17 =+ [l i a7 17 = b7 17 + (iga) 071"
So, the second condition in the definition of LLL-reduced basis can be equivalently rewritten
as

(6 = 11 ) IDF 7 < lIbfp 1.
So, although the Gram-Schmidt vectors b} can get shorter and shorter, their length cannot
decrease too quickly. Specifically, for any 1/4 < § < 1, if we set a = —L¢, then

1
(1.1) b7 [1* < b 1%
For example, if 6 = 3/4, then a = 2 and each ||b} || is least 3||b}||%. Using (1.1) repeatedly,
we get
(1.2) Ib7]* < o' Hb|* < o™ H||bj|*.
Since this is true for all ¢ = 1,... n, the first vector in an LLL reduced basis satisfies

by]] < a2 min [[by|| < a=D/2),

where we have used the lower bound A; > min, ||b}|| on the length of the shortest vector in
a lattice. In particular, if § = 3/4, the first vector in an LLL reduced basis is a vy = 2("~1)/2
approximate solution to SVP. Simiarly, one can also show that the set of vectors in an LLL
reduced basis are a solution to the approximate SIVP.

Exercise 2. Prove that if B is a §-LLL reduced basis, then max; ||b;|| < a(®"1/2), where
a=(1-1/5)"".

In many applications, the length of the shortest lattice vector \; is not known, but it can
be estimated using Minkowski’s theorem \; < /ndet(B)". Combining the bound ||b;| <
a"=D/2); with Minkowski’s theorem we get ||b1|| < \/nal""1/2det(B)"/". A stronger bound
can be obtained relating the length of by in an LLL reduced basis directly to the determinant
of the lattice as follows. Take the product of (1.2) for i =1,...,n, to get

Iby]" < [Tt V72|15 || = o™/ det(B).

So, we have

Iba]| < "D/ det(BY"),
which can be interpreted as a weak (but algorithmic) version of Minkowski’s theorem.
Remark 3. Even if Minkowski’s bound can be efficiently computed given a lattice basis, no
efficient algorithm is known to find lattice vectors achieving the bound, even approximately

for approximation factors that are significantly better than exponental in the dimension of
the lattice.

Our analysis of LLL reduced basis is summarized in the following theorem.

Theorem 4. For any 1/4 <6 <1, if B is a §-LLL reduced basis, then
o |[by]] < al=b2)



e max; ||b;|| < a""1/2),
o ||by|| < a® Y/ det(B)/"
where o =1/(0 — 1/4) > 4/3.

In the following sections we give an algorithm to compute a §-LLL reduced basis for any
lattice in time polynomial in the input size and (1 —§)~'. It is not known whether the LLL
algorithm runs in polynomial time when § = 1, which is the value that gives the best results.
Still, we can achieve essentially the same result by setting d =1 —1/n° =1 — o(1) and still
maintain polynomial running time. This gives polynomial time solutions to SVP and SIVP
for exponential approximation factors.

Corollary 5. There is a polynomial time algorithm that solves SVP and SIVP within ap-
prozimation factor y(n) = (2/v/3)". The algorithm also produces nonzero lattice vectors of

length at most (2/+/3)"/? - det(L(B))"/™.

The LLL algorithm is designed to work in the Fuclidean norm. Still, since all norms are
within a factor n from the Euclidean norm, is also provides solutions to lattice problems in
other norms within essentially the same approximation factor.

2. THE NEAREST PLANE ALGORITHM

The size reduction condition (| ;| < 1/2) in the definition of LLL reduced basis can be
achieved using an integer variant of the Gram-Schmidt orthogonalization procedure. Both
the size reduction condition and the associated algorithm have nice geometric interpretations
which we are going to explain first.

It is easy to see that any point in the linear span of a lattice can be written as the sum of
a lattice point x € £(B) plus a vector in the fundamental parallelepiped

yePB)={Bx:0<x<1}.

Moreover, such a decomposition is unique. In other words, the sets x + P(B) (indexed by
x € L£(B)) form a partition of span(B). A subset S C span(B) such that {x+5 :x € £L(B)}
form a partition of span(B) is called a fundamental region for the lattice, and P(B) is an
example of fundamental region. There are many other examples of interesting fundamental
regions. For example, one can consider the centered half open parallelepiped

2

Another important fundamental region is the Voronoi cell of the lattice V(B), i.e., the set of
all points that are closer to the origin than to any other lattice point.!

Notice that the partition associated to P(B) can be easily computed, in the sense that
given a target point t € span(B), one can efficiently find the lattice point Bx such that
t € Bx + P(B). (Just solve By = t and round the solution to the lattice point B|y].)
The partition associated to the centered parallepiped C(B) can also be computed similarly,

C(B):{Bx: —%§x<+1}.

n order to get a partition, one needs also to include boundary points, with some care to avoid including
the same point in multiple regiones. For example, the norm relation ||x|| < ||y| can be extended to a total
order by defining x < y if and only if ||x|| < |ly|| or ||x|| = ||y|l and the first nonzero coordinate of x —y is
negative. Then, the half-open Voronoi cell can be defined as the sef of all points x such that x < (x —y) for
any lattice point y € £L(B).



Algorithm 1 Nearest Plane Algorithm. On input a lattice basis B and a target vector t,
output a lattice point v € £(B) such that (t—v,b})/||b}||> € [-1/2,1/2) foralli =1,...,n.

NearestPlane(B = [by,...,b,],t):
if n =0 then return O
else B* < GramSchmidt(B)

(t,b%)
€ szﬂ?}

return cb,, + NearestPlane([by,...,b, 1],t —cb,)

rounding to the closest integers B|y]. On the other hand, the partition associated to the
Voronoi cell seems hard to compute: by definition, finding which Voronoi cell Bx 4+ V(B)
contains a given target point t is equivalent to finding the lattice point Bx closest to t, and
instance of the CVP.

The size reduction condition in the definition of LLL reduced basis can be easily interpreted
as partitioning the space according to still another fundamental region: the orthogonalized
centered parallelepiped C(B*), where B* is the Gram-Schmidt matrix of B.

Exercise 6. Prove that C(B*) is a fundamental region for lattice £(B).

The cell Bx + C(B*) containing a given target t can be easily found using the Nearest
Plane algorithm, a simple variant of the Gram-Schmidt algorithm given as Algorithm 1.

Algorithm 1, on input a rank n > 0 lattice B and a target t proceeds as follows. Let
B’ = |[by,...,b,_1] be the sublattice generated by the first n — 1 basis vectors. The lattice
L(B) can be decomposed into hyperplanes of the form

L(B) = cby + L(B') C cbj, + span(B’).

The algorithm selects the hyperplane ¢ = | (t, b})/||b;||*] closest to the target, and recur-
sively search for a lattice point in cby + £(B’) close to t, or equivalently, a lattice point in
the lower dimensional sublattice £(B’) close to t — cb. The base case of the algorithm is
when the rank of the lattice is reduced to 0 and the only possible output is the origin O.

Lemma 7. On input a lattice basis and a target vectort, Algorithm 1 outputs a lattice vector
v € L(B) such that (t — v,b})/||bi||* € [-1/2,1/2) for alli = 1,...,n. In particular, if
t € span(B), thent € v + C(B").

Proof. For the base case, the property is vacuously true. So assume n > 0 and that the
lemma holds for lower rank lattices. Let B = [C|b] where C = [by, ..., b,_1], and notice that
B* = [C*|b}]. By inductive hypothesis, the recursive call returns a lattice point v € £L(C)
such that (t — c¢b,,) — v = C*z for some z such that z; € [-1/2,+1/2]. The output of the
algorithm v + cb,, satisfies

(t — (v +cby), b)) = ((t — cb,) — v, b)) € [-1/2,1/2) - [|b}|*
foralli=1,...,n—1and

(t — (v +cby),b;) = (t, b)) — c(b,, by) € [-1/2,1/2) - by ||*
where we have used the fact that (b,,b) = ||bZ||?. O



Algorithm 2 Size Reduce

SizeReduce(B):
for i=2 to n

X < NearestPlane(B,b; — b})
output B

Algorithm 3 The LLL basis reduction algorithm
LLL(B,0):
SizeReduce (B)
if 6H7Tl(bz)|’2 > Hﬂ-i(biJrl)HQ for some i
then swap(b;,b;11); return LLL(B,J)
else return B

Remark 8. The fundamental region C(B*) contains a sphere centered in 0 of radius min; ||b}|/2 <
AL(B))/2. Since NearestPlane maps all points in v + C(B*) to v € £(B), if t is within
distance min; ||bf||/2 from the lattice, then NearestPlane(B,t) returns the lattice point

v € L(B) closest to t.

Observe that if b, — b} € Bx + C(B*), then —1/2 < p;; < 1/2 for all j < i. So, given
a lattice basis B, a size reduced basis for the same lattice can be easily obtained using
Algorithm 2.

It is clear that the final B is a basis for the original lattice because we only executed
elementary integer column operations in step 3. Moreover, it is easy to verify that after
iteration 7, the size reduction condition holds for all j < . Finally, at iteration ¢, the Gram-
Schmidt coeflicients ;7 ; with j < 7' < i do not change. So, upon termination, the basis is
size reduced.

3. THE LLL ALGORITHM

The LLL algorithm alternates two steps, aimed at achieving the two properties of an
LLL reduced basis. Once we have size-reduced the input basis B, there is only one way
B can fail to be LLL reduced: violate the second condition, i.e., ||m;(b;)||? > ||m:(bis1)]?
for some index i. If this happens, the algorithm swaps b; and b,;;. Several pairs might
violate the second property. Which one is selected for the swapping does not matter. In the
original LLL algorithm ¢ was chosen to be the smallest unordered pair, but any selection is
equally good. In fact, one can even swap several disjoint pairs at the same time, leading
to a parallel variant of the LLL algorithm. After the swap, the basis is not necessarily size
reduced anymore. So, one must repeat the whole process from the reduction step. The LLL
algorithm is summarized as Algorithm 3.

Cleary, upon termination the basis is LLL-reduced because it is size reduced and no pairs
need to be swapped. So, if the algorithm terminates, then it is correct. We now prove that
the algorithm terminates and it is actually polynomial time.

In order to show that the algorithm is polynomial time, we have to prove that the number
of iterations is polynomial in the input size, and each iteration takes polynomial time. We
first bound the number of iterations.



3.1. Bounding number of iterations. We now bound the number of iterations performed
by the algorithm, i.e., we analyze the maximum number of swaps that can occur. This is
accomplished by associating a positive integer to the basis B, and showing that each time
we swap two vectors this integer decreases by at least a constant factor.

Remember the definition of determinant

det(B) = [ |[b:|| = /det(BB).

From the second formula it is clear that if B is an integer matrix, then the square of the
determinant is an integer.

Lemma 9. For every integer basis B € Z™ ", we have det(L(B))? € Z

Therefore, we can associate to the basis B the following positive integer

D =[] det(L(by,--- ,bp))* € Z
k=1

We want to show that D decreases at least by a factor d at each iteration. First we will show
that Size Reduction does not change D. Then we will show that each swap decreases D at
least by o.

To prove that Size Reduction doesn’t change D we remember that SizeReduce does not
affect the b’s. Since D can be expressed as a function of the b}’s, the potential D is
unchanged by the size reduction operation.

At this point we need to look at the effect that a swap has on D. Let us look at the effect
of a single swap say between b; and b;,;. Let D be the integer associated to the basis B
before a swap, and D’ the corresponding integer after the swap.

Notice that for all j # i the lattice L(by,---,b;) is not changed by the swap. To prove
this look at the two cases j < ¢ and 7 > . When j < ¢ then there is no change in the
basis [by, - - -, bj], so the value of det(L(by,--- ,b;)) remains the same. On the other hand,
if 7 > i the only change is that two basis vectors in [by,- -, b;| are swapped, so the lattice
L(by,---,b;) does not change and the determinant det(L(by,--- ,b;)) stays also the same.

So, the only factor in D that is affected by the swap is the one corresponding to lattice
L(by,---,b;). Here we are replacing the last vector b; by b;.;. Therefore

D _ ngi Hbﬂ|2 o lm(by)|? > 1
D Lo B - Imbe )P Imbe )P~ 6
because swaps are performed only when ||7;(b;1)||? < 8] (b;)|*.

This proves that

D' <D
and by induction on n,
DM < §"D

where D is the value associated to the initial basis and D™ is the value after n iterations.

Since D is a positive integer, D > 1 and (%)” < D or equivalently

(3.1) n <logi D

This proves an upper bound on the number of iterations as a function of the initial value
of D. Since D is computable in polynomial time from the input basis, then its size must



be polynomial in the input size. An estimate of how big D is can be easily obtained using
Hadamard inequality.

3.2. Bounding the numbers. We proved that the number of iterations is bounded by a
polynomial in the input size. In order to bound the running time of the algorithm we still need
to show that each iteration also takes polynomial time. The number of arithmetic operations
performed at each iteration is clearly polynomial. So, in order to prove a polynomial bound
on the running time we only need to show that the size of the numbers involved in the entire
computation also is polynomially bounded.

The LLL algorithm uses rational numbers, so we need to bound both the precision required
by this number and their magnitude. In the analysis of the Gram-Schmidt algorithm we have
already shown that the denominators in the p;; coefficients must divide D;. Notice that
D =[] D; and therefore all entries in y; ; and b} can be written as integers divided by D.
By definition, after size reduction, the y; ; are at most 1/2 in absolute value, so their bit-size
is bounded by log D. We now bound the length of the vectors. Using D; = [[’_, ||b;||*, we
get
D;

b*ll? =
b7 = 5

<D;<D.

Finally,
Ibill* = (b5 (> + D s, Ib}1° < D+ (n/4)D < nD.
j<i
So, all numerators and denominators of the numbers occurring in the execution of the algo-
rithm have bit-size polynomial in log D.

4. A SIMPLE APPLICATION IN NUMBER THEORY

We give a simple application of LLL to algorithmic number theory: showing that we can
efficiently write any prime p = 1 (mod 4) as the sum of two squares. Remember the proof
that any such prime is the sum of two squares: all vectors [a,b]" in the lattice

o-[1¢]

have the property that a? + b? is a multiple of p. So if we can find a nonzero lattice vector
of squared norm less than 2p, it must be a? + b* = p. Minwoski’s theorem assures us that
such short vectors exist. The question is: how can we find it? Answer: using LLL!

Run the LLL algorithm on the lattice basis, to obtain a reduced basis by, by for the
same lattice. We know, from Theorem 4 that ||b|| < o!/*det(B)'/2. Squaring, and using
det(B) = p, we get [|by|* < ap < 2p as desired, provided & > 3/4.

5. THE CLOSEST VECTOR PROBLEM

The LLL algorithm can be used also to solve the approximate CVP. No new algorithm is
needed: we will show that preprocessing the lattice basis using the LLL algorithm and then
applying the NearestPlane algorithm to the target vector produces approximate solutions to
CVP within essentially the same approximation factor as the LLL algorithm for SVP. (See
Algorithm 4.)

Theorem 10. Algorithm 4 solves CVP within a factor v(n) = (2/v/3)"



Algorithm 4 Approximate CVP algorithm

ApproximateCVP(B,t) :
B « LLL(B)
return NearestPlane(B,t)

Proof. The algorithm runs in polynomial time because it involves just two polynomial time
computations. Proving that the algorithm is correct requires to look again into the details
of LLL basis reduction and the Nearest Plane algorithm. We want to prove that if B is
LLL reduced, then NearestPlane solves the approximate CVP. The proof is by induction on
the rank of B. The base case when the rank is n = 0 is trivial. So, assume B is an LLL
reduced basis of rank n > 0. NearestPlane selects a hyperplane index ¢ = |(t,b?)/|bz||?]
and makes a recursive call on input the sublattice C = [by,...,b,_1] and target t — ¢ - b,,.
First of all notice that if B is LLL reduced, then C is also LLL reduced. So, we can invoke
the inductive hypothesis on the recursive call. Let v € £(B) be a lattice vector closest to t.
We distinguish two cases:

Case 1. If v € cb, + L(C), then the correctness of the final output follows by induction.
Specifically, on input C and t — cb,,, the recursive call to NearestPlane returns a lattice point
w € L(C) such that

[(t = cbp) =W <~y(n—1)-|[(t = cb,) = (v = cby)|| < (n) - [t —vl|.
So, Algorithm 4 returns a lattice vector cb,, + w at a distance from the target t which is
within a factor v(n) from optimal.

Case 2. Otherwise, it must be v € b, + L(C) for some ¢ # ¢. Let t = t' +t”,
where t' € span(B) and t”Lspan(B). Then the distance between t and v is at least
VIIE12 + [[bx][2/4. On the other hand, NearestPlane returns a lattice vector w within
distance \/[[t”[|2 4+ >, [|b;[|?/4 from t.Using the property (1.1) of LLL reduces basis we get

It —wi o JI7IP 2 IbilP/4 o [ lIbEIlP/4
[ A T S

Setting v = />, ani = y/(a® — 1)/(a — 1) < /3(2/V/3)" concludes the proof.
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Lecture 20

Lecturer: Jonathan Kelner

1 Brief Review of Gram-Schmidt and Gauss’s Algorithm

Our main task of this lecture is to show a polynomial time algorithm which approximately solves the Shortest
Vector Problem (SVP) within a factor of 2°(™ for lattices of dimension n. It may seem that such an algorithm
with exponential error bound is either obvious or useless. However, the algorithm of Lenstra, Lenstra and
Lovész (LLL) is widely regarded as one of the most beautiful algorithms and is strong enough to give some
extremely striking results in both theory and practice.

Recall that given a basis by, ..., b, for a vector space (no lattices here yet), we can use the Gram-Schmidt
process to construct an orthogonal basis b7, ..., b} such that b} = b; and
by = by, — [projection of b; onto span(bi,...,bx—1)] for all 2 < k < n (note that we do not normalize b}). In
particular, we have that for all k:

e span(bi,...,bx) = span(bi,...,b}),
o b, = Zle 1i:bF, and
® gk = 1.

The above conditions can be rewritten as B = M B*, where basis vectors are rows of B and B*, and

pn 0 0 ... 0 1 0 0 ... 0

21 22 0 e 0 H21 1 0 ... 0
M = ) . = )

Hn1  Hn2 Hn3 .- Hnn Hnl  Hn2 Hn3 ... 1

Obviously det(M) = 1, and thus vol(B) = vol(B*). However, the entries of M are not integers, and thus
L(B) # L(B*). We have proved last time that

for any b € L, [[b]| = ming{[[b7|[}.

We’ll use this to prove useful bound for the shortest vector on lattice.

Recall also that last time we saw the Gauss’s algorithm which solves SVP for d = 2. There are two key
ingredients of the algorithm. The first is a definition of “reduced basis” which characterizes the discrete
version of bases being orthogonal: namely,

a basis {u,v} for a 2-d lattices is said to be reduced, if |u| < |v] and |u - v| < g

The second is an efficient procedure that produces a reduced basis. The procedure consists of two stages:
First is a Euclid-like process which subtracts a multiple of the shorter vector from the longer one to get a
vector as short as possible. The second stage is, if the length ordering is broken, we swap the two vectors
and repeat, otherwise (i.e., |u| < |v|) the procedure ends. To make the above procedure obviously terminate
in polynomial time, we change the termination criterion to be (1 — €)|u| < |v|. This only gives us a (1 — €)-
approximation, but is good enough. The basic idea of LLL algorithm is to generalize Gauss’s algorithm to
higher dimensions.
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2 LLL Algorithm
2.1 Reduced Basis

In order to find a short vector in the lattice, we would like to perform a discrete version of GS procedure.
To this end, we need to formalize the notion of being orthogonal in lattice problems. One way to do this
is to say that the result of our procedure is “almost orthogonalized” so that doing Gram-Schmidt does not
change much.

Definition 1 (Reduced Basis) Let {b1,...,b,} be a basis for a lattice L and let M be its GS matric
defined in Section 1. {b1,...,b,} is a reduced basis if it meets the following two conditions:

e Condition 1: all the non-diagonal entries of M satisfy |p] < 1/2.

e Condition 2: for each i, ||ms,b;||* < 3||7s,bis1||?, where S; is the orthogonal complement of (i.e., the
subspace orthogonal to) span(by,...,b;—1), and wg, is the projection operator to S;.

Remark The constant 4/3 here is to guarantee polynomial-time termination of the algorithm, but the
choice of the exact value is somewhat arbitrary. In fact, any number in (1,4) will do.

Remark Condition 2 is equivalent to [|b}, | + pi41,:07|[> > 3[|bf||* and one may think it as requiring
that the projections of any two successive basis vectors b; and b; 1 onto S; satisfy a gapped norm ordering
condition, analogous to what we did in Gauss’s algorithm for 2D case.

2.2 The algorithm
Given {b1,...,b,}, the LLL algorithm works as below.

LLL Algorithm for SVP

Repeat the following two steps until we have a reduced basis
Step 1: Gauss Reduction

Compute the GS matrix M
for i=1ton

for k=i—1to1
m < nearest integer to p;x
bi — bi — mbk

end

end
Step 2: Swapping

if exists i s.t. [|ms,bs||* > §||7ms, bisa]|?
then swap b; and b; 11
go to Step 1

3 Analysis of LLL Algorithm

The LLL algorithm looks pretty intuitive, but it is not obvious at all that it converges in polynomial number
of steps or gives a good answer to SVP. We'll see that it indeed works.
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3.1 LLL produces a short vector

We first show that reduced basis gives a short vector.

n—1

Claim 2 Ifby,...,by, is a reduced basis, then ||bi|| < 272 A (L).
Proof Note that
- 2 4 2
13117 = llms, ball” < Fllms, bisa ]
= §||bi+1 + pis1,ibf || = §‘|bi+1||2 + §N§+1,i||bi I&

4 * 2 1 * |2
< §||bi+1” +§||bz|| )

which gives [|b7, ]| > 1||b7]|?. By induction on i, we have

. 1, 1
17 2 1 = s il
Recall that Vb € L, ||b|| > min, ||bf|]. Therefore A;(L) > min; ||bf||, which combined with the inequality
above yields '
[1b1]* < min{2 7|77} < 2"~ min{[[b|*} < 2" A (L)?

as desired. W

3.2 Convergence of LLL

Now we show that the LLL algorithm terminates in polynomial time. Note that in each iteration of LLL,
Step 1 takes polynomial time and Step 2 takes O(1) times. What we need to show is that we only need
to repeat Step 1 and Step 2 a polynomial number of times. To this end, we define a potential function as
follows:

D(by,....ba) = [T I1071I"
i=1

It is clear that Step 1 does not change D since we do not change the Gram-Schmidt basis.

We are going to show that each iteration of Step 2 decreases D by a constant factor. In Step 2, we swap 4
and i+ 1 only when [|b}[|? > 4/3||ms,bi+1|[* > 4/3||b},1||>. Therefore each swapping decreases D by a factor
of at least 2/1/3, as desired.

It is left to show that D can be upper- and lower-bounded. Since |[b}]| < ||b;||, the initial value of D can
be upper bounded by (max; ||b;|[)""~1/2. On the other hand, we may rewrite D as [[;_, |det(A;)|, where
A; is the lattice spanned by by, ...,b;. Since we assume that the lattice basis vectors are integer-valued, so
D is at least 1.

In sum, the algorithm must terminate in log, , 5(max; |bs] ) (=172

= poly(n) iterations.

4 Application of LLL—Lenstra’s Algorithm for Integer Program-
ming
4.1 Applications of LLL

LLL algorithm has many important applications in various fields of computer science. Here are a few (many
taken from Regev’s notes):

1. Solve integer programming in bounded dimension as we are going to see next.
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2. Factor polynomials over the integers or rationals. Note that this problem is harder than the same task
but over reals, e.g. it needs to distinguish 22 — 1 from z2? — 2.

3. Given an approximation of an algebraic number, find its minimal polynomial. For example, given
0.645751 outputs z2 + 4z — 3.

4. Find integer relations among a set of numbers. A set of real numbers {x1,...,z,} is said to have an
integer relation if there exists a set of integers {a1,...,a,} not identically zero such that ayz; +--- +
anty, = 0. As an example, if we are given arctan(1), arctan(1/5) and arctan(1/239), we should output
arctan(1l) — 4 arctan(1/5) + arctan(1/239) = 0. How would you find this just given these numbers as
decimals?

5. Approximate to SVP, CVP and some other lattice problems.

6. Break a whole bunch of cryptosystems. For example, RSA with low public exponent and many knapsack
based cryptographic systems.

7. Build real life algorithms for some NP-hard problems, e.g. subset sum problem.

4.2 Integer Programming in Bounded Dimension
4.2.1 Linear, Convex and Integer Programming
Consider the following feasibility version of the linear programming problem:
e Linear Programming (feasibility)
Given: An m x n matrix A and a vector b € R"
Goal: Find a point z € R" s.t. Az < b, or determine (with a certificate) that none exists

One can show that other versions, such as the optimization version, are equivalent to feasibility version.
If we relax the searching regions from polytopes to convex bodies, we get convex programming.

e Convex Programming (feasibility)

Given: A separation oracle for a convex body K and a promise that

— K is contained in a ball of singly exponential radius R
— if K is non-empty, it contains a ball of radius = which is at least 1/(singly exponential)

Goal: Find a point « € R™ that belongs to K, or determine (with a certificate) that none exists

Integer programming is the same thing as above, except that we require the program to produce a point
in Z™, not just R™. Although linear programming and convex programming are known to be in P, integer
programming is a well-known NP-complete problem.

4.2.2 Lenstra’s algorithm

Theorem 3 (Lenstra) If our polytope/convex body is in R™ for any constant n, then there exists a poly-
nomaal time algorithm for integer programming.
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Remark.

e For linear programming (LP), the running time of the algorithm will grow exponentially in n, but
polynomially in m (the number of constrains) and the number of bits in the inputs.

e For convex programming, the running time is polynomial in log(R/r).

e As before, we could also ask for maximum of ¢ -z over all x € K N Z™, which is equivalent to the
feasibility problem, as we can do a binary search on the whole range of ¢ - x.

The main idea of Lenstra’s algorithm is the following. The main difficulty of integer programming comes
from the fact that K may not be well-rounded, therefore it could be exponentially large but still contain no
integral point, as illustrated in the following figure:

X +XZ
X2

—O0—O0—O0—O0——(O0——O0——0— X

!
|
|
|
|
|
|
|

Figure by MIT OpenCourseWare.

Figure 1: A not-well-rounded convex body

Our first step is thus to change the basis so that K is well-rounded, i.e., K contains a ball of radius 1
and is contained in a ball of radius ¢(n) for some function that depends only on n. Such a transformation
will sends Z™ to some lattice L. Now our convex body is well-rounded but the basis of lattice L may be
ill-conditioned, as shown in the following figure:

Figure by MIT OpenCourseWare.

Figure 2: A well-rounded convex body and an ill-conditioned lattice basis

20-5



It turns out that the lattice points are still well-separated and we can remedy the lattice basis by a basis
reduction procedure of LLL (i.e., discrete Gram-Schmidt). Finally we chop the lattice space up in some
intelligent way and search for lattice points in K.

Note that in the first step of Lenstra’s algorithm, what we need is an algorithmic version of Fritz John’s
theorem. As we saw in the problem set, there is an efficient algorithm which, for any convex body K specified
by a separation oracle, constructs an ellipsoid F such that

E(P) C K CO(n*?)E(P").

Next let T': R" — R™ be the linear transformation such that E(P’) is transformed to B(P,1). Now K is
sandwiched between two reasonably-sized balls:

B(P,1) C TK C B(P,R),

where R = O(n?/?) is the radius of the outer ball.

Let L = TZ"™ with basis Tey,...,Te,. Our goal is to find a point (if it exists) in TK NTZ" = TK N L.
Our next step is to apply the basis reduction in LLL algorithm. We will need the following two lemmas in
analyzing Lenstra’s algorithm. The proofs of the lemmas are left as exercises.

Lemma 4 Let by, ...,b, be any basis for L with ||by||> < -+ < ||b,||?. Then for every x € R™, there exists
a lattice point y such that

|z —y|> < = (|ba]]* + -+ |[bal]?)

B~ =

1
< Zn||b,|?.
< 2 nl1bnll

Lemma 5 For a reduced basis by,...,b, ordered as above,

[T il < 2n =D/ det(L).

i=1
Consequently, if we let H = span(by, ..., b,_1), then
27D/ by || < dist(H, bn) < [[bnl].
Let by,...,b, be a reduced basis for L. Applying Lemma 4 gives us a point y € L such that ||y — P|| <
3v/nl[ball.
e case 1: y € TK. We find a point in TK N L.

e case 2: y ¢ TK, hence y ¢ B(P,1). Consequently, ||y — P|| > 1 and ||b,]| > %

This means that the length of b, is not much smaller than R. In the following we partition L along the
sublattice “orthogonal” to b, and then apply this process recursively.

Let L’ be the lattice spanned by by,...,b,_1 and let £; = L' + ib, for each i € Z. Clearly L = |J;c;, Li.
From Lemma 5 the distance between two adjacent hyperplanes is at least

dist(by,, span(by, ..., by_1)) > 27D/ p, |

> =27 DA, || = ey (n),

Bl

where ¢q(n) is some function that depends only on n. This implies that the convex body TK can not
intersect with too many hyperplanes. That is

Hi€Z:L;NB(P,R)#0} <2R/ci(n) = ca(n)

for some function cg(n) that depends only on n. Now we have reduced our original searching problem in
n-dimensional space to ca(n) instances of searching problems in (n — 1)-dimensional space. Therefore we
can apply this process recursively and the total running time will be a polynomial in the input size times a
function that depends only on n.
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1 Lattice

1.1 Introduction

Since the LLL lattice reduction basis algorithm operates on a lattice it is
important to understand what is it. Many concepts in Lattice theory are
related with linear algebra : a lattice can be represented with the matrix



of its basis, it has a determinant, and so on. Later we will need linear
algebra methods and matrix properties for the LLL algorithm. I won’t give
a complete and precise view of the lattice theory but favor the geometrical
point of view and focus on the elements that are needed to understand LLL
basis reduction.

1.2 Definition

A lattice is a discrete subgroup of an Euclidean vector space. In general
the vector space is R™ or a subspace of R". It is conveniant to describe a
lattice using its basis. The basis of a lattice is a set of linearly independent
vectors in R™ which can generate the lattice by combining them. Notice
that different bases can generate the same lattice (cf. figure 1).

Definition 1. A set of vectors {b1,ba,...,bm} in R" is linearly indepen-
dent if the equation

cib1 + ebs + - -+ ¢bm = 0 wherec; € R (1)
accepts only the trivial solution ¢y =co =---=c¢p =0

Theorem 1. If a set of vectors in R™ contains more vectors than n (if
m > n), then this set of vectors is not linearly independent.

Definition 2. A subspace of R™ is a an arbitrary set H that has the following
properties :

1. the nul vector 0 is an element of H

2. H is close under addition : for every u and v in H, their sum u+ v
is an element of H

3. H is close under scalar multiplication : for every u in H and scalar c,
the vector cu is an element of H

Notice that R™ is a subspace of R"

Definition 3. A basis B of a subspace H of R™ is a set of linearly indepen-
dent vectors in R™ that generates H.

B = {b1,ba,...,bm} whereb; € R" (2)
H = ZRbi = {Z cibj wherec; € R, by € R"} (3)
i=1 i=1

Definition 4. A lattice A is a discrete subgroup of H generated by all the
integer combinations of the vectors of some basis B :

A=) 7Zb;= {Zzibi where z; € 7, b; € R”} (4)
=1

=1



Definition 5. The rank m of a lattice A generated by a basis B of a subspace
H of R" is the number of vectors in B.

Theorem 1 implies that m < n. If m = n then H is R™ and A is a full
rank lattice.

S I Y . YA /b
b, b1 by .

. .

Figure 1: Examples of lattices generated with different bases in R?. The
first and the second lattice are the same. The first three lattices are rank 2
and the fourth is rank 1.

1.3 Determinant

The determinant of a lattice A (det A) is an important numerical invariant
of A. Geometrically speaking, det A is the volume of the parallelepiped
spanned by the basis. The determinant does not depend on the choice of
the basis.

Another more general perspective is to consider det A as the inverse of
the volume density of elements in A.

Definition 6. The volume of a n-dimensional ball B of radius r is given by
proposition

7,‘nﬂ.n/Q
volB(r,n) = r"volB(1,n) = —— (5)
ol
where 3! is inductively defined by 0! =1, %! = @, and 5! = %"T_Q‘

Definition 7 (Determinant definition). det A is the volume of the m-dimensional
ball B, where m is the rank of A, divided by the number of elements belonging
to A in B when radius of B tends to infinity.

det A = lim volB(r,m)

6
M 20 € Awhere [y <7} (6)

Theorem 2. Given a lattice A with a basis {b1,ba,...,bi} then the deter-
minant is equal to the volume of the parallelepiped spanned by by, ba, ..., by.

Proof. Argument : It is coherent with our definition because when the ra-
dius of the ball r is big then volB(r,n) ~ #{y € Awhere ||y|| < r} times
the volume of the parallelepiped. Figure 2 is an illustration of this approxi-
mation. O



Notice that for a full rank lattice, from linear algebra we know that
| det [b1 bz ... by]|is the volume of the parallelepiped spanned by the basis
vectors by, ba, ..., by, so

det A = |det [by ba ... by]]|

Theorem 3 (Hadamard’s inequality). The determinant is less than or equal
to the product of the norm of the basis vectors.

det A <[] s (7)

=1

Equality holds if and only if the vectors b; are pairwise orthogonal (if
b; - b; = 0 when i # j and - is the scalar product).

Figure 2: Illustration with a lattice of rank 2 that the volume of the ball
approximates det A times the number of elements in A lying inside the ball.
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Figure 3: A lattice A of rank 3. On the left det A is represented as the
ball and the elements of A inside. On the right det A is represented as the
volume of the parallelepiped spanned by a basis of A.

1.4 Shortest vector problem

The shortest vector is the following : given a lattice A find a shortest vector
v among the set of vectors going from the zero element to any non-zero
element x in A. Notice that —v is also a shortest vector. In an algorithmic
context, one may take ’shortest possible’ to mean : shortest possible given
the time one is willing to spend. The main theoretical result about this is
the Minkowski’s theorem which gives us an upper bound for the shortest
vector.

Theorem 4 ( Minkowski’s theorem ). Given a lattice A of rank m, if A is
the norm of the shortest vector then :

2 m 5 1
A< ——1"detAm 8
< =50 de ®
Proof. Argument : If we place a m-dimensional ball of radius % on each

element of A one can see that the balls are pairwise disjoint (cf Figure 4).
From that one deduces that the volume of the ball is less than or equal than
the determinant and the theorem follows :

A
UOZB<§, m) < det A

Amﬂ.m/Z
2
5



AT < Fldet A
2 = 7'(%
2 m = 1
A< ——!"detAm
=z
Equality holds only with lattices of rank 1. O

Figure 4: Illustration of a rank 2 lattice. One can see that the balls of radius

% are pairwise disjoint. From that and the fact that the determinant is the

A2

inverse of the volume density of elements one concludes that det A < ™.

2 Basis reduction

2.1 Introduction

The idea of the basis reduction is to change a basis B of a lattice A into a
shorter basis B’ such that A remains the same. To do this we can use these
following operations :

1. Swapping 2 vectors of the basis. As the swapping changes only the
order of vectors in the basis it is trivial that A is not affected.

2. Replacing bj by —bj. It is trivial that A is not affected.

3. Adding (or substracting) to a vector bj; a linear and discrete combina-
tion of the other vectors of the basis. The lattice is not affected because



if we take an arbitrary vector v which belongs to A we can express it as
a discrete combination of the vectors of the basis: v =", z;b; and if
then we replace bj by a discrete combination of the other vectors of the
basis : b;j < b;+>_, £ y;b; we can still express v as a discrete combina-
tion of the vectors of the new basis : v = 3, zibi+z;(bj—>_, . yiby).
In a similar way we can show that if v belongs not to A, then we can-
not express it with a discrete combination of the new basis. It follows
that the 2 bases generate the exact same lattice.

Basis reduction can be used to solve the shortest vector problem in the sense
that the shortest vector of the basis (by in the basis reduction algorithms
we will see) is very short. In rank 2 for a reduced basis we have that by
is the shortest vector of A and we can get it in polynomial time. But for
higher ranks there is no known algorithms that finds the shortest vector in
polynomial time. The LLL basis reduction algorithm finds a fairly short
vector in polynomial time and it is often sufficient for applications.

Figure 5: A lattice of rank 2 with two different bases. The determinant is
depicted as the area of the parallelogram defined by the basis. The second
basis is reduced and orthogonal.

2.2 Rank 2 basis reduction

Basis reduction of rank 2 lattices is easy to understand and plays a pivotal
role in LLL basis reduction algorithm. We start with a basis {b1, b2} and
we try to reduce it. If by is shorter than bg the intuitive approach is to
substract from bg an integer multiple z of by. We want to choose z such
that the new vector bs — zbq is as short as possible. To solve this problem
we take for z the coefficient u of the orthogonal projection of ba on by (cf



figure 6) rounded to the nearest integer. We repeat this process until we
can no longer reduce the basis.

Definition 8 (Reduced basis in rank 2). A basis {b1,ba} is said to be
reduced if and only if the norm of by is less than or equal to the norm of ba
and the absolute value of the orthogonal projection coeffecient u = Ei:gi
1

less than or equal to 5

18

by -b 1
[b1 - by <z (9)
by - by 2

To picture this observe that in figure 7 given an arbitrary by the basis
is reduced if and only if bg lies on the shaded area.

{b1,b2} isreduced <= ||b1]| < ||bz]|| and

Theorem 5. Given a lattice A of rank 2, if A is the norm of the shortest

vector then :
2
A< [ —det A 10
</ 7 (10)

Proof. Suppose that we have a reduced basis {b1,bza} of A. Using orthog-
onal projection and the properties of reduced bases we get :

b2 = b; + ub1
Ib2]|* = (b3 ]|* + u?|[ba
. 1 3
Ib5]I* = [[b2[[* = w?|[b[* > [[ba]|* — b1 ][ = [Iba]*

V3

Ib3] > X2y |
2

V3

2

2
—=detA > ||b
| 75 deth = o]

It gives us for rank 2 lattice a new bound for A\ which is better than the
bound given by the Minkowski’s theorem (cf theorem 4). O

b3 [l[[byl = det A > Z=[|by

Theorem 6. If a basis {b1,ba} of A is reduced then by is a shortest vector
of A.
{b1,b2} isreduced = by is a shortest vector. (11)

Proof. Let x be a shortest vector of A — {0}. We can express it with the
reduced basis : x = 21by +2z2ba. We have ||x||? = ||z1b1 + 22(b% +ub1)||? =
(21 — 22u)?|[b1||* + 23[b3]| > (21 — 2z2u)?[[ by || + 23][ba .

3
Bel® > (21 = 20u)?[[ba]|* + 23 ba |



1. for zo =0 and 2z # 0 : ||x]|?> > 2%||b1|? > ||b1]?

2. for |zp| =1: x| > (21 £ u)*[by[[* + F][ba* > u?[[ba]|* + §l[ba[* >
1lb1]l? + Flba? = [b?

3. for |2] > 21 [[x]|* > (21 — 22u)?||b|* + F4[[ba[* > [[by]?

So we have [|x]|> > ||by|? and as x is a shortest vector only equality can
hold : ||x||* = ||b1||?. We conclude that by is also a shortest vector. O

Figure 6: Orthogonal projection. The vector ub; is called the orthogonal
projection of bg on by. The set {by,b%} is an orthogonal basis for the
subspace generated by {bi,b2}. Notice that the lattice A generated by
{b1, b2} has det A = ||bq||||b3]|.
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Figure 7: If the basis is reduced then bg lies on the shaded area. We can
see that for a reduced basis we have |bj| > @HblH

Algorithm 1: Rank 2 basis reduction.

input : basis { by, b2 }

output: reduced basis { by, bg }

if ||b1]| > ||b2|| then

| swap(by,ba)

while ||b1]| < ||b2]|| do
u= (b1 -bz)/(b1-b1)
ba = b — round(u)by
swap(b1, bz)

swap(bl,bz) // to have Hbl” < ||b2||

2.3 LLL basis reduction

The LLL-reduction algorithm (Lenstra Lenstra Lovasz lattice basis reduc-
tion) is a polynomial time lattice reduction algorithm invented by Arjen
Lenstra, Hendrik Lenstra and Laszlé Lovéasz in 1982. Since no efficient
(polynomial time) algorithm is known to solve the shortest vector problem
exactly in arbitrary high dimension, LLL is used to get an approximation of
the shortest vector. This approximation is sufficient for many applications.

Roughly speaking, LLL performs successives orthogonal projections, if
necessary swapping 2 consecutives vectors of the basis, in order to get a
reduced or near orthogonal basis.

Theorem 7. Gram-Schmidt orthogonalization method. Given a basis {by, bz, ..., bm}
of a subspace H,, of R™, we define :

*
1:b1

10



by - b}

by = by — —Lb}
2 bl'bl 1
bs - b% bs - b
b =bs — b* — b
% bibi ' bgoby
bm - b’ bm - b bm - b,
b%, = bm Lpx 2ht — L b

S bibi Tt byebg T bh bl
Then for1 < k < m and Hy, the subspace generated by the basis {b1, bz, ..., bk}
{b1,b3,..., by} is an orthogonal basis of Hy, (12)
Proof. 1. For k =1 : It is trivial because b] = b;.
2. Fork=2:

e {bj,b%} is orthogonal because b} is constructed using the or-
thogonal projection of bg on bj.

e As bj is obtained substracting from bg a multiple of b or equally
a multiple of by since by = by and the fact that substracting from
a vector of a basis a linear combination of the other vectors of the
basis do not modify the subspace then it follows that {bj, b3} is
a basis of Hs.

3. For2<k<m:

e {bj,b3,..., by} is orthogonal because {bj,b5,..., by _;} is an
orthogonal basis by induction hypothesis and by, is constructed
using successive orthogonal projections of by on the vectors
bi, b3, ..., by ; such that by is pairwise orthogonal with them.

e As by, is obtained substracting from by a linear combination of
the vectors by, b3, ..., by _; orequally a linear combination of the
vectors by, ba, ..., bk 1 since by induction hypothesis we have
that {bj,b3,...,by_;} is a basis of H,_; and the fact that sub-
stracting from a vector of a basis a linear combination of the other

vectors of the basis do not modify the subspace then it follows
that {bj,b3,..., by} is a basis of Hj.

O]

QR matrix factorisation : If we define the matrices B = [by by ... by,
Q= [bjbs ... b4 ], and R = [uj uz ... uj] such that u; € R™ and the ;%
element of u; is defined as follows :

o w;[j] = (by - b})/(b - b3) if j < i

11



o wlj]=1ifj=1i
o ui[j]=0ifj>i

One has B = QR. Doing the matrix multiplication one notices that this is an
equivalent way of expressing the Gram-Schmidt orthogonalization method.
Since R is an upper triangular matrix with only 1’s on the diagonal then
det R =1.

Theorem 8. Given a lattice A generated by the basis {b1,ba,...,bm}
and the orthogonal basis {bj,b%, ... bl } obtained using the Gram-Schmidt
method, then :

det A = [T IIb}] (13)
=1

Proof. First notice that A and the lattice generated by {b3,b3,... b}, }
are not the same. The proof come from the fact that one can transform
the basis {b1,b2,...,bm} into the orthogonal basis {bj, bj,..., b}, } using
only the operation that consists of substracting from a vector of the basis
a linear combination of the other vectors of the basis, which do not modify
the volume of the parallelepiped spanned by the basis. Such transformation
is done by rewriting the Gram-Schmidt method as follows :

b1 « by
b2-b1
b bs — b
2 < D2 by - by 1
bs - by bs - bo
b bs — by — b
3 < b3 by - by 1 bs - ba 2
bm‘bl bmb2 bm‘bm—l
bm bm — by — by — —————bun_
“ by by = by by > bm-1-bm-1 !

As det A is equal to the volume of the parallelepiped spanned by
{b1,ba,..., by}, which is equal to the volume of the other parallelepiped
spanned by {bj,b%,...,b},}, which is a parallelepiped rectangle whose
volume is equal to the product of its edges, one concludes that det A =
| JUERILR

Notice that if A is of a full rank lattice then using the QR factorisation we
have that B = QR which implies that det A = |det B| = | det Q|| det R| =
[det Q| = TT1", b5 - =

12



Definition 9. c-Reduced basis. A basis {b1,ba,...,bm} is said to be c-
reduced if and only if its orthogonal basis obtained with the Gram-Schmidt
method {b3,b3, ... b}, } verifies the following inequality for i =1 tom — 1

s I
o2 > 1P (1)

A small value for ¢ means a good reduction. Not every basis is 1-

4 V3

reducable, but each basis is 3-reducable. The % comes from the 5° one
can see in figure 7. Figure 8 shows c-reduced basis in rank 2. Notice from
Gram-Schmidt method that by = by.

Theorem 9. Near-orthogonality of c-reduced basis. Given a lattice A and
its c-reduced basis {b1,ba,...,bm} with ¢ > % then it is near-orthogonal in
the sense that :

[T Ibill < mlm=D)/4 det A (15)
=1

Proof. Multiplying for ¢ = 1 to m the following inequality
Ibif|? < ¢ ~Hbf |1

and then taking the square root and using det A =[], bf* we conclude

[T 1bsll < ctmtm=1)/4 det A
=1

13
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c-reduced basis in rank 2. Given an arbitrary by, the bas

c-reduced if and only if bg lies on the shaded area. Here ¢

Figure 8

1 value for c.

minima.

th a c-reduced basis. If the

0Mn Wi

Theorem 10. Shortest vector approximat

basis {b1,bz,...,bm} is c-reduced and X is the shortest vector norm then

(16)

1
m

by < ™ D/4det A

(17)

Iba]| < cm=1/2)

1

1. From the definition of a c-reduced basis we have that for ¢

tom

Proof.

’ 2

*
i

b

<c”

by = [b7*

Multiplying together all this inequalities we get

’ 2

*
i

”bIHQm < CO+1+2+ ~+(m—1)H Hb

1

b

1=

—-1.
o=

m
7=

| and that )

*
1

=1

m
%

As from theorem 8 we have det A = []
) we get

m(m—1
2

Hbl”Qm < Cm(mfl)/2 det AZ.

14



Passing the inequality to the power ﬁ we get

[by|| < cm=D/4det A

2. Let x € A — 0, and let i be minimal such that x € A; which is the
sublattice of A generated by {bi,bz,...,b;}. Notice that ||z| is at
least ||bf|| then it follows that

bill? b
25 1zl2 > br|?2 > 1P .
A2 lal® 2 b7 > DL >

1

Multiplying by ¢™~! and passing to the power 5 we prove that

AmD2) > |Iby .

O]

Theorem 11. For c > % LLL finds a c-reduced basis in polynomial time

Proof. We define the size of the orthogonal basis {bj,b3,..., b}, } as
s = [bil™ [b3lI™ " ... Ll

and S;nitiar s the size of the basis orthogonal at the initialization of LLL
and syf;nq the size of the orthogonal basis at termination of LLL. It will be
usefull to analyse the effect of swapping b and b}, ; when ||bf||* > ¢/|b}, |
on the new orthogonal basis {aj,a3,...,a},} and especially on s. Let s;, be

the size before and s, the size after the swapping and compare them :

1.
sp = [BI[™ 3™ - (b T by T [[bg|
sp= [II™ 3™ bl (F ] b2 )™ - bRl
2. . .
sa = [lagl™ flag ™= . Jlaf ™ lag g M- flag]

As we can notice it in the algorithm the swapping only affects the b}
and by, , (for the vectors before the ith it is trivial and for the ones
after the (i+ 1) it comes from the fact that b} o 18 constructed using
the orthogonal projection of bjia on the subspace {bj,b3,..., b}

i+1
which is not affected by the swapping and so on for b{ g, ... ,b},) and
we get :
sa = [DII™ 131" o Hlafll (lagll lag D)™ .. (bl
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Algorithm 2: LLL basis reduction.

Input: basis { by, be, ..., by, } and ¢ such that b; € R” and ¢ > %

Data: orthogonal basis { b}, b}, ..., b}, } and orthogonal
projection coefficent vectors { uy, ug, ..., uy } such that
by € R" and u; € R™

Output: c-reduced basis { by, ba, ..., by}

for i < 1 to m do // initialization

ui:0
ui[i]:1
b; = b;

for j«1toi—1do
u; [j] = (bs - b})/(bj - b})
b =bi —u; [j] bj

| reduce(i)

while 7 <~ 1 <m do
if |bf||> < c[[bf,,]|* then // {by,...,bi;1} is c-reduced

‘ i=1+1

else
/* modify Q and R in order to keep the relation B =
QR after the swapping */

bi 1 =bi 1 + uisq [i] bf

u; [i] = (b; - bf+1)/(b;k+1 b;k+1)
ui[i+1] =1

Uj+1 [2] =1

Ujt+1 [Z + 1] =0

b = b} —u; [i] b} 1

)
swap(b* b} 1)

swap(bj, biy1)

for k< i+ 2 tom do

L we il = (bic- b), (b - bY)
ug [i + 1] = (by b;k+1)/(b1+1 bT+1)
if |uiq [i]| > 1 then reduce(i + 1)
i =max(i—1,1)

Subroutine: reduce
Input: i such that (i < m)
while j « (i —1) > 0 do
b; = bj—round(u; [7])b;
u; = u;—round(u; [j])u;
j=75-1
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From theorem 8 we have det A = T[;", |[bi|l = Hf:k lag|| and it
implies that ||b{ ||bj ;[ = [laj| [|aj, [l and we get :

sa = [Ib3l™ b3 1™~ - llaf |l (IF 1 b a )™ - [[bhl

As we can notice it from the algorithm aj = b{, ; + ujy1 [i] b] which
is simply by, ; without the projection component on b;. So |af||?> =

131117 + wia [i)* b} | and we get :

* * — * 2 * 1 % * —1 *
sa = 1™ L3 )™ - (I P a7 [B511%) 2 (b3 b5 )™ - - [
Combining together s, and s, we get :

_ Sa (IIbf 4 * + wip [1]7 b7 ()2
o]

Sb

Finally using u; 1 [i]* < 1 and multiplying by [|b}|| and as [|b}||* > cllbi 4 II?
we conclude :

1 1
Ibi.? 1)°? 1 1\2
< | -+ <|=+=
Sp > ( ||b;k||2 + 1 Sa c + 1 Sa

From this result we observe that the number of times swapping happens in
LLL is at most
2 log (Sinitial/sfinal)
|log (¢ + 3)|
Notice that this expression is not defined for ¢ = % because a division by
0 occurs. So it suffices to take ¢ > % and a good lower bound for sfi,q to
prove that LLL runs in polynomial time. O

3 LLL basis reduction for solving RSA problem

In this section, we will show how we can use Coppersmith’s algorithm for
finding small roots of univariate modular polynomials, which uses LLL, in
order to attack the RSA cryptosystem under certain conditions.

3.1 RSA

Rivest Shamir Adleman or RSA is a very well known asymetric public key
cryptographic algorithm used to exchange confidential information over the
Internet. Here is how it works :

e Keys generation :

1. Choose 2 prime numbers p and q.

17



2. Denote n as the product of p and ¢ : n = pq.

3. Calculate Euler’s totient function of n : ¢(n) = (p—1)(¢—1) .
4. Choose an integer e coprime with ¢(n) : ged (e, ¢p(n)) = 1.

5. Compute d as the inverse modulo ¢(n) of e : ed =1 mod ¢(n).

e Encryption : C' = M¢ mod n where M is the message and C the
message encrypted.

e Decryption : M = C?% mod n where M is the message and C the
message encrypted.

Definition 10 (RSA problem). Given M¢ mod N find M € Zy .

Definition 11 (Relaxed RSA problem : Small e, High Bits Known). Given
Me, NI with |M — M| < N¢ find M € Zy.

3.2 Coppersmith

In this section we present the Coppersmith method to find small roots of a
monic univariate polynomial : We want to efficiently find all the solutions
xo satisfying

f(zo) =0 mod N with |zg] <X (18)

Theorem 12 (Howgrave-Graham). Let g(x) be an univariate polynomial of
degree §. Further, let m be a positive integer. Suppose that

g(xo) =0 mod N™ where|zo| < X (19)

Nm

lo(aX) < s

(20)
Then g(xo) = 0 holds over the integers.

Proof. |g(o)| = | ig ciwpl < Sigleit] < Xilg il X' < V3 +T[lg(a X))
N™. But g(x0) is a multiple of N and therefore it must be zero. O

Given the Howgrave-Graham theorem, the idea is to construct a collec-
tion fi(x), ..., fn(x) of polynomials that all have the desired roots xy modulo
N™. Notice that for every integer linear combination g we have

g(zo) = Zaifi(xo) =0 mod N wherea; € Z. (21)
i=1

Then, using LLL basis reduction on the coefficient vectors of f;(zX), we

might find a small coefficient vector v such that v respects the second condi-
tion of the Howgrave-Graham theorem : ||v|| < N—\/%L where n is the dimension

of the coefficient vector v.
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Theorem 13 (Coppersmith). Let f(z) be a univariate monic polynomial of
degree §. Let N be an integer of unknown factorization. And let € > 0 .
Then we can find all solutions xy for the equation

1
f@)=0 mod N with ol < ZN¥ (22)

Proof. To prove this we apply the coppersmith method. First we set m =
[1/(6¢)] and X = $N 57¢. Then we construct a collection of polynomials,
where each polynomial has a root zp modulo N™ whenever f(x) has the
root g modulo N. Here is the collection of polynomials we choose :

N™ TN™ 2 N™ R
Nmflf .%'Nmilf w2Nm71f o xSlemflf
Nm—2f2 me_2f2 xQNm_QfQ o x&—le—QfQ
:vam—l :Tme_l ;C2me_1 o .gjd—lem—l

Or more compactly :
gij(x) =2/ N f"(z) fori=1,...,mand j=0,...,6 — 1

We can see that g; j(xg) = 0 mod N™ if f(xz¢) = 0 mod N noticing that
Nt is divisible i times by N and f(xg)™ " is divisible m — i times by N.
Then we construct the lattice A that is spanned by the coefficent vectors of
gij(xX) :

0 0 0 0 0 N X om—17

0 NXJmféJrl
NX5m_6 o

0
NmX5—1
0 0
0 NMX
N™ 0 0 — _ _

Notice that the rank of the lattice is dm. A nice thing about the matrix
is that it is triangular. So we can easily compute the determinant of the
lattice multiplying the terms on the diagonal :

det A = N%‘Sm(erl)X%tsm((Smfl)'
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Then we reduce the lattice with LLL choosing ¢ = 2 and we obtain a 2-
reduced basis. We want the first vector of the basis by to satisfy the condi-
tion N

Irfl <
in order to apply the Howgrave-Graham theorem. Let’s see if it does : After
the LLL basis reduction we are guaranteed to have

dm
4

[by|| < 27T det Asm.

So we need to prove that

m
2an1 det Aﬁ < L
om
Using the fact that det A = N%‘Sm(mﬂ)X%ém(‘sm_l), we obtain the new
condition :

dm(m—+1) dm—1 —(@dm—1)

2om X 2 <2 4 (5m)_71Nm

This gives us a condition on the size of X :

—1 —1 2m édm(m—+1)
X < 27((5771) Sm—1 N om—1_ sm(dm—1)

—1 — log(dm) _
Notice that (dm)sm-1 =2 sm—1~ >2% forn > 6. Therefore, our condition

simplifies to

2m m+1
—1

XS%N&m T om-1

Remember that we made the choice X = %N 57¢. Hence in order to finish
the proof of the theorem, it suffices to show that
14+ L
2m m(l+ --) S 1

— m -_——
om—1 om—1 — 6
Then multiplying by 57;—71 we get :

m

This simplifies to

which holds because we made the choice m = [1/(d€)]. O
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Algorithm 3: Coppersmith method.

Input: Polynomial f(x) of degree ¢, modulus N of unknown
factorization and 0 < e < %
Output: Set R, where g € R whenever f(z9) =0 mod N for an

|.1‘0| S X
m = [1/(b¢)]
X = 1N%76

for ¢ 2(— 1 to m do
for j«0toéd—1do

L | 9ij(z) =2/ N'f""(2)
Construct the lattice basis B, where the basis vectors of B are the
coefficient vectors of g; j(zX).
v = LLL(B , ¢ = 2).get_column(0)
Construct g(x) from v.
Find the set R of all roots of g(x) over the integers using standart
methods. For every root xp € R check wether ged (N, f(zo)) > N. If
it is not the case then remove zy from R.

3.3 Application

We can use the coppersmith method in order to attack RSA under certain
conditions. We can use it to solve the Relaxed RSA problem where e is
small and we have an approximation M of M such that M = M + z, for
some unknown part |zg| < N ¢. To solve this problem using Coppersmith
method we define

f(x) = (M + )¢ — M°® mod N.

And we can recover xy applying the coppersmith method to f(z) as long as
1
zg < Ne.

4 Implementation and examples

To implement and test the algorithms (LLL & Coppersmith), I used Sage.
Sage is a free open-source mathematics software system licensed under the
GPL. It combines the power of many existing open-source packages into a
common Python-based interface. Its goal is to create a viable free open
source alternative to Magma, Maple, Mathematica and Matlab. Website :
http://www.sagemath.org/
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4.1 LLL

As python is an interpreted language (it is not compiled), we don’t expect
to have good performance with our implementation of LLL. When a lot of
computation are required, we prefer the native and optimized sage imple-
mentation that is much faster.

Code 1: Computes the Gram-Schmidt orthogonalization and then test if the
matrix B is c-reduced or not.

def is_LLL_reduced(B, c = 2):
= B.nrows ()
B.ncols ()
matrix (RR, m, m)
matrix(RR, n, m)
or i in range (0, m)
Uli,il =1
O0.set_column (i, B.column(i))
for j in range(O0, i)
U[j,i] = (B.column(i)*0.column(j))/ \
(0.column(j)*0.column(j))
0.set_column(i, 0.column(i) - U[j,i]l*0.column(j)

n
m
U
0
f

for i in range(0, m-1)
if O0.column(i)*0.column(i) > \
c*0.column(i+1)*0.column (i+1)
return False

return True

Code 2: LLL.
def reduce(i, B, U):
j o= i-t
while j >= 0
B.set_column(i, B.column(i) - \
round (U[j,1i])*B.column(j))
U.set_column(i, U.column(i) - \
round (U[j,1i])*U.column(j))
j=3-1

def LLL(B, c = 2):
= B.nrows ()
= B.ncols ()
matrix (RR, m, m)
matrix(RR, n, m)
or i in range (0, m)

Uli,i] =1

0.set_column (i, B.column(i))

for j in range(0, i)

Ulj,i]l = (B.column(i)*0.column(j))/ \

n
m
U
0
f
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(0.column(j)*0.column(j))
0.set_column(i, 0.column(i) - U[j,i]*0.column(j)
reduce (i, B, U)

i=0
while i < m-1
if 0.column(i)*0.column(i) <= \
c*0.column (i+1)*0.column (i+1)
i=1i+1
else
O.set_column(i+1, O.column(i+1) + \
Uli,i+1]1*0.column(i))
Uli,i] = (B.column(i)*0.column(i+1))/ \
(0.column (i+1)*0.column(i+1))
Uli+1,i] = 1
Uli, i+1] =1
Uli+1,i+1] = 0
0.set_column(i, O0.column(i)-U[i,i]*0.column(i+1))
U.swap_columns (i,i+1)
0.swap_columns (i,i+1)
B.swap_columns (i,i+1)
for k in range(i+2, m)
Uli,k] = (B.column(k)*0.column(i))/ \
(0.column (i) *0.column(i))
Uli+1, k] = (B.column(k)*0.column(i+1))/ \
(0.column (i+1)*0.column(i+1))
if abs(U[i,i+1]) > 0.5 : reduce(i+1, B, U)
i = max(i-1,0)
return B

In order to test if the implementation of LLL works properly, and to have
an idea of the running time, we run it several times on random matrices of
different sizes with the following code :

Code 3: LLL running time test

runtimes = []
for i in range (0, 39)
runtimes.append (0.0)
for k in range (0, 10)
r =0
while r != i+2
A = random_matrix(ZZ, i+2)
r = A.rank()
t = cputime ()
res = LLL(A)
runtimes [i] = runtimes[i] + cputime(t)*0.1
if is_LLL_reduced(res) == False
print ("LLL FAILURE")
print (runtimes)
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With the runtimes list we can plot the running time. Here is the result
I got on my computer :

cpu time (s)
7 E

6A

0 | N
0 5 10 15 20 25 30 35 40

Figure 9: LLL execution time with random matrices of size NxN

We can clearly notice that the runtime is polynomial with respect to the
matrix size. The runtime depends also on the basis vectors. For example it
is possible that we generate a random matrix that is already reduced, then
LLL has nothing to do. Here we compute the running time for each size N
doing the average on 10 different matrices of size N. Because 10 is small, it
explains why we can get that the running time for a 39x39 matrix is shorter
than the one for a 38x38 matrix.

4.2 Coppersmith

Code 4: Coppersmith method

False \
False)

def coppersmith(f, N, epsilon = 0.1, fastLLL
, debug
if epsilon > 1/7.0 or epsilon <= 0
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print("invalid epsilon")
return None
f.change_ring(Integers (N))
delta = f.degree()
m = ceil(l/delta/epsilon)
R.<x> = ZZ[]
#construction of the gli,j](x)
g = []
for j in range(0, delta)
g.append ([1)
for i in range(1l, m+1)
glj].append(x~j*N~ (i) *f~ (m-1))
X = ceil(0.5%N"(1/delta - epsilon))

if debug : print("X = " + str(X))
size = m*delta

#construct B from gl[i,j](X*x)

B = matrix(ZZ, size, size)
compteur = 0

for i in range(-m+1, 1)
for j in range(0, delta)
polylist = gl[jl[-i] (X*x).1list ()
vector = [0]xsize
vector [0:1len(polylist)] = polylist
vector.reverse ()
B.set_column(compteur, vector)
compteur = compteur + 1
if debug : show(B)
if debug : print "LLL starts"
coeffs = []
#computes a small combination of gl[i,x](X#*x) with LLL
if fastLLL : #use native sage implementation
coeffs = B.transpose().LLL().transpose() .\
column (0).1list ()
else : #use our python implementation
coeffs = LLL(B).column(0).list ()
coeffs.reverse ()
#construct g(x)
g = 0*x
for i in range(0, size)
g = g + Integer(coeffs[i]/X"1) * x71i
#get the roots of g(x) over the integers
roots = g.roots(multiplicities=False)
result = []
#test if the roots x_i respect f(x_i) = 0 mod N
for i in range(0, len(roots))
if gecd (N, f(rootsl[il)) >= N
result.append(roots[i])
return result
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Code 5: Coppersmith method example

R.<x> = Z7Z[]
f = (x-1)*x(x-2)*x(x-3)*(x-4)*(x-40)

print coppersmith(f, 10000)

In this example X = 2 and the Coppersmith method outputs the list
[2,1].

4.3 RSA attack

To test an attack on RSA using the Coppersmith method, we first need to
create RSA keys.

Code 6: RSA key creation : Computes d from p, ¢, and e.

def generate_d(p, q, e)
if not is_prime (p)
print "p is not prime"
return None
if not is_prime(q)
print "q is not prime"
return None
euler = (p-1)*(q-1)
if gcd(e, euler) != 1
print "e is not coprime with (p-1)(q-1)"
return None
return inverse_mod (e, euler)

Code 7: Simple example of an attack

= 17
= 37
= P*q
-
= generate_d(p,q,e)
= 21
= power_mod (M, e, n)
MA = 20 #Approximation of M
R.<x> = ZZ[]
f = (MA +x)"e - C
print coppersmith(f, p*q)

Q=2a o0 B LOo”T
I

In this example X = 1 and the coppersmith method outputs [1]. It
follows that we can recover the message M : M = MA+1

Code 8: Example of an attack

el
|

= 955769
= 650413

Q
|
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p*q

=5

generate_d(p,q, e)

423909

power_mod (M, e, n)

A = 423919 #Approximation of M
.<x> = ZZ[]

= (MA + x)"e - C

print coppersmith(f, p*q, 0.1,True)

n
e
d
M
C
M
R
f

In this example X = 8 and the method coppersmith method outputs
[-10]. Notice that since 8 < 10, it could have failed. In this case we use
the LLL implementation of sage, because the coefficients of the g[i, j](X * x)
vectors seem to be too large for our naive LLL implementation.
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Introduction

In 1982 Arjen Lestra, Hendrik Lenstra Jr. and Laszlo Lovasz published the LLL-
reduction-algorithm. It was originally meant to find ”short” vectors in lattices, i.e. to
determine a so called reduced Basis for a given lattice. This algorithm also helped
finding solutions to two other major problems: the factorization of polynomials and
the search for integer relations.

On the following pages we will first describe the LLIL-Algorithm and derive all its steps.
We will then determine the relation between lattice reduction and the problem of factor-
ing polynomials, and the relation between lattice reduction and finding integer relations.
We will closely follow the layout of the original paper of Lenstra, Lenstra and Lovasz (see
[8]). As an application of integer relation, we are going to discuss BBP-type formu-
lae (which have actually not been obtained by the LLIL-Algorithm but a more efficient
Algorithm, the PSLQ-Algorithm).

1 The LLL-algorithm

In this first chapter we will define some expressions and recall the Gram-Schmidt or-
thogonalization process since it is crucial in the algorithm.

We will then present the LLL-Algorithm and derive all the associated steps. Finally we
present a theorem that will give us a few properties on reduced basis of lattices that we
will need in chapter two and three.

1.1 Lattices, Gram-Schmidt and some properties

Definition 1.1: A subset L of the real vector space R" is called a lattice if there exist
a basis by, bo, ...b,, of R™ such that

L= {imbi‘ri € Z for i € {1, ,n}}

=1

We call by, ...b, a basis for L and n the rank of L.
Moreover we define d(L) := | det(b1, ba, ...b,,)| to be the determinant of the lattice.

Gram-Schmidt orthogonalization process: Let b1, ...,b, be some linear independent
vectors in R™.



We define inductively:

b] = by
i—1
bf=bi— > pigbifor1<i<n (1)
j=1
(bis ) o
Mi,j: ‘b*|2 f0r1§]<l§n (2)
J

This process produces vectors b7, b3, ..., by, that form an orthogonal basis of R"

Definition 1.2: We call a basis by, ba, ...b,, of a lattice L reduced if
1 o
|ui7j|§§f0r1§j<z§n (3)

and 5
b5 + st P2 i for 1< < (4)

The second condition can be rewritten as [bf| > (2 — Miiil)yb;:ﬂ?, which is known as
the Lovasz’s condition.

Note that the constant % in the definition is arbitrary chosen. Indeed, we could take any
other constant between % and 1.

1.2 The algorithm

We are now going to present an algorithm that takes an arbitrary basis of a lattice as
an input and returns a reduced basis of the same lattice. As we see by the definition, we
will need an orthogonal basis to check the two properties of reduced bases. So we will
first apply Gram-Schmidt orthogonalization process to the basis given. The algorithm
then modifies the basis elements such that they fulfill the desired properties. These
modifications will be described in detail in the next section.

1.2.1 Implementation of the algorithm

1. fori=1:n

2. bl i=b;;

)

3. forj=1:1-1



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

pij = (bi, 07)/ (b5, 07);
bj = b} — puijbj;

end

end

k=2

l:=k-1,;
if |pg| > 5
r := integer nearest to pu;
by := by, — rby;
forj=1:1-1
PEj = Pkj — T 55
end
Mkl = Pkl — 75

end

if b} + e p—1bf_1 > > 31054 [?
go to (10) and perform for I =k —2: 1;
if k = n, terminate
else k := k + 1; go to (9);

end

else



bi— b
24 ( b > = ( b >;
25. Bp_1:=10b;_q;
26. By :=bp;
27 po= pkk—1s
28.  bi_ = By + puBj_1;

Bya|?,
29, pgg-1:= Nﬁ,

30. b = Bp_1 — prr—1b;_1;

3l. forj=k+1:n

B 2
39, < o k—1 ) [ Hik—1 - +Mjk%
Hik i k—1 — Mk

33. end

34. forj=1:k-2

35. < HEk—1,5 > — ( Mg )
Kk Hk—1,5

36. end

37. fk>2k=k—-1;

38.  goto (9)

39. end

1.2.2 Derivation of the steps

Let {b1,ba,...,b,} be a basis of the lattice L. The procedure to receive a reduced basis
for L out of {by,bs,...,b,} is as follows:

For the initialization we first need to calculate all the {b7,b3,...,b5} and p;; for 1 < j <



i < n with the Gram-Schmidt process.

This is an iteration process, therefore we assume the basis is already reduced for by, bo, ..., bx_1
for some k < n, i.e. the conditions (3) and (4) are fulfilled for this set. The aim is now

to modify by (and if necessary by, ...,bx—1) in such a way that we can get a new set
{b, b5, ..., b } which fulfil the conditions of a reduced basis. We will also have to adapt
the b7’s and ;5 , such that (1) and (2) remains valid.

In every loop we will have to check the two conditions (3) and (4) for the current by.

. 1
1. Check if [upp—1] < 35

o If |pp—1]| < %, continue with point 2.

o If |pu 1| > 3
Define r to be the nearest integer to p x—1.
Set b;c = by —rbp_q
Obviously we now have to modify all the uz;, 1 < j <k as well.

by, b* ,
Note: py; = ﬂ%%ﬁ) and therefore for the new N%j s we have:

;o (e —7rbe—1,07)  (bk,07)  (bk—1,07)
Hi; = b2 = b* |2 -r b |2
5] 5] 5]

hence:
Hij i= Mkj — THk—1,5, for 1 <j <k —1and
M%,kq = Mek-1 T

If we define r this way, we get that |pgr—1] < %
We do not have to modify the b}’s for i € {1,...,n}. One can see this with
the following equation:

i—1
b =bi = Y pish;
=1

Now only by, has been modified, so we only have to check for b; (and b; for



ielk+1,...,n]):

k—1
Tkl 1o x
by = by, E K595
j=1
k—1

= by — b1 — > (ukj — k1,0
j=1

k-1 k—1
= by — E,Ukjb; —7(bp—1 — zuk—l,j(f;)
=1 j=1

= by —r(bp—1 — Mk—Lk—le—ﬂ

_bz

Since the b’s are not changed, also the pj; for j > k are not changed. We
see this with the definition of p/f;.

/ J 70k
Iu/, = . — - — /’Lk
jk ’bk ’2 |bk‘2 J

Note: It is still not guaranteed that ju; < %, for j smaller than k — 1.
2. Check if b} + pup—1b5 11> > 3|b;_,|?

o If [bf + pgr—1bf 4> > %]bz_l\Q, focus on the p;, 1 <j<k—1
Let I be the largest index, s.t. pg; > %
Define r to be the nearest integer to pu;.
Set by := by, — rb;.
As in point 1 we now have to modify the pu;, 1 < j < I. With the same
calculation we get:

,uﬁcj = pgj —rp , for 1 <j <l—1and

o
B = Bkl — T



Note: We don’t have to modify pu;, [ < j < k because:

(b, — 71, b}")
b2
(br, b5) r(bl,bj*-)
16712 6712

* -1 N
= Uy — T (bl - Zizl by, bj)
:uk] ‘b;|2

I
Mg =

Pk -1 Pk

= Hkj —7“( 2 225 2
1651 1651

= Hkj-

=1

because of the orthogonality of the b}’s, and j > .

Since this is not going to change the b’s, (4) remain valid and we can repeat
this procedure until pug; < % for all 1 < j < k—1. Now we can replace k by
k + 1 and continue with the first step.

o If [0} + purp—1b}1]? < 2|b%_,|%, we need to modify the b;’s.
Interchange by, and by_1, i.e. set b} := by_1 and bj_; := by.
We now have to modify bj and by_; (the b} for i # k,k — 1 do not change):

k-2
"x oyl / "x
b1 = bp_1 — E Hi—-1,70;
j=1

k—2
= b= D kb
j=1

k—1

= b — Z 105 + fk k—105 1
=1

= by + prp—1bp_1



k-1
"x __ 3/ ropx
b = b — D hisb;
j=i
k-2
* / /%
=bp—1— > fh-1,3b5 — M 1by s
j=1
o b* ! b,*
=0k—1 — Mk k—10k—1
/o1 %
(bk7 bk*l)b'*

= bz—l T T % 2 k-1

(i
— b B (bk—l’ bz + Hkyk_lb};—l)b’*

* k—2 * Dk
— b, - (01 + > it He—1ab7, b + Nk,kfle—l)b;: )

Lty
=b._4 ™
1654 12
=bj_1 — Mk 1L271‘2 iy
k—1 SR— |b;€*_1‘2 k—1

= bp_1 — My p_1br (6)

Where in the seventh line of the calculation of b;f* we used the orthogonality
of the b’s.

Now we need to modify p; x—1 and g, for ¢ > k, prp_1,; and py,; for 1 <@ <
k—1.
First note that b; = b} for ¢ > k, hence with (1) we have:

i—1 i—1
b= b D magb] = b"+ 3w =]
=1 j=1
Since b;-* = b; for j # k,k — 1 we can subtract the common terms on both
sides of the equation to get:

M@k—le—l + pirby, = :u;‘,k—lbk*—l + :u;‘kbk* (7)

From (6) we have:
b1 = by + N?c,k—lbk*—l

and from (5),

10



k=01 — prp—1bj_4
= by — pkp—1(by + M;c,k—lbk*—l)
= (1 = pk -1 g 1)bE—1 — P10

P
— M- o |2>b — [tk e—1bf
-1

(bk7bk—1) ’bk—l‘Q "% /%
Tt ) it
_ (bkabk 1)
|71 121" 1|2
(b*+Zz 1 IU’IC’L

(
(
(
- (- LRt
(
(
-7

)bk 1~ Mk k— 1by

(Mk,k*lb*_ 7b*_ )2 . ’
_ k—1>Yk—1 ) = Wby

|51 1210, 2
_ M%,kl’bltlrl) /
b7 1265, 12
\b 1|2 Ni,kfﬂbltq
b1 12
(|bk+ﬂkk 1051 1? = s r—1|b_4]?
b |2

. |blt|2 + Nz,kf1|bk71|2 - H%,k71|bzf1‘2 b, ™
= P L
b5 4|

/
" — Mk g—1by

| "% "%
)bk—l — Mk k—1bg

)b;g*—1 — k1 by

|b;;|2 * /%
= ‘b;: |2 k-1 — /"Lk!,kflbk
—1

So with (7) we have :

/% "% |b*|2 /% /% /%
pik—1 (b + e —1bg1) + Mk(]b E — Mk, k—10y, ) = i k101 + by
—1

Ib*l2 /

= (Hik—1 — Mikﬂk,kfl)b;g* + (Mi k-1 1 + Hik 7= b1 = M;,k—1b;f*—1 + N;kb;:

— Mg —1 = Hik— 1Nkk1 ,Uzk|b E

,ul = Mik—1 — MikMk k-1

11



For M;c—l,j and N;q]v 1 < j < k—1 one can easily see that:

/ _
Hr—1;5 = Hkj

/
Hij = Hk—1,5

Now we can replace k by k — 1 and continue with the first step.

1.2.3 Proof

Claim: The algorithm described above terminates and it returns a reduced basis b/, b5, ...,
of L.

Proof. Obviously the vectors b}, b5, ..., b}, are reduced after every loop, so we only have
to prove that the algorithm terminates.

We had that every time we interchanged by and b;_; we lowered the current index by
one. In every other case we increased it by one. So we need to show that there are only
finitely many times where we need to interchange by and by_1.

In order to show this, we define

di = det(Di) with DZ' = (bj, bl)lgj,lgi
n—1

D:=]]d
=1

We now need to compute the effect of the changes of the b;’s in the algorithm on the
two quantities d; and D.

We first derive that d; = H;:1 |b§|2, for all i € {1,...,n}.

One can see this by applying the Gaussian elimination procedure to D;. As we know,
the determinant will not change under these operations.

We have:
(bl,bl) (bl,bg) (blabz)
d; = det(D;) = det (bQ’:bl) (b2, b2) ... (522 b;) .

The first step is to subtract EZ{ ’23 times the first row from the j-th row, for all j €

{2,...,i}. As a property of the Gaussian elimination we get zeros on each entry of the
first column except in the first row. The first row remains unchanged and for the k-th
entry (k € {2,...i}) of the j-th row we then get:

(bj, b1) (bj, b7)

by by) —
(b5, bx) (b1,b1) b7 2

(b1,bx) = (bj —

1:0k) = (bj — pj1b7, by)

12



Since we have by — u21b7 = b3 and (b5, b;) = (b7, b + ZZ 1 HyibY) = |b;f]2 we get:
b7 2 (b1, b) (b1, b3) (b1, bi)
di=det | 0 (b3 —p31b],b2) (b3 — pzibi, bs) (bs — p31bi, b;)
0 (bi — pirdi, bo) (bi — pardy, bi)
The second step is then to subtract % times the second row from the j-th row
2
(4 €{3,...,1}).

For the k-th entry (k € {3, ...,

(b] B lujlbf’ b2)

i}) of the j-th row we then get:

(bj — pj1b1, bi) — 52 (b3, bk)

= (b — pyatf — A b) _|’,fi|126>f’ "y )

= =g = PR )
b — < l‘%;% Mj‘leI‘;bZ) (bjm;b’{) B (Mjl?’i;k,‘l;zlbf)> bs. bi)
— b} — ( aa’bfiz‘;b 1) “wﬁjﬂfﬂbﬁ b5, by

— by — b — (Nﬂ n (bj, p2107) (Iéilf?)/‘m(bfabf) )

b3 10512

) b bab* *
=b;j — pj1by — (:U’j2+ i 1216) - (b 1)#21) 5, Dk)

|05 03]
= (bj — pj1by — pjobsy, br)
Hence,
D3> (b7, 522) (b7, b3)
0 b3 (b5, b3)
0 0 0512
di = det 0 0 (bg — pa1b} — praob’, b3)
0 0 (bi — pi1b] — piobs, ba)

13

(b3, bi)

(b3, bi)
(b — pa1b] — prazb3, b;)
(bi — pi1b] — b3, b;)



Apparently by proceeding with the Gaussian elimination, we get

b2 (b’fjbzz) (b1,03) ... (b7, bi)

0 [051% (B3,5) .. (b5, 1) i
di=det| O 0 B3 - (03.00) | =TT IbsI%

: : j=1

0 |b¥|?

Now, only in the case when [bf + g r—1b5_ 1% < |bj_;|* we had to modify some of
the b’s (namely b7 | and b%). We had |b ||* = [bf + pra_1bi ,]? < 3|b_4]?, hence
di_1 decrease by a factor < % with every such change being made. All the other dj,
j€eA{l,...,i} \ {k — 1} remain unchanged as we see with (8).

Since we lower the current index of the algorithm if and only if such a change is made,
there is a one-to-one correspondence between the lowering of the current index and the
quantity D. That is, if the determinant defined above after one modification of the b}’s

is denoted by D’, then we have D’ < %D.

Claim: There is a positive lower bound for d; depending only on L.

Proof. We define m(L) := min{|z|*>;2 € L,z # 0}, which is a positive, real number.
Note that it is not claimed that the LLL-algorithm does find such a shortest vector. For
the determinant of the lattice we have
n
d(L) = | det(by, by, ...bn)| = | det(b], b3, .b5)| = [ ] 1051
i=1

since the b} are pairwise orthogonal, so d,, = det(L)? and d; for 1 < i < n is equal to de
determinant of the lattice spanned by b1,...,b;. As a property of lattices there exists a
vector z # 0 such that |z| < %Ofl)ﬁdi/z (see [5, lemma 4, pp. 21 and theorem 1, pp.
31]) and therefore

which is what we wanted. O

So since we lower D by % every time we interchange by and bx_1 and there is a lower
bound for D, we conclude that there can only be finitely many interchanges during the
algorithm and therefore the algorithm terminates. O

14



1.3 Properies of reduced bases

Theorem 1.1: If by, bo, ..., b, is some reduced basis for a lattice L in R™, then
Lo|b)?2 <207t for 1<j<i<n
2. d(L) <TI0, Ibil < 200-D/d()
3. |by| < 20n=D/4q(L)t/n

4. For any linearly independent set of vectors x1, zo, ...,x¢ € L we have
1bj| < 200=D/2 max(|z1|, |xa|, ..., |z¢|) for 1 < j < t.

Proof. 1. First note:

|bi|* =

i—1 i—1
2
b+ > paghy| = (0712 > b 9)
J=1 j=1

from (1) and since the b}’s are orthogonal for 1 < ¢ < n.
So we have the following inequality:

b = |07 + 1 i1 |bf_ 1 )P+ o 4 pd 6]
1., 1
< |bf]* + Z\bHy 4o+ Z|b’{]2

Moreover we have |b]*'|2 > %|b;f_1|2 by Lovasz’s condition, hence ]b;f\Q < 2077 |bz |2
for all 7 < 4. Hence for all i:

1 .
b < (1+ itk 2% + ..+ 27 h)|or|?

1 S_l: % * (2
J=t

1 .
=(1+ 12 271 —2)) [br|?
2i71 4 1 |b*|2
2 (]
< 2712

Therefore: A o '
[b;[* < 2771 [b3? < 27720 or | = 27 by | (10)

For 1 < j < i <n. This proves part 1.
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2. For the second part we need that d(L) = [[;, |b]| as shown above. From (9) we
have that |b7| < |b;| and hence

d(L) = [T Iil < [T Ioil < [] 2097205 ) = 200 [ T i | = 2D,
1 i=1 i=1 i=1

1=

where we used the calculations from the proof of the first point of the theorem and
that [}, 9(i=1)/2 — 93711 (i=1)/2 — gn(n—1)/4

This proves part 2.

3. For part 3, we use the equation |b%|> < 2077[b*|? with j = 1 (i.e |[b1]> = [)1]? <
J i 1
2071[b51?) to get:
baf < [T 26727 = 2D a(r)
i=1
Hence |by| < 2(=D/4d(L)V/™,

4. Note that we can write x; = > I ri;b; = > L ;b7 with ry; € Z since z; € L

and the b;’s are a lattice basis of L. Let 1 < j < n be fixed and let k be the largest
index such that r; # 0.
Then we have that ry; =7}, ;- To see this consider the following calculation:

k

k i—1
vy =D righi =Y ri;(bi = > pab})
=1 =1

i=1
Where in the second term of the RHS by does not appear in the summation and
since the b;’s are linearly independent we need 7}, ; to be rg;.

By the orthogonality of the b¥’s we have that |z;| = S2F |ri; |17 | > |rj;|[bf ]| for all
l€{1,....,k}, hence

;1% = Jrig; P05 = 105
since r;d = rg; and 7y is an integer. So with (10) we have

[bil? < 257 bR P < 287y ? < 2" max(fa 2 [aaf?, o ) (11)

for ¢ € {1,...,k} since k < n. Moreover since ¢t < k this inequality holds for all
i € {1,...,t}, which is what we wanted.

2 Factorization of polynomials

By the use of the LLL-Lattice reduction Algorithm we can now create an algorithm to
factor arbitrary polynomials f € Z[X].
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A first observation will be that the algorithm only works for polynomials with no multiple
roots. So in the final algorithm we will first have to check that property and modify
the polynomial such that it has no multiple roots. This will be done by the use of
resultants. As a second step we need to know all the irreducible factors of f mod p
where p is some prime. These factors can be determined with the use of Berlekamp’s
Algorithm.

We are going to show some properties of factors of f and f mod p that will allow us
to determine one irreducible factor hg by knowing one irreducible factor A mod p of f
mod p.

2.1 The setting

In this section we will have a fixed polynomial f € Z[X] of degree n, which will be the
polynomial we want to factor out. Moreover we have a polynomial h € Z[X] which is
an irreducible divisor of f if taken modulo some integer (for the exact definition of h
see below). Out of h we are going to find an irreducible factor hg of f by use of the
LLL-algorithm. So we are also going to need a lattice where every polynomial can be
represented by an element of that lattice.

We define h the following way: deg(h) =1 where | < n and h fulfills:

h is monic (i.e has leading coefficient one)

(b mod p*) divides (f mod p*) in (Z/p*Z)[X]

(h  mod p) is irreducible in (Z/pZ)[X]

(b mod p)? does not divide (f mod p) in (Z/pZ)[X]
Note: From (13) we get that (b mod p) divides (f mod p). We see this by considering

that if x divides y = (¢ mod p) divides (y mod p) and ((h mod p¥) mod p) = (h
mod p).

Proposition 2.1: Let f and h be as above. Then there is a polynomial hy € Z[X] such
that hg is an irreducible factor of f, (h mod p) divides (hg mod p) and hg is unique up
to sign.
Moreover if g divides f in Z[X], then the following are equivalent:

1. (h mod p) divides (¢ mod p) in (Z/pZ)[X]

2. (h mod p¥) divides (g mod p*) in (Z/p*Z)[X]

3. hg divides ¢ in Z[X]

17



Proof. The existance of such an hg follows from (14) and the note above. If h itself is a
divisor of f, then hg = h, and irreducibility follows form (14). If h does not divide f in
Z[X], then there is a irreducible factor hy such that (hg mod p) factors into (b mod p)
and (b mod p) in Z/pZ. From (15) we get uniqueness.

2 = 1: Obvious for the same reason as in the note above.
3 = 1: hg divides g = (hg mod p) divides (¢ mod p) = (h mod p) divides (¢ mod p)

1 = 3: Since (h mod p) divides (¢ mod p) and (h mod p) is no multiple divisor of
(f mod p) we have that (b mod p) does not divide (f/g mod p) in Z/pZ[X]. We have
that (h mod p) is a factor of (hy mod p), therefore also (hg mod p) does not divide
(f/g mod p) and hy does not divide f/g. Hence hg has to be a divisor of g.

3 = 2: From the fact that hy divides g we have that (hg mod p) divides (¢ mod p)
and hence (h mod p) divides (¢ mod p). From (14) it follows that (h mod p) and (f/g
mod p) have no common divisor in Z/pZ.

Recall that for two numbers a and b with ged(a, b) = 1 we have that there exists integers
A and p such that a\ 4+ bu = 1. We can apply this to (b mod p) and (f/g mod p), i.e.
there exists A and p € Z[X] such that:

(A mod p)(h mod p) + (u mod p)(f/g mod p)=1

= M +uf/g=1+vp

with v € Z[X].
By multiplying boths sides with ¢ and v(v) = 1 + pv + p?v? 4 ... + " 1/F~1 we get:

Agu(w)h + po(v) f = (1 = pryv(v)g = (1 - p*F)g
(Xh—{—ﬂf) mod p¥ = ¢ mod p*

Now since we know that (f mod p*) is divisible by (h mod p¥), the left hand side is
divisible by (h mod p*) then so is the right hand side, i.e. (¢ mod p*) is divisible by
(h mod p*) which is what we wanted. O

Note that if we choose g to equal hg, the third statement is true and by the equivalence
of the three stratements we get that (b mod p*) divides (hg mod p*).

With all the quantities defined as above, our goal is now to find a way to calculate
ho. This is where the lattice reduction algorithm comes into play.

Defining the lattice: In order to apply the results from the last preceding chapter we
need to introduce a lattice L representing all possible polynomials for hg. Let m be the
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dimension of the lattice. Clearly m > [ because the degree of hg is greater or equal to
the degree of h. An upper bound for m would be n—1 since a (not necessary irreducible)
factor of a polynomial has at most degree one less that the polynomial itself. We are
going to set the actual value of m later, but anyway we consider it fixed.

We set L to be the set of all polynomials in Z[X] with the property that if taken
modulo p then they are divisible by (h mod p) in Z/pZ. Recall that we can identify a
polynomial of degree m with a vector in R™*! (p(2) = ppa™ +pr_12™ 1 +. ..+ pg
(0,1 - Pm) 7).

A basis of L is given by: {p*X%0<i<I}U{hX7;0<j<m—1}.

One can see this by considering that (b mod p) has to divide each of these polynomials
modulo p. Obviously h divides hX7, hence (h mod p) divides (hX’ mod p) as well.
The polynomial in the first set are zero when taken modulo p and zero can be divided
by everything. Certainly also linear combinations of these basis elements then fulfil the
desired property. To see that these two sets indeed cover all the polynomials note that
there are [ + (m — [+ 1) = m + 1 elements in that basis of L and that they are linearly
independent.

Furthermore we can calculate the determinant of the lattice L:

pP 0 ... 0 h 0 ... 0
0 p* ... 0 h hy ... 0
0 0 pk hl—l hl_g
diL)=det| o o .. 0 1 hy ... = p"
0 0 1
0 0 0 0 1

We now going to show that hg can be calculated as the greatest common divisor of some
basis elements of a reduced basis of L. For this we first need three propositions.

Proposition 2.2: Let b € L such that p*' > |f|™|b|".
Then we have that hg divides b in Z[X] and therefore ged(f,b) # 1.

Proof. Define g := ged(f,b). We claim that (h mod p) divides (¢ mod p), hence with
proposition 1.2 it follows that hg divides g and hence hg divides b.

To prove the claim, assume in contrary that (A mod p) does not divide (¢ mod p).
Since (h mod p) is irreducible in Z/pZ we have that (h mod p) and (¢ mod p) are
relatively prime in Z/pZ and therefore

A+ pg=1+vp (16)
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for some A\, u, v € Z[X].
Let now deg(g) = e and deg(b) = ¢’ and define M to be the set:

M = {\f + pb; \, u € Z[X],deg(\) < € —e,deg(p) <n — e}

Obviously M is a subset of the set of all polynomial with integer coefficients and degree
lesser or equal to n+¢ —e—1,1i.e M C (Z+ZX +...4+ ZX"+t¢~¢"1). Furthermore we
can see that we can define a basis for M such that it is a lattice of rank n + ¢ — 2e by
a projection as follows:

Define M’ to be the projection of M on (ZX€ + ZX¢t! 4 ... 4 ZX"He'—e-1),

Now we can show that the kernel of this projection is trivial and therefore its image has
the same rank as M itself. Suppose (Af + ub) € M projects to 0 in M’. Then we have
that deg(Af + ub) < e. Since g divides f and b, it also divides (Af + pb) and we get
that (A\f 4+ ub) = 0 and hence \(f/g) = —u(b/g). From g = ged(f,b) it follows that
(f/g) and (b/g) has no common divisor and thus (f/g) has to divide u. Again with an
analysis of the degrees of (f/g) and p we see that p needs to be zero, and also A needs
to be zero, which proves that the kernel is trivial.

We then have that the projections of

(Xf;0<i<e —e}U{X/b;0<j<n—e}

on M’ are linearly independent and span M’. Furthermore M’ is a lattice of dimension
n + € — 2e and from the second point of Theorem 1.1 we get that:

e'—e—1 n—e—1

d’y < T 1xf1 T 1x70] = 1£19=<p=e < | £ (b < p* (17)
i=0 j=0

In order to derive a contradiction we are now going to observe that the set {# €
M;deg(h) < e+ 1} is a subset of p*Z[X].

We choose 0 to be an element of this set. By the definition of M, ¢ divides §. We can
multiply the equation (16) by (8/g) and v(v) = 14 pv + p?v? + ... + p*~1F=1 (see also
proof of Proposition 2.1) to receive

(A + 0) mod p* = (8/g) mod p*

With X = A\(#/g)v(v) and i = pov(v) and hence both in Z[X]. Since § € M, it is the
sum of a multiple of f and a multiple of b, and b € L (in particular (h mod p*) divides
b) we have that (h mod p¥) divides . So with the equality above we also have that
(h mod p*) divides (6/g) mod p*. By looking at the degrees, deg(h mod p*) =1 and
deg((0/g) mod p*) < e +1—e = [ we see that ((6/g) mod p¥) has to be zero, hence
also (6 mod p¥) has to be zero, which is what we wanted to show.

Now we choose a basis be, bet1, - - -, bprer—e—1 of M’ such that deg(b;) = i. Then the ma-

trix representing M’ has upper triangular form and we can calculate d(M’) very easily
by just multiplying the leading coefficients. By the observation above ({# € M;deg(0) <
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e+ 1} C p*Z[X]) we have that be,bey1,...,ber;—1 are all divisible by by p* and so are
the leading coefficients of be,bey1,...,beri—1. Hence we get that d(M') > pF'. Then
together with (17) this is a contradiction. O

By the next proposition we are going to have a result to check if deg(hg) really is smaller
than m, i.e. if hg € L. This will be useful in the algorithm to determine the value of
m. Clearly one could define m :=n — 1 to be sure that hg € L, but we can shorten the
running time of our algorithm if we can choose m as small as possible.

Proposition 2.3: Let by,bo,...,bn4+1 be a reduced basis for L and assume Pt >
g2 (2)"/% e,
Then we have:
Ky ppm ) ™
deg(ho) <m <= || < (p"/1f]")

Proof. We prove both directions:

e by < (pkl/|f|m)1/n = p* > |b1]"|f|™. Then we have that hg divides by in Z[X]
by proposition 2.2 and since deg(b;) < m we also have that deg(hg) < m.

”=": For this part we first need a Theorem of Landau and Mignotte (see [6, page 83]).

Theorem (Landau-Mignotte): Let f(z) € Z[X] with degree n and g(z) € Z[X] a
divisor of f(x) of degree m. Then we have that

9\ 1/2
o= (%)

(proof see below)
Since deg(hg) < m we have that hg € L and we can apply the fourth assertion of theorem
1.1 to by and hg to get |by| < 27/2|hg|. By the fact that hg divides f, deg(ho) =1 <m

and with Landau-Mignotte we have |hg| < (%;n) Y 2| f]- So we get:

|b1] < 2™/2|hy|
2m 1/2
< 2’”/2( ) |£]

m

n/2 m 1/n
_ mn/2 2m) nm
(2 () vz
< pkl/n/|f|m/n
1/n
= (»/111m)
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Proof. (of Landau-Mignotte)
For the proof we will need the equation |(z — a)h| = |a||(z — @ ')h| for a € C and
h € C[X]. To see this, let h:= Y"1 h;z’ and h_y = hy41 = 0 and calculate:

n+1
(z —a)h|* = Z\h _1 — ahy?

n+1
= Z(hifl —ah;)(hi—1 — ah;)
i=0
n+1
= Z(hi—l — ah;)(hi—1 — h;a)
=0
n+1
= Z (Jhi—1)* — ahshi—y — @hihi—1 + |ahs|?)
i—1
n+1
= Z (|hi| — ahshi—1 — @hshi—1 + |ahi—1|?)
i—1
n+1

= [a@hi—1 — hi]?
i=0

= |(@x — 1)h|?

= laf*|(z —a ")n|*

Where in the fifth line we used that Y770 |22 = S A1) + |hna]® — |hoa? =
Zn+1 h

i hie
Now let al, ...,ag be the set of roots of f inside the unit disk and as41, ..., a, the set
of roots of f outside the unit disk ordered in decreasing absolute value and f, be the
leading coefficient of f. Then we have:

n

P =1f]J—a) [] (@ a)P

i=1 i=s+1
S n
=lmay...al|fo [Je—a@ ") J] (z—a)P
=1 i=s+1

S n
= |a1a2...as|2|fn:n”—|—...—I—anchl H a¢|2
i= i=s+1
S n
> |¢11a2~-as|2|fnl_[CTi_1 H ail?
=1

1=s+1
n
= |fn H ai‘Q

i=s+1
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Let by, ..., by, be the roots of g(x) ordered such that b; > b1 for all i € [1,...,m — 1]
and g(z) = gm [[1n (@ — b)) = Y gix®. Let S; be the set of all subsets of by, ..., by
with m — ¢ elements. Then:

lgil =lgm > | T] b5 ]
S; b;eS;

Since there are (m"il) = (T) such subsets in S; and the absolute value of the product of

the elements of such a subset is at most |b; ... by,—i|, we get:

m
o < () b

We have that g divides f, so |b1...bm—i| < |as41 ... Gs+m—i| and

m m m g
’g’b|§gm<>|a5+1a8+m_l|§gm(>|as+lan|§<>|m||f|
' i i) 1/l

Furthermore we have that g, divides f,, because g divides f and therefore g,/ f, < 1

and we get
m
o < (7)1
i
Finally we have

o1 = (g w) " (; (T)2|f|2)1/2 - ()"

Where the last equality follows from the identity Y ;" (TZ")2 = (2m). O

m

Now we have the final proposition that tells us how to calculate hg:

Proposition 2.4: As in proposition 2.3, let by, bo, . . ., byy11 be a reduced basis for L and
pkt > gmn/2 (%T)np\f\m*". Let t be the greatest integer in {1,2,...,m + 1} such that
1
bel < (pF1 /1) ",
Then we have:
deg(ho) =m+1—tand ho = gcd(bl, bl, ey bt).

Proof. Let J be the set of all indices j such that |b;| < (p*'/|f|™) Y With proposition
2.2 we now have that hg divides all the b; for j € J. So we define hy := ged({b;;j € J})
and we will show later that hg = hy. Clearly hg divides h;.
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Moreover h; divides all the b; (j € J) and the degree of b; is smaller than m. So b; is
an element of the lattice L defined through the basis

{h1X%0 <i<m—deg(h1)}.

By definition the b;’s are linearly independent and there are at most m + 1 — deg(h1)
linearly independent elements in the lattice L1, so there are at most m + 1 — deg(h;)
elements in J.

Furthermore we have hoX® € L for i € {0,...,m —deg(ho)} and by the fourth assertion
of theorem 1.1 we get:

Ibi| < 27/% max{|z;];0 < i < m — deg(ho)} = 2™/2|hoX?| = 272 |hy|

By Landau-Mignotte we have |X¢hg| < (272”) 1/2\]‘\ for all 7 € {0,...,m — deg(hg)} , so

we get:
m/2 [ 2m 1/2 m\ /7
<22 (2) i< (1517

forall k € {1,...,m+ 1 —deg(ho)}.

Note that J was defined to be all the indices j such that exactly this inequality holds, so
{1,...,m+1—deg(ho)} C J. Since deg(hp) < deg(h1) and with the observation above
about the upper bound for the number of elements in J we get

#{1,...,m+1—deg(hy)} = m+1—deg(h1) < #{1,...,m+1—deg(ho)} < #J < m+1—deg(h;)

so we get that deg(hyg) = deg(h1) and J = {1,...,m + 1 — deg(hg)} and therefore
t:=m+1—deg(hg). From that last equality we receive that deg(hg) =m + 1 —t.
The only thing left to show is that hg is indeed h;. We already know that they have
the same degree and that hg divides h1, so we already know that they are equal up to a
factor in Z. We claim that this factor equals one, i.e. that hq is primitive and therefore
its content is one. Then hg = hq.

To see that the claim is true, choose some j € J arbitrary and let ¢; be the content of
bj. We know that hg divides all b; and hg is primitive, so hg also divides b;/c;. By the
definition of L we then have that b;/c; € L. But b; was defined to be an element of a basis
of L,socj=1forall j €{l,...,t} and hence also the content of h; = ged(by,...,b;) is
one, so hj is primitive. O

2.2 Determination of the setting

In order to use the above results for the factorization of polynomials, we need to find
all polynomials h such that (12), (13), (14) and (15) are true. Obviously also p and k
need to be specified. From (15) it follows that h? is not allowed to divide f, hence no
multiple roots are allowed. For this chapter we therefore assume f has no multiple root
and we going to consider the case of multiple roots later.
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We first specify the prime p. We will see, that the choice of p will fix (15).

Then, we focus on the factorization of (f mod p) into irreducible factors in Z/pZ. The
factors we will find will fulfil (12) and (14).

At the end, we set k such that we can modify h (but not (h mod p)) in a way that (13)
is fulfilled.

2.2.1 Specification of p

To specify p we first need to calculate the resultant of f and its first derivative. The
resultant of two polynomials P and ) is defined to be:

R(P7 Q) = H (CL’ - y)

(2,y); P(2)=0=Q(y)

Note that R(f, f') is only zero if f and f’ have one or more common roots, which would
then imply that f has multiple roots. Since we defined f to be squarefree R(f, f) # 0.

We can now define p to be the smallest prime not dividing R(f, f’). This is reason-
able because of the following arguments:

We know that R(f, f’) is up to sign equal to the product of the leading coefficient f,, and
the discriminant D(f) of f. So since R(f, f’) # (0 mod p), we also have f,D(f) # (0
mod p) and therefore f, # (0 mod p) and D(f) # (0 mod p).

We claim that there are no multiple roots in (f mod p).

We see this if we choose two roots of f arbitrary, say z; and x;. Because (z; — x;)
is a factor of D(f), we have that (z; — ;) # (0 mod p) and therefore the difference
of z; and z; is not a multiple of p. Hence (z; mod p) # (z; mod p) and ((z — z;)
mod p) # ((r — x;) mod p). But we would need (x — (z; mod p)) to be (x — (x;
mod p)) for some choice of z; and z; to have multiple roots in (f mod p), which proves
that there are none.

As mentioned before, this choice of p ensures that (15) holds for every h with (b mod p)
being a divisor of (f mod p).

2.2.2 Berlekamp’s algorithm

Our goal is now to find the complete factorization of (f mod p) into irreducible factors
in Z/pZ[X]. Assume that f(z) is already reduced modulo p and that f(z) is square free.
Moreover assume that there exists a polynomial f(z) = [[,ez/z(9(2z) — a) € Z/pZ[X]

such that f(z) divides f(z). Then every irreducible factor of f(x) also is a irreducible
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factor of f(z) and we get:

f(z) = ged(f(2), f()) = ged | f(2), [] (@) =a)| = ]] ecd(f(z),(g9(z)-a)

a€ZL/pZ a€Z/pZ

Clearly not every such ged will be an irreducible factor so we need to find enough (in
an appropriate matter) polynomials g(z) to factor out f(x) completely into irreducible
factors.

First note that [[,cp(X —a) = XP — X for a finite field F, so for f(z) we get
Haez/pz(g(a:)—a) = g(x)P—g(x). Since f(z) is divisible by f(x) we get that (g(z)P—g(x))
is divisible by f(x) and therefore:

9(x)" = g(x) mod f(x). (18)

So we can restrict the search of g(z) to the set with this property. This set is also called
the Berlekamp subalgebra and it has some nice property that will help us find g(x).
We now define the matrix Q) = {kal}ogk,lgn} with entries qx; given by the equation

P = (gn,iz™ + Qo120 q0,;) mod f(z) forie|0,...,n]

Claim: g(z) fulfills (18) if and only if g(z) is a eigenvector of @ with eigenvalue one.

Proof. Note first (X +Y)P = XP+YP in Z/pZ as a consequence of the binomial theorem.
Moreover b7 = b for b € Z/pZ. We see this with the equation [],cz/,7(b—a) = (b —b).
Then obviously if b € Z/pZ the left hand side is zero and so is the right hand side when
reduced modulo p, hence (b? — b) =0 in Z/pZ.

Assume now that g(z) is an eigenvector of Q, i.e if g(x) = gnz" + gn_12" 1 + ... + go,
then:

g(@) = gir" =Y D aiby | ' =D b Y aya’
=0 =0 \ j=0 7=0 =0
= g(z) =) bj(2’" mod f(z)) = (¥!27") mod f(x)
j=1 Jj=0
p

bja? mod f(z) = g(x)? mod f(x)

n
J=0

O]

With this result we are now able to describe an algorithm that factors the polynomial
f(z) in Z/pZ[X):

26



e First we need to calculate Q. This can be done by calculating 2?? mod f(x) for
alli e [0,1,...,n].

e Then we need to calculate all the eigenvectors g;(z) for j € [1,...,rank(Q — Id)].
(Since there are exactly rank(Q) — Id) linearly independent vectors satisfying the
equation (Q — Id)g = 0)

e For all gj(x) and all a € Z/pZ we now have to calculate ged(f(z), (g;(x) — a)),
which can be done by the Euclidean Algorithm.
Note that as soon as the algorithm finds rank(Q — Id) different factors, it can stop.

e Repeat this procedure for all factors of f(z) we found so far, untill all factors are
irreducible.

2.2.3 Hensel’s Lift

It remains to specify the integer k. We need to specify k for every factor of (h mod p)
seperately. So we choose one of them and call it (h mod p).

First note that if we set £ = 1, (12), (13), (14) and (15) are true for the prime p we
specified earlier and for the factor (h mod p) calculated by the Berlekamp’s Algorithm.
In order to be able to use the results form the beginning, we need the equation p* >
2mn/2 (27;”) n/2|f|m+" (see Proposition 2.3) to hold. Recall that m has to be greater than
deg(hg), otherwise hg is not in the lattice we defined and we cannot find hy with the
results above. Since in the worst case deg(hg) = n — 1 we set m := n — 1 in the above
inequality and define k to be the least integer such that the inequality holds, i.e:

2n — 2\ "/
k= mln{k‘ S Z;pkl > 2n(n—1)/2 < o ) ‘f‘Zn—l}

Now (13) is not necessary true, therefore we need to modify h such that (h mod p)
does not change but (13) becomes true. This modification can be performed by Hensel’s
lift.

Theorem 2.5 (Hensel’s Lemma): Let f be a monic polynomial in Z[X] and (h mod p*~!)
a irreducible factor of (f mod p‘~!) for an integer i > 2. Then there exists a polyno-
mial ~ (uniquely up to mod p?) such that (A mod p’) divides (f mod p’) and (h
mod p'~!) = (h mod pi~1).

Proof. Since (h mod p'~') divides (f mod p'~') we have that there exists an polyno-
mial g(z) € Z[X] such that (f mod p'~! = (h mod p'~')(g mod p’~!). Moreover (h
mod p’~1) has to be equal to (b mod p*~'), so h = h + up'~! for some u € Z[X] with
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deg(u) < deg(h).
Since (h mod p*) has to divide (f mod p') we have that there existst a § € Z[X] such
that (f mod p’) = (h mod p*)(§g mod p*). Set § = g+ vp*! for an appropriate choice
of v € Z[X] with deg(v) < deg(g). Then we have:
f modp' = (h+up ") (g+vp™") mod p'
=f mod p' = (hg + (ug + vh)p"~* + uvp*~2) mod p’
=f/p"' mod p' = (hg/p"' + (ug +vh)) mod p'

= (fp;_?g) mod p' = (ug +vh) mod p’

We had f = hg mod p'~!, so f = hg + cp'~! where ¢ € Z, therefore f —hg = cp'~! and
(f —hg)/p"~" = c. Then:

(¢ mod p') mod p= ((ug 4+ vh) mod pi) mod p
=c¢ mod p = (ug+vh) mod p

and hence there exists unique u and v so also k and §. O

Now we can apply Hensel’s Lift repeatedly for i = 2, ..., k to get the desired modification
of h mod p.

2.3 The algorithm

We are now able to describe an algorithm that factors a given polynomial f(z) € Z[X]
into irreducible factors in Z[X].

For the algorithm we need f(z) to be primitive, but note that if it is not, then we can
easily calculate the greatest common divisor of its coefficients and take fy(x) to be f(x)
divided through the greatest common divisor to get a primitive polynomial.

As already mentioned we also need polynomials with no multiple factors, so this is the
first thing the algorithm has to check for. We can do this with the calculation of the
resultant of f and its first derivative. As already said, f has multiple roots if and only
if R(f, f') is zero.

Assume R(f, f') is indeed zero. then we will calculate g := ged(f, f’), which is then the
set of multiple factors of f. Set fo(z) := f(x)/g(x), then obviously fo(x) has no multiple
factors. After factoring fo(z) it will then be easy to find the factorization of g(x) since
g(z) only has factors that appear in the factorization of fy(z) and there are only finitely
many factors in fo(z).

Now that we have a polynomial with no multiple factors, we determine the prime num-
ber p and the set F' := {h mod p; (h mod p) is a irreducible factor of (f mod p)} with
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Berlekamp’s algorithm.

In order to factor out f(z) we now assume in each step that f = f; fo where f; is already
factored out in irreducible factors and we let F5 be the set of all irreducible factors of
f2 mod p. Then we choose one of the elements of F, (say h), calculate k as above and
modify h as in Hensel’s Lift.

We can now calculate kg with the result from Proposition 2.4. First we need to define m.
For this we just take m := n—1 because then we secured that hg is an element of the lat-
tice. So we obtain a reduced basis for the lattice {p* X% 0 <4 < [JU{hX7;0 < j <m—1}
by the use of the LLL-Algorithm, and then calculate hg as in proposition 24.

We now set fl = fiho and fg := fa/ho and repeat the whole procedure for fg until we
get fo = 1. Note that we only have to calculate the irreducible factors of fo mod p once,
and not for every single loop. We can just delete all the factors that divide hy mod p.

Note that we can choose m smaller such that the running time of the algorithm be-
comes shorter. This works the following way: Let u be such that [ < L’;lj. Choose
m; = | =% for 0 < i < u and check if deg(hg) < m; by the result of proposition 2.3
for every value m;. As soon as deg(hg) < m; for some j, calculate hy as in proposition
2.4. So for every choice of m; we first determine a reduced basis by, b, ..., byny1 by the
LLL-Algorithm and then check if deg(ho) < m; by checking if by < (p*/|f|™) T
indeed the inequality holds, we can calculate hg by the equation hy = ged(by, ..., bj), if
not, continue with the next value m;,1. Since m goes up to n — 1 it is guaranteed that

we will find hg sooner or later. (if not then hg = f)

Algorithm:
L or:=R(f,f);
2. g:=1;

3.if r=0

e~

g = ged(f, f); f:=f/g; v := R(f, [");
5. end
6. p := smallest prime number such that p does not divide R(f, f’);

7. F:={h mod p;(h mod p) irreducible factor of (f mod p)} (by Berlekamp’s Al-
gorithm)
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8. fi=1 for= [

9. while fy # 1

10.  h := some arbitrary element of F;

11.  [:=deg(h);

12.  if [ =mn, hg = f; break

13. k= min{k € N;phl > pn=Dn/2(20-2)"/| pp2n-1y,

14.  Modify h by means of Hensel’s Lift;

15. m:=n-—1;

16.  Apply LLL-Algorithm to {p*X%0 <4 <} U{hX7;0<j<m —1}
17.  j := greatest integer such that |b;| < (pkl/|f|m)1/n (see proposition 2.4)
18.  hg:=gcd(by,..., b))

19.  f1:= fiho; f2 := fa/ho;

20. Hp:={h mod p;(h mod p) divides (hy mod p)};

21. F:=F\ Hy;

22. end

2. g1 =1 92:=g;

24. while g2 # 1

25.  Check all factors of f if they divide go. Let f divide go.

26.  g1:=g1f; 92:= g2/ [;

27. end

If we use the observation above that we can optimize the running time of the algorithm
by some smaller value of m, we have to replace line 16 to 19 by the following algorithm:
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1. w:=max{u € N;l < (n —1)/2"};
2. while m < (n—1)
3. m:=[(n—-1)/2"[;

4. Apply LLL-Algorithm to {p*X%0 <i <} U{hX7;0<j<m—1}

5. if |bi| < (P f) "

6. ho = ng(bl,...,bj);
7. m:i=n;
8 end

10. end

3 Integer relation

Another application of the LLL-Algorithm is to search for integer relations.

Definition 3.1: Let a1, g, ..., oy, be real numbers. Then the vector m = (mq1,ma, ..., m,)" €
Z" is called an integer relation for aq, s, ..., ay if Z?:l m;oy; = 0.

Our goal is now to find integer relation to a given set of real numbers or show that
there are no integer relation.

In order to apply the LLL-Algorithm we clearly need to define a lattice first.

Since a computer cannot calculate with real numbers we need to approximate oy, ag, ..., ap,
by rationals a7, ...,a, € Q. This approximation requires to fulfill certain properties to
really get useful results with the reduction algorithm.

We define a basis of the lattice to be the vectors:

1 0 0
0 1
U1 = , U2 = 0 5 y Un = 0
0 E 1
cal cai CQp
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where ¢ is an appropriate large constant.

Then we apply the reduction algorithm to these vectors. Now b; is of the form mjv; +
.o+ mpu, with my, ..., m, being integers.

By theorem 1.1 (fourth assertion) we have |b;| < 2(*=1/2|z| for every z € L, so

n
b1 = |m? +m5 + ...+ mp + (¢ mi)?|

i=1
n
= m]> + (> miaw)?
i=1
§ 2n—1 |l’|2
hence we have an upper bound for |b1|?>. We can choose ¢ and aj, s, ..., q, in such a
way, that if we have that |b;| is below a certain value we know that the last entry of b;
(>°% miag) is so small that we can conclude it is zero and hence my, ..., m, a integer
relation. On the other hand also the converse is true, i.e. if |by] is not below a certain
bound then m is no integer relation for aq, s, ..., a, (for the exact bounds and the

choice of ¢ and aj, ag, ..., oy see [7]).

4 BBP-Type formulae

Peter Borwein and Simon Plouffe observed in 1995, that with the well-known identity
log2 =737, ﬁ one can calculate an arbitrary digit of log 2 in base 2 without knowing
the proceeding digits. So they started searching for other mathematical constants with
the same properties.

This search basically is a search for integer relations. They performed this task by us-
ing the PSLQ-Algorithm written by David H. Bailey and Helaman Ferguson in 1992.
The PSLQ-Algorithm is not a lattice-reduction algorithm, but one can perform integer
relation search faster than with the LLL-Algorithm.

In 1997, Bailey, Borwein and Plouffe finally introduced an algorithm to compute the
d’th hexadecimal digit of 7 using a identity for 7 they found by the PSLQ-Algorithm.
The fact that the digits of 7 were normal misled people into disbelieving the existence
of such an algorithm. In that sense, this result was pioneering, since now we have a
formula to calculate these digits without knowing the preceeding ones.

Although the new algorithm is not really faster than the preceeding algorithms calcu-
lating all the digits up to the desired one, it’s still very useful since one can execute it
on a normal personal computer, and its implementation is easier than that of all the
preceeding algorithms.

However, we don’t know yet whether there is a series for 7 or log2 in base 10 or some
power of 10 or any other base than 16 or a power of 2 respectively. Calculations done
so far tell us that there are no such formulas for coefficients in certain ranges, but still
there is the possibility that such formulas exist.
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In this chapter we will first show the formula for 7 in hexadecimal basis and a proof
for that formula. Then some other BBP-Type formulae and finally the algorithm to
calculate the d’th digit of an arbitrary BBP-Type formula.

4.1 A formula for 7

Claim: The following identity holds:

=1 4 2 1 1
_ , _ _ _ 19
T ;161 <8i+1 8i+4 8i+5 8i+6> (19)

Note: There are several other formulas for 7 of this type. But since the formula written
above was the first one to be announced and hence the most popular one, we are just
going to prove this one. The proofs of the others are completely similar.

Moreover we have the equation:

(e 9]

1 8 8 4 8 2 2 1
0=2_ 15 |~ - 20
;162< Bi+1 Bi+2 843 8i+4 Bi+5 Bit6 8i+7> (20)

and it turned out that all the known formulas for 7 can be written as formula (19) plus
a multiple of (20).

Preparation for the proof: First note:

k—1

T o0 o0
g = Pt g 2% = g 1 fr0<z <1
1—=x 5 -

=0 1=0

(Geometric series)
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hence

S ()

" 1
G ; 167(8i + k)

We can interchange integral and limit in the third equality because of the monotone
convergence theorem.

Proof. From the calculation above,we have the following equality:

1/V2 Q3 4 Q.5
(19) = / 44/2 — 8z 4\ 2x 8x da
0

1— a8
y:=\/§z:/14—293—y4—y5dy
0 1- %
1
_ /0 - _126yy3 +146y —dy (21)

Where in the second equality we used the substitution y := /2 and in the third equality
we cancelled the common factor (y* 4 2y +4y? + 4y +4) in nominator and denominator
of the fraction in the integral.

It is now easy to check with some Computer Algebra System (like Maple), that the
integral (21) equals 7. O
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4.2 BBP-Type formulae in general

There were other such sums discovered being equal to some transcendental constant
other than .
In general we are searching for sums of the type

where « is a constant and p and ¢ are polynomials (deg(p) < deg(q)) with integer
coefficients . The numerical basis b is a positive integer. Formulae of this type are
called BBP-type formulae. However there is no general algorithm to find a certain
combination of p, ¢ and b such that the sum equals some constant. These combinations
are currently discovered via a combination of guessing and searching with the PSLQ
integer relation algorithm.

Some examples of BBP-type formulae for other constants:

1. The simplest formulae of this type were well-known even before BBP

o0

9 1
log(75) = _Z 107k

=1

Both of them can easily be checked by expanding log(1 + 1) and log(1 — &) as

10
Taylor series.

2. Less obvious are the identities:

[e.e]

W2_gzi16_24_8_6+1
S84 160 \(6i+1)2 (6i+2)2  (6i+3)2  (6i+4)2 (60 +5)°

1 /-16 16 40 14 10 1

=0

4.3 Computing the i-th digit

In the next section, we are going to show how one can actually compute the i-th digit
of a constant with a BBP-Type formulae. We will start with the an easy case, log 2.
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In all of these computations one has to compute a term of the form r = b mod k.
So we will first describe an algorithm to do this calculation. Basically, we use the
binary expansion of n, and that one can compute b" very fast by successive squaring
and multiplication.

1. t:= 2 for i € N such that t <n < 2t

2. r:=bmod k

4. t:=1t/2
5. whilet > 1

6. r:=r2modk

7. ifn>t
8. r:=br mod k
9. n=n-—t

10. end

1. t:=t/2

12. end

With this algorithm one can calculate the expression r = "™ mod k very efficient on a
computer. Moreover this algorithm works on a normal personal computer since all the
numbers the algorithm calculates do not exceed k? in size.

4.3.1 Computing binary digits of log 2

As we already know: log2 =572, kﬁ

One can calculate the (d 4 1)’th digit in base 2 as follows:

We first calculate 2¢log 2 such that the (d+ 1)’th digit is now at the first position of the
decimal part. Note that (2?log2)mod 1 is the fractional part of 2¢log 2.
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We have:

(2%10g2) mod 1 = Zm mod 1
k=1

d 00 1
= (Zk mod 1 + Z 2k_d/~€> mod 1

k=1 k=d+1

d d—k 00
2 mod k 1
:(§k> mod 1+ ) M) mod 1

k=d+1

Where only the first summation is greater than one (in decimal system) and the "mod
k” is justified because we are only interested in the fractional part.

The first summation consists of d terms, and each of them can be calculated on a
ordinary personal computer with the algorithm above and floating point arithmetic for
the division. For the second summation we only need a few terms to be evaluated since
they quickly become sufficiently small.

By this procedure one only has to look at the first digit of the number the computer
computed and we have the desired digit.

Note: The result we get by that procedure is a decimal number. One can calculate the
binary expansion of this in the following way:

The result of the algorithm is a number of the form 0.nynsns... where n; = 0,1, ..., 9.
The first digit of that number in the base 2 is the integer part of 2x0.n1n9ng3... the second
number is the integer part of 2 x ((2 * 0.nyngns...)mod 1) and the j’th number is the
integer part of 2 ((2/71%0.n1n2n3...)mod 1). Clearly at some point the number is going
to be incorrect since the computer can only calculate decimal numbers up to a certain
accuracy as soon as the number gets too small. But the first few digits of the calculation
are always correct and since we can repeat this procedure for the d 4+ 2’th digit, it is not
even necessary that the computer calculates more than one digit correct.

4.3.2 Computing hexadecimal digits of 7

We now apply the same procedure to the formula of .
We have:

o0
1 4 2 1 1
== s - - - 5 23
m ;162(81'4—1 8+4 8i+5 8i+6) (23)

and by multiplying with 16% and consider only the fractional part, we get:

(1697) mod 1 = (4(16%S; mod 1)—2(16%S; mod 1)—(16%S5 mod 1)—(16%Ss mod 1))mod 1
(24)
with

oo

1
S = kzo 165 (8k + 1)
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and

; 4, 164k > 1
16°5; dl= d1 —_— dl1
(16%S;) mo kZOSk‘Jri mo +kzd;116kd(8k:+i) mo

d d—k . 0o
16 mod (8k + 1) 1
= d1 —_— d1
<<kz 8kt ) mod L+ k;m 165—4(3k + i)) mo

One does this for all (169S;)mod 1,i = 1,4,5,6 and combine these as in (5). Then add
or subtract integers such that the result is between 0 and 1.

Again, we get a decimal number. To translate that into a hexadecimal we use the same
strategy as in the case of the binary, i.e. we repeatedly multiply by 16, omit the fractional
part and then continue with (16 % 0.nyn2ns...)mod 1.

4.3.3 The general case

Consider we have a constant defined by a series of the form:

= 1
o= kzzo brq(k)

where b is a positive constant also called the base and ¢(k) a polynomial with integer
coefficients. Again the (d 4 1)’th digit in base b expansion can be obtained by looking
at the fractional part of b%S.

> pd—k

b%S mod 1 = —— mod 1
kzo q(k

B 9. b=k mod q(k) > 1
= <kZOQ(k’) mod 1+ kzdilb’“’Q(k) mod 1

Which can be calculated with the above algorithm and floating-point arithmetic on a
common personal computer.

38



References

1]

S. Aland, Finzelne Ziffern von Pi nach Bailey, Borwein & Plouffe, (2005),
available at http://math-www.uni-paderborn.de/~aggathen/vorl/2004ws/sem/
sebastian-aland.pdf

D. Bailey, The BBP Algorithm for Pi, (2006), available at http://crd.1lbl.gov/
~dhbailey/dhbpapers/bbp-alg.pdf

D. Bailey, P. Borwein, S. Plouffe On the Rapid Computation of Various Polylogarith-
mic Constants, Mathematics of Computation 66, pp. 903-913 (1992)

E.R. Berlekamp, Factoring Polynomials QOver Finite Fields, Bell Systems Technical
Journal 46, pp. 1853-1859 (1967)

J.W.S. Cassels, An Intorduction to the Geometry of Numbers, Springer (1971)

A M.Cohen, H. Cuypers, H. Sterk (Eds.), Some Tapas of Computer Algebra, Springer
pp. 66-90 (1999)

B. Just, Integer Relations Among Algebraic Numbers, Lecture Notes in Computer
Sience 379, pp. 314-320 (1989)

A K. Lenstra, HW. Lenstra Jr., L. Lovasz, Factoring Polynomials with Rational
Coefficients, Mathematische Annalen 261, pp. 515-534 (1982)

39



Lattices in Cryptography Lecture 3 Instructor: Chris Peikert
Georgia Tech, Fall 2013 LLL, Coppersmith Scribe: Yan Wang

1 The LLL Algorithm

Recall the definition of an LLL-reduced lattice basis.
Definition 1.1. A lattice basis B is LLL-reduced if the following two conditions are met:

1. Forevery i < j, we have |y; j| < % (Such a basis is said to be “sized reduced.”)
2. Forevery 1 <i < n, we have %HEZHQ < ||,ui7i+1gi + b (This is the “Lovész condition.”)

The LLL algorithm works as follows: given an integral input basis B € Z™*"™ (the integrality condition is
without loss of generality), do the following:

1. Compute B, the Gram-Schmidt orthogonalized vectors of B.
2. Let B « SizeReduce(B).
(This algorithm, defined below, ensures that the basis is size reduced, and does not change £(B) or ]§.)

3. If there exists 1 < ¢ < n for which the Lovész condition is violated, i.e., %HBZ 12 > [|piis1bi+bisa|)?
then swap b; and b; 1 and go back to Step 1. Otherwise, output B.

The idea behind the SizeReduce(B) subroutine is, in the Gram-Schmidt decomposition B = B-U,to
shift the entries in the upper triangle of U by integers (via unimodular transformations), so that they lie in
[—%, %) Because changing an entry of U may affect the ones above it (but not below it) in the same column,
we must make the changes upward in each column. Formally, the algorithm works as follows:

e Foreach j = 2,...,n (in any order) and i = j — 1 down to 1, let b; < b; — |p; ;| - b;, where
wij = (bj,b;)/(b;, b;) is the (4, j)th entry of the upper-unitriangular matrix in the Gram-Schmidt
decomposition of the current basis B. (Note that previous iterations can change this matrix.)

In matrix form, in the (4, j)th iteration we are letting B <— B - W, where W is the upper unitriangular
matrix with just one potentially nonzero off-diagonal entry — | 1, ;], at position (i, 5).

We make a few important observations about the SizeReduce algorithm. First, it clearly runs in time poly-
nomial in the bit length of the input basis B. Second, even though B may change, the Gram-Schmidt vectors
B are preserved throughout, because the only changes to B are via multiplication by upper-unitriangular
matrices, i.e., if B = B - U is the Gram-Schmidt decomposition prior to some iteration, then B = B- (UW)
is the decomposition afterward, since UW is upper unitriangular. Finally, the (3, j)th iteration ensures that
the value (b;, b;)/(b;, b;) € [—%, %) (by definition of y; ;), and following the iteration, that value never
changes, because by, is orthogonal to l~)z for all &£ < . (This is why it important that we loop from i = j — 1
down to 1; b, may not be orthogonal to b; for £ > ¢.) Putting these observation together, we have the
following lemma on the correctness of SizeReduce.

Lemma 1.2. Given an integral basis B € Z™*"™ with Gram-Schmidt decomposition B =
SizeReduce algorithm outputs a basis B’ of L = L(B) having Gram-Schmidt decomposition B’
where every entry u; ; fori < j is in [—%, %)

. g the
=B .U,
We now state the main theorem about the LLL algorithm.

Theorem 1.3. Given an integral basis B € 7Z"*", the LLL algorithm outputs an LLL-reduced basis of
L = L(B) in time poly(n, |B|), where |B| denotes the bit length of the input basis.
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The remainder of this section is dedicated to an (almost complete) proof of this theorem. First, it is clear
that the LLL algorithm, if it ever terminates, is correct: all the operations on the input basis preserve the
lattice it generates, and the algorithms terminates only when the basis is LLL-reduced.

We next prove that the number of iterations is O(NN) for some N = poly(n, |B|). This uses a clever
“potential argument,” which assigns a value to all the intermediate bases produced by the algorithm. We show
three facts: that the potential starts out no larger than 2%, that it never drops below 1, and that each iteration
of the algorithm decreases the potential by a factor of at least \/m > 1. This implies that the number of
iterations is at most log Ji7 2N = O(N).

The potential function is defined as follows: for a basis B = (by,...,by,),let £L; = L(by,...,b;) for
each 1 < ¢ < n. The potential is the product of these lattices’ determinants:

n

=1 i=1

=1

Claim 1.4. The potential of the initial input basis B is at most 2 where N = poly(n, |B|), and every

intermediate basis the algorithm produces has potential at least 1.

2
Proof. The potential of the original basis B is clearly bounded by [}, [|b;||" < max;|[b;||"" = 2P (B,
Every intermediate basis is integral and has positive integer determinant, hence so do the lattices £; associated
with that basis. Therefore, the potential of that basis is at least 1. 0

We next analyze how the potential changes when we perform a swap in Step 3.

Claim 1.5. Suppose b; and b; 1 are swapped in Step 3, and let the resulting basis be denoted B'. Then
b’ =b; forall j ¢ {i,i+ 1}, and b; = 1; +1b; + bt 1.

Proof. For j < 1, the vector B; is unaffected by the swap, because by definition it is the component of
b’ = b; orthogonal to span(by, ..., b’ ;) = span(by,...,b;_1). Similarly, for j > i + 1, the vector E;
is the component of b, = b; orthogonal to span(by, ..., b’_;) = span(b1,...,b;_1), where the equality
holds because both b; and b; ;1 are in the span. Finally, B; is the component of b} = b, orthogonal to
span(bf,...,b}_;) = span(by,...,b;_1), which is x; ;+1b; + b;+1 by construction. O

Lemma 1.6. Suppose b; and b; 1 are swapped in Step 3, and let the resulting basis be denoted B'. Then
(B')/®(B) < /3/4

Proof. Let L;= ﬁ(bl, e, by, bz) and ﬁ; = ﬁ(bl, ..., b, bi+1). By Claim 1.5, we have

(B’ ; by - [[bi ii+1b; + by ii+1b; + by
(B) _ det(£) _ [Bull- [BooallsssrBi + Bisal| _ nsioaBi+Binll _
®(B)  det(Ly) [~ [bi—1[]s by

where the last inequality follows from the Lovéasz condition. O

This completes the proof that the number of iterations is O(N') = poly(n, |B|). Moreover, each iteration
of the algorithm is polynomial time in the bit length of the current basis. However, this does not necessarily
guarantee that the LLL algorithm is polynomial time overall, since the bit length of the intermediate bases
could increase with each iteration. (For example, if the bit length doubled in each iteration, then by the end



the bit length would be exponential in n.) To it suffices to show that the sizes of all intermediate bases are
polynomial in the size of the original basis. This turns out to be the case, due to the size-reduction step. The
proof of this fact is somewhat grungy and uninteresting, though, so we won’t cover it.

We conclude with some final remarks about the LLL algorithm. The factor 3/4 in the Lovasz condition
is just for convenience of analysis. We can use any constant between 1/4 and 1, which yields a tradeoff
between the final approximation factor and the number of iterations, but these will still remain exponential
(in n) and polynomial, respectively. By choosing the factor very close to 1, we can obtain an approximation
factor of (2/1/3)™ in polynomial time, but we cannot do any better using LLL. We can get slightly better
approximation factors of 20 (n(loglog n)?)/ (log”) (still in polynomial time) using Schnorr’s generalization of
LLL, where the analogue of the Lovész condition deals with blocks of £ > 2 consecutive vectors.

2 Coppersmith’s Method

One nice application of LLL is a technique of Coppersmith that finds all small roots of a polynomial modulo
a given number /N (even when the factorization of N is unknown). This technique has been a very powerful
tool in cryptanalysis, as we will see next time.

Theorem 2.1. There is an efficient algorithm that, given any monic, degree-d integer polynomial f(x) € Z[x]
and an integer N, outputs all integers xq such that |zo| < B = N'/% and f(z¢) = 0 mod N.

We make a few important remarks about the various components of this theorem:

1. When N is prime, i.e., Zy is a finite field, there are efficient algorithms that output all roots of a
given degree-d polynomial f(x) modulo N, of which there are at most d. Similarly, there are efficient
algorithm that factor polynomials over the rationals (or integers). Therefore, the fact that the theorem
handles a composite modulus NV is a distinguishing feature.

2. For composite N, the number of roots of f(z) modulo N can be nearly exponential in the bit length
of N, even for quadratic f(x). For example, if N is the product of k distinct primes, then any
square modulo NN has exactly 2* distinct square roots. (This follows from the Chinese Remainder
Theorem, since there are two square roots modulo each prime divisor of N.) Since k can be as large as
~ log N/loglog N, the number of roots can be nearly exponential in log V. Therefore, in general no
efficient algorithm can output all roots of f(x) modulo N; the restriction to small roots in the theorem
statement circumvents this problem. !

3. The size restriction appears necessary for another reason: knowing two square roots r; # +r9 of a
square modulo a composite N reveals a nontrivial factor of N, as ged(r1 — 72, N). So even if the
number of roots is small, finding them all is still at least as hard as factoring. However, it is easy
to show that a square cannot have more than one “small” square root, of magnitude at most N1/2,
Therefore, the theorem does appear to yield an efficient factoring algorithm.”

To highlight the heart of the method, in the remainder of the section we prove the theorem for a weaker
bound of B ~ N?2/(d(d+1)) ~ (we prove the bound B ~ N 1/d pext time.) The strategy is to find another
nonzero polynomial h(z) = Y h;x* € Z[x] such that:

'Indeed, the theorem implies that the number of small roots is always polynomially bounded. Surprisingly, this fact did not
appear to be known before Coppersmith’s result!
“However, it can be used to factor when some partial information about a factor is known.



1. every root of f(x) modulo N is also a root of h(x), and

2. the polynomial h(Bx) is “short,” i.e., |h; B!| < N/(deg(h) + 1) for all 4.

For any such h(x), and for any x¢ such that |z¢| < B, we have |h;z§| < |h;B!| < N/(deg(h) + 1), which
implies that |h(zg)| < N. Hence, for every small root x( (such that |z9| < B) of f(x) modulo N, we have
that h(z) = 0 over the integers (not modulo anything). To find the small roots of f(z) modulo N, we can
therefore factor h(x) over the integers, and test whether each of its (small) roots is a root of f(x) modulo N.

We now give an efficient algorithm to find such an h(z). The basic idea is that adding integer multiples of
the polynomials g;(z) = Nz € Z[z] to f(z) certainly preserves the roots of f modulo N. So we construct
a lattice whose basis corresponds to the coefficient vectors of the polynomials g;(Bz) and f(Bx), find a
short nonzero vector in this lattice, and interpret it as the polynomial h(Bz). The lattice basis is

N agp
BN a1 B
B2N ay B?

Bd—lN ad—le_l
Bd

Note that the lattice dimension is d + 1, and that det(B) = BU+1)/2. N By running the LLL algorithm
on this basis, we obtain a 2%/2-approximation v to a shortest vector in L(B). By Minkowski’s bound,

||V|| < 2d/2 /d—|— 1. Bd/2 . Nd/(d+1) =cy- Bd/2 . Nl—l/(d-l—l),

where ¢g = 2%2/d + 1 depends only on the degree d.

Define h(Bzx) to be the polynomial whose coefficients are given by v, i.e., h(x) = vg + (vi/B)x + - -+
(vg/B*)z?. Notice that h(z) € Z[X], because B’ divides v; for each i by construction of the lattice basis,
and that every root of f(x) modulo N is also a root of h(z) by construction. Finally, we see that

|hiB'| = |vi] < |lv]| < PR

if we take B < N%/44+1) /¢! where ¢/, = (cq(d + 1))?/? = O(1) is bounded by a small constant. This
concludes the proof.



MATHEMATICS OF OPERATIONS RESEARCH
Vol 8, No. 4, November 1983
Printed 1n U.S.A.

INTEGER PROGRAMMING WITH A FIXED NUMBER
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Universiteit van Amsterdam

It is shown that the integer linear programming problem with a fixed number of variables is
polynomially solvable. The proof depends on methods from geometry of numbers.

The integer linear programming problem is formulated as follows. Let n and m be
positive integers, 4 an m X n-matrix with integral coefficients, and b € 7™. The
question is to decide whether there exists a vector x & 7" satisfying the system of m
inequalities 4x < b. No algorithm for the solution of this problem is known which has
a running time that is bounded by a polynomial function of the length of the data. This
length may, for our purposes, be defined to be n - m - log(a + 2), where a denotes the
maximum of the absolute values of the coefficients of 4 and b. Indeed, no such
polynomial algorithm is likely to exist, since the problem in question is NP-complete [3],
{12].

In this paper we consider the integer linear programming problem with a fixed value
of n. In the case n =1 it is trivial to design a polynomial algorithm for the solution of
the problem. For »n =2, Hirschberg and Wong [5] and Kannan [6] have given
polynomial algorithms in special cases. A complete treatment of the case n =2 was
given by Scarf [10]. It was conjectured [5], [10] that for any fixed value of n there exists
a polynomial algorithm for the solution of the integer linear programming problem. In
the present paper we prove this conjecture by exhibiting such an algorithm. The degree
of the polynomial by which the running time of our algorithm can be bounded is an
exponential function of n.

Our algorithm is described in §1. Using tools from geometry of numbers [1] we show
that the problem can be transformed into an equivalent one having the following
additional property: either the existence of a vector x € Z" satisfying Ax < b is
obvious; or it is known that the last coordinate of any such x belongs to an interval
whose length iz bounded by a constant only depending on n. In the latter case, the
problem is reduced to a bounded number of lower dimensional problems.

If in the original problem each coordinate of x is required to be in {0,1}, no
transformation of the problem is needed to achieve the condition just stated. This
suggests that in this case our algorithm is equivalent to complete enumeration. We
remark that the {0, 1} linear programming problem is NP-complete.

In the general case we need two auxiliary algorithms for the construction of the
required transformation. The first of these, which “remodels™ the convex set {x € R":
Ax < b}, is given in §2. L. Lovdsz observed that my original algorithm for this could
be made polynomial even for varying n, by employing the polynomial solvability of
the linear programming problem [8], [4]. I am indebted to Lovasz for permission to
describe the improved algorithm in §2.
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The second auxiliary algorithm is a reduction process for n-dimensional lattices.
Such an algorithm, also due to Lovasz, appeared n [9, §1], and a brief sketch 1s given
i §3 of the present paper. This algorithm 1s polynomial even for varyng n. It
supersedes the much mferior algorithm that was described in an earher version of this
paper.

In §4 we prove, following a suggestion of P van Emde Boas, that the integer linear
programming problem with a fixed value of m 1s also polynomually solvable This i1s an
mmmediate consequence of our main result.

§5 1s devoted to the muxed integer lLnear programmung problem. Combining our
methods with Khachiyan’s results {8], [4] we show that this problem s polynomially
solvable for any tixed value of the number of mteger variables This generalizes both
our main 1esult and Khachiyan’s theorem

The algorithms presented 1n this paper were designed for theoretical purposes only,
and there are several modifications that might improve their practical performance. It
1s to be expected that the practical value of our algorithms 1s restricted to small values
of n.

It 15 a pleasure to acknowledge my indebtedness to P. van Emde Boas, not only for
permission to mclude §4, but also for suggesting the problem solved in this paper and
for several inspiring and stimulating discussions.

1. Description of the algorithm. Let K denote the closed convex set
K={xeR" 4x < b}

The question to be decided 1s whether K N Z" = @ 1In the description of the algorithm
that follows, we make the following two simplifying assumptions about K:

(1) K 1s bounded;

(2) K has positive volume.

The first assumption 1s justified by the following result, which is obtamed by
combiming a theorem of Von zur Gathen and Sieveking [12] with Hadamard’s
determinant 1nequality (cf. (6) below)  the set K N Z" 1s nonempty 1f and only if
K N Z" contains a vector whose coefficients are bounded by (n 4+ 1)n"/%a” in absolute
value, where a 15 as 1n the introduction. Adding these inequalities to the system makes
K bounded.

For the justification of condition (2) we refer to §2. Under the assumptions (1) and
(2), §2 describes how to construct a nonsmgular endomorphism ¢ of the vector space
R”, such that 7K has a “spherical” appearance. More precisely, let | | denote the
Euclidean length 1n R”, and put

B(p,z)={x€R".[x—p|<z} for pER', zER,,,

the closed ball with center p and radius z. With this notation, the 7 constructed will
satisfy

B(p,1)C 7K C B(p,R) (3)
for some p € 7K, with r and R satisfying
= < ¢, (4)

where ¢, 1s a constant only depending on n.
Let such a 7 be fixed, and put L = 72", This 1s a lattice in R", 1 e, there exists a basis
by,by, ..b, of R such that

L-——ilb,:{}n:mlb, mlEZ(1<l<n)} (5)

=1 =1



540 H W LENSTRA JR

We can take, for example, b, = 7(e), with e, denoting the :th standard basis vector of
R* We call b,,b,, .., b, a basis for L 1f (5) holds. If b,b5, .., b, 1s another basis
for L, then b/=73"_,mb for some n X n-matrix M = (m,)i<,,<n With 1ntegral
coefficients and det(M)= x1. It follows that the positive real number |det(b,,
b,, ., b,)| (the b, being written as column vectors) only depends on L, and not on
the choice of the basis; 1t 1s called the determunant of L, notation: d(L). We can
mterpret d(L) as the volume of the parallelepiped >7_,[0,1)-b,, where [0,1) =
{z €R-0 <z <1}. This interpretation leads to the nequality of Hadamard

d(L) < I:]}]b,l. (6)

The equality sign holds if and only if the basis b,,b,, ..., b, 1s orthogonal. Tt 15 a
classical theorem that I has a basis b;,b,, . .., b, that 1s nearly orthogonal i the
sense that the following mequality holds:

ﬁllb’j < ¢y d(L) (7)

where ¢, 1s a constant only depending on n, cf. [1, Chapter VIII], [11]. In §3 we shall
mdicate a reduction process, 1.e., an algorithm that changes a given basis for L mnto one
satisfying (7).

LrMMmA.  Let by, b,, ..., b, be any basis for L. Then
VxeR" :3ye L:|x—yP<i(bsf+ - +15,]). (8)

Proor We use induction on #, the case n=1 (or n=0) being obvious. Let
L' =S"2)7b,, this 15 a latice i the (n — 1)-dimensional hyperplane H = 3"/ Rb,.
Denote by 4 the distance of b, to H. Clearly we have

h < |b,|. 9)

Now to prove (8), let x € R”. We can find m € Z such that the distance of x ~ mb, to
H1s <1h. Wnte x — mb, = x, + x,, with x; € H and x, perpendicular to H. Then
|x,] <1h <1|b,|. By the mduction hypothesis there exists y; € L such that |x, — y |?
<L(bP+ o+ 1b,_ ). Smce x, is orthogonazl to y, the elemeznty =g/, + mb, of L
now satisfies |x — y[* = |x; =y, + | %o <GBy + - - + b, o[ + [B,[%). This proves
the lemma.

Notice that the proof gives an effective construction of the element y € L that 1s

asserted to exist.
If we number the b, such that |b,| = max{|b,|: 1 < 1 < n}, then (8) imples

VxR Ay € L :|x — y| <ivn|b,l. (10)

Now assume that by, b,, . . ., b, 15 a reduced basis for L 1n the sense that (7) holds,
and let L’ and # have the same meaning as in the proof of the lemma. It 1s easily seen
that

d(L)y=h-d(L"). (11)
From (7), (11) and (6), applied to L', we get

n n—1
[[Ibl< e, d(Ly=c,-h-d(L)y<c,-h- Iﬂ]}lhl

1=
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and therefore, with (9):
c2_] 'bn! <h< 'bn' (12)

After these preparations we describe the procedure by which we decide whether
K NZ"=@ o1, equvalently, 7K N L = @. We assume that b,,b,, . .., b, 1s a basis for
L for which (7) holds, numbered such that |b,| = max{|b].1 < : < n}.

Applymng (10) with x = p we find a vector y € L with |p — y| <1yn|b,|. If y € 7K
then 7K' N L # @, and we are done. Suppose therefore that y & 7K. Then y & B(p, 1),
by (3), so |p— y| > r, and this implies that r <1yn|b,|. Let now H, L', h have the
same meaning as 1n the proof of the lemma. We have

L=L+17b,CH+1b,= \J (H+ kb,).
kez

Hence L is contained m the union of countably many parallel hyperplanes, which
have successive distances i from each other. We are only interested 1n those hyper-
planes that have a nonempty intersection with 7K, these have, by (3), also a nonempty
intersection with B(p, R). Suppose that precisely ¢ of the hyperplanes # + kb, inter-
sect B(p, R). Then we have cleatly £ — 1 <2R/h. By (4) and (12) we have

2R 2re, < epn |b,), h> ey b,

50 t — 1 < ¢,¢,¥n . Hence the number of values for k that have to be considered 15
bounded by a constant only depending on n Which values of & need be considered
can easily be deduced from a representation of p as a hnear combination of b,

by, ..., b,

If we fix the value of k then we restrict attention to those x = 37_, y,b, for which
y, = k; and this leads to an integer programming pioblem with » — | vanables
Vis Vs -« s Yu_1- 1t 18 straightforward to show that the length of the data of this new

problem 1s bounded by a polynomial function of the length of the original data, 1f the
directions of §2 have been followed for the construction of 7.

Each of the lower dimensional problems s treated recursively. The case of dimen-
sion 1 =1 (or even n = 0) may serve as a basis for the recursion. This finishes our
description of the algorithm.,

We observe that in the case that K N Z" 15 nonempty, our algorithm actually
produces an element x € K N Z".

2. The convex set K. Let K= {x €R": Ax < b}, and assume that K 1s bounded.
In this section we describe an algorithm that can be used to verify that K satisfies
condition (2) of §1; to reduce the number of variables if that condition 1s found not to
be satisfied; and to find the map 7 used m §1. The algorithm is better than what 1s
strictly needed in §1, mn the sense that 1t is polynomial even for varying n. I am
mdebted to L. Lovasz for pointing out to me how this can be achieved.

In the first stage of the algorithm one attempts to construct vertices vg, vy, . . . , v, of
K whose convex hull 1s an n-simplex of positive volume. By maximizing an arbitrary
hnear function on K, employmg Khachiyan’s algorithm [8], [4], one finds a vertex v, of

K, unless K 15 empty. Suppose, mductively, that vertices vy, v,, . . . , 1, of K have been
found for which v, — vy, . . ., v, — vy are hnearly independent, with d < n. Then we
can construct # —~ d linearly independent linear functions f, .. , f,_, on R” such that

the d-dimensional subspace V' = Ej’L]R(v, ~ vg) 1S given by

V={x€ER" . fi(x)=" =f,_,(x)=0}.
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Again employing Khachiyan’s algorithm, we maximize each of the linear functions
fio=J1sfor = Jor o s foeas —fi_q o1 K, until a vertex v,,, of K is found for which
S{(0a1) 7 f(vp) for some j € {1,2, ..., n — d}. If this occurs, then v, — vy, . . ., v; —
vy, Vg4 — Uy are linearly independent, and the inductive step of the construction is
completed. If, on the other hand, no such v, is found after each of the 2(n — d)
functions fy, —f,, ..., f,_ 4 —f,—s has been maximized, then we must have f(x)
= f(vg) for all x € K and all j=1,2,...,n— d, and therefore K C vo+ V. In this
case we reduce the problem to an integer programming problem with only d variables,
as follows.

Choose, forj = 1,2, ..., d, a nonzero scalar multiple W, of v, — vy such that w, 7%,
and denote by W the (n X d)-matrix whose columns are the w,. Notice that W has
rank d. Employing the Hermite normal form algorithm of Kannan and Bachem [7] we
can find, in polynomial time, an integral n X n-matrix U with det(U) = ®1 such that

UW=(k))c,cn, l<y<d

with
k=0 if i>j, (13)
k,#0 for 1<i<d.

Denote by u,,u,, . .., u, the columns of the integral matrix U ~'. These form a basis

of R”, and also of the lattice £": 7" = 377_, Zu,. The subspace V' of R” is generated by
the columns of W = U~"-(k,), so (13) implies that

d
V=3 Ru,. (14)
J=1

Define ry,rp, ..., 1, ERbY v = 37_ 1,15 s0 (r)/_; = Uv,.

Now suppose that x € K N Z". Then x = 3, ), with y, €7, and x € K implies
that x — vy € V. By (14) this means that y, = r, for d <j < n. So if at least one of
Fys1s -+ - ¥, is nOt an integer, then K N Z" = @. Suppose, therefore, that r, ,, ..., 7,
are all integral. Substituting x = Ej‘;, Y+ X a4y, in our original system Ax < b
we then see that the problem is equivalent to an integer programming problem with d

variables y,, y,, . . ., yy, as required. The vertices vy, vy, . . ., v, of K give rise to d + 1
vertices vy, v}, . .., v, of the convex set in R? belonging to the new problem, and
0,0}, - - ., 0y span a d-dimensional simplex of positive volume. This means that for

the new, d-dimensional problem the first stage of the algorithm that we are describing
can be bypassed.

To conclude the first stage of the algorithm, we may now suppose that for each
d=0,1,...,n~— 1 the construction of v, is successful. Then after n steps we have
n + 1 vertices vy, vy, - - . , v, of K for which v, — vy, . . ., v, — v, are linearly indepen-
dent. The n-simplex spanned by vy, v, ..., v, is contained in K, and its volume
equals |det M|/n! where M is the matrix with column vectors v, ~ vy, .. ., v, — 0.
This is positive, so condition (2) of §1 is satisfied.

In the second stage of the algorithm we construct the coordinate transformation 7
needed in §1. To this end we first try to find a simplex of “large” volume in K. This is
done by an iterative application of the following procedure, starting from the simplex

spanned by vg, vy, ..., v, The volume of that simplex is denoted by vol(v,,
Ops « « o5 )
Construct n + 1 linear functions gy, g1, ..., g,: R”—> R such that

g, is constant on {vj :0< j<n,j#i),

15
g(v)#g(y) for 0<j<nj+#i ()
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fori=0,1, ..., n Maximizing the functions g,, — g0, g/, ~ &> -+ - » &> — &, on K by
Khachiyan’s algorithm we can decide whether there exist i € {0,1,...,n} and a
vertex x of K such that

l8.(x —v)| >3|g(v, — v)

for j # i (the choice of j is immaterial, by (15)).
Suppose that such a pair i, x is found. Then we replace v, by x. This replacement
enlarges vol(vg, v, . . ., v,) by a factor |g(x — v)|/|g,(v, — v)| (for j # i), which is
more than 3/2. We now return to the beginning of the procedure (“Construct n + 1
linear functions . .. ).

In every iteration step vol(vg, vy, - . . , v,) increases by a factor > 3/2. On the other
hand, this volume is bounded by the volume of K. Hence after a polynomially
bounded number of iterations we reach a situation in which the above procedure
discovers that

lgz(x - Uj)l <%lg,(0, - Dj)l (16)

for all x€ K and all 4,j€{0,1,...,n} with i#j. In that case we let 7 be a
nonsingular endomorphism of R” with the property that 7(vg), 7(v)), . . ., 7(v,) span a
regular n-simplex. With p=(n + D! 07'(1)) we now claim that B(p, ryCcrk
C B(p,R) for certain positive real numbers r, R satisfying R/r < 2n%? ie., that
conditions (3) and (4) of §1 are satisfied, with ¢, = 213/2. This finishes the description

of our algorithm.
To prove our claim, we write z, = 7(v,), for 0 < j < n; we write § for the regular
n-simplex spanned by zg,z2,, ..., Z,, and we define, for ¢ > 1:

T,={x€ER":vol(zp, ...,z 1, %24y,...,2,)
<c-vol(zg, ..., z,) foralli € (0,1,...,n}}.

Condition (16) (for all x € K and all i # j) means precisely that 7K C T ,. Further, it
is clear that § C 7K. Our claim now follows from the following lemma.

LeMMA. Let ¢ > 1. With the above noiation we have B(p,r)C S C T, C B(p,R) for
two positive real numbers r, R satisfying

( R )2 e’ 4+ (c2 + l)n7 if niseven,
42— Ze+ DYn’+ (¢ —2c)n  if nisodd.

Proor. Using a similarity transformation we can identify R” with the hyperplane
{(r)y-0 € Rr*: S=or, =1} in R"*' such that z,,z,, ..., z, is the standard basis of
R Then we have

- 1 1
‘D~n+lj§=:021 <n+1’n+1""’n+1)’
and

Tc:{(rjj 0 e R"+! . |rl<cfor0 ]én,and Zorj:l}'
J=

By a straightforward analysis one proves that 7, is the convex hull of the set of points
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obtained by permuting the coordinates of the point

m n
zo—czzj+c > z, if n=2m,
Jj=1 J=m+1
m n
(l—c)zo—czlzl+c >z if n=2m+1
e

J=m+1

It follows that T, C B(p, R), where R is the distance of p to the above point:

. ne? + - Z_ l if niseven,
R2=
(n+ 1)c? = 2c + ;1—_’:_——]— if nisodd.

Further, B(p,r) C S, where r is the distance of p to (0,1/n,1/n, ..., 1/n):
2 1
n(n+1)"
This proves the lemma.

ReMARKS. (a) To the construction of 7 in the above algorithm one might raise the
objection that v need not be given by a matrix with rational coefficients. Indeed, for
n=2,4,56,10,... there exists no regular n-simplex all of whose vertices have
rational coordinates. This objection can be answered in several ways. One might
replace the regular simplex by a rational approximation of it, or indeed by any fixed
n-simplex with rational vertices and positive volume, at the cost of getting a larger
value for ¢;. Alternatively, one might embed R” in R"*!, as was done in the proof of
the lemma. Finally, it can be argued that it is not necessary that the matrix M,
defining 7 be rational, but only the symmetric matrix M," M, defining the quadratic
form (7x,7x); and this can easily be achieved in the above construction of 7.

(b) The proof that the algorithm described in this section is polynomial, even for
varying n, is entirely straightforward. We indicate the main points. The construction of
fis -« - fa_q in the first stage, and of gy, g, . . ., g, in the second stage, can be done
by Gaussian elimination, which is well known to be a polynomial algorithm, cf. [2, §7].
It follows that Khachiyan’s algorithm 1s only applied to problems whose lengths are
bounded by a polynomial function of the length of the original data. The same applies
to the d-dimensional integer programming problem constructed in the first stage.
Further details are left to the reader.

(c) We discuss to which extent the value 2n°/“ for ¢, in (4) is best possible.
Replacing the coefficient 3/2 in (16) by other constants ¢ > 1 we find, using the
lemma, that for any fixed € > 0 we can take

1/2
)

3/2

(1+ €)(n* +2n° if niseven,
C] =

(1+ e)(n3 +n? = n)l/2 if nisodd.

If one is satisfied with an algorithm that is only polynomial for fixed »n one can also
take € = 0 in this formula. To achieve this, one uses a list of all vertices of K to find the
simplex of maximal volume inside K, and transforms this simplex into a regular one.
The following result shows that there is still room for improvement: if K C R” is any
closed convex set satisfying (1) and (2) then there exists a nonsingular endomorphism r
of R" such that (3) and (4) hold with ¢, = n. To prove this, one chooses an ellipsoid E
inside K with maximal volume, and one chooses r such that 7F is a sphere. The case
that K is a simplex shows that the value ¢, = n is best possible. For fixed n and € > 0
there is a polynomial algorithm that achieves ¢; = (1 + €)n. I do not know how well
the best possible value ¢; = n can be approximated by an algorithm that is polynomial
for varying n.
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(d) The algorithm described in this section applies equally well to any class 2%~ of
compact convex bodies in R” for which there exists a polynomial algorithm that
maximizes linear functions on members K of . This remark will play an important
role in §5. In particular, we can take for ¢~ a “solvable” class of convex bodies, in the
terminology of [4, §§1 and 3]. The same remark can be made for the algorithm
presented in §1.

3. The reduction process. Let n be a positive integer, and let b,,b,, ..., b, ER"
be n linearly independent vectors. Put L =>"_,7Zb,; this is a lattice in R”. In this
section we indicate an algorithm that transforms the basis b,,b,, . . ., b, for L into one
satisfying (7) with ¢, = 27"~ /% The algorithm is taken from [9, §1], to which we refer
for a more detailed description.

We recall the Gram-Schmidt orthogonalization process. The vectors b* (1 < i < n)
and the real numbers y,, (1 < j <i < n) are inductively defined by

i—1
b 151 mbfs = (b, 57)/ (5. 5),

where (, ) denotes the ordinary inner product on R”. Notice that b* is the projection
of b, on the orthogonal complement of 32} Rb, and that 3)/2} Rb, = 3\ Rb*, for
1 < i< n ltfollows that bF,b%, ..., b 1s an orthogonal basis of R”. The following
result is taken from [9].

PROPOSITION.  Suppose that
Lo | <4 (17)
for 1 < j<i<n,and
|BF + 1B 2 3157 P (18)
for 1 < i< n. Then
[T 5] < 27 =D7%a( L),

1=
i.e., (7) holds with ¢, = 2""=D/4,
Proor. See [9, Proposition 1.6].

To explain condition (18) we remark that the vectors b* + p,_ b* | and b* | are the
projections of b, and b,_, on the orthogonal complement of 2};2 Rb,. Hence if (18)

does not hold for some i, then it does hold for the basis obtained from b,,b,, ..., b,
by interchanging b, | and b,.
To change a given basis b;,b,, ..., b, for L into one satisfying (7) we may now

iteratively apply the following transformations.

First transformation: select i, 1 <i < n, such that (18) does not hold, and inter-
change b,_, and b,;

Second transformation: select i, j, 1 < j <i < n, such that (17) does not hold, and
replace b, by b, — rb,, where r is the integer nearest to y, .

It can be shown that, independently of the order in which these transformations are
applied and independently of the choices of /, and of / and j, that are made, this leads
after a finite number of steps to a basis b,,b,, . . ., b, satisfying (17) and (18). Then (7)
is satisfied as well, by the proposition. This finishes our sketch of the algorithm.

A particularly efficient strategy for choosing which transformation to apply, and for
which 7, or i and j, is described in [9, (1.15)]. If we assume the b, to have integer
coordinates then the resulting algorithm is polynomial, even for varying n, by [9,
Proposition 1.26]. It follows that the same result is true if we allow the coordinates of
the b, to be rational.
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ReMARKS. (a) The algorithm sketched above can be used to find the shortest
nonzero vector in L, in the following way. Suppose that b,,b,, . .., b, is a basis for L
satisfying (7), and let x € L. Then we can write x = >"_, m b, with m, € Z, and from
Cramer’s rule it is easy to derive that |m| < ¢, |x|/|b), for 1 < i< a If x is the
shortest nonzero vector in L then |x| < |5 for all i, so |m,| < ¢,. So by searching the
set {SV_ mb,m €Z, {m|< ¢, for 1 <i< n} we can find the shortest nonzero
vector in L in polynomial time, for fixed n. For variable » this problem is likely to be
NP-hard.

(b) We discuss to which extent our value for ¢, is best possible. The above algorithm
yields ¢, =2"""D/4 We indicate an algorithm that leads to a much better value for
¢,; but the algorithm is only polynomial for fixed n.

In (a) we showed how to find the shortest nonzero vector in L by a search
procedure. By an analogous but somewhat more complicated search procedure we can
determine the successive minima |bi|,|by|, . . ., |b,| of L (see [1, Chapter VIII] for the
definition). Here b1, b5, . . ., b, € L are linearly independent, and by [1, Chapter VIII,
Theorem I, p. 205 and Chapter IV, Theorem VII, p. 120] they satisfy

IL 1611 < 3 d(L)

where vy, denotes Hermite’s constant [1, §1X.7, p. 247], for which it is known that

1 I
— 4 < L ~— + —> 0.
Foo o() <v,/n p—” o(1) for n—>
Using a slight improvement of [, Chapter V, Lemma 8, p. 135] we can change

by, b5, ..., b, into a basis by, by, ..., b, for L satisfying
ib,”i<max{l,%\/f}-|b,’1 (1<i<n)
S0

n
TLiBrI< 2742 (2n)'/* 422 d(L)y  (forn > 3).
1=1
We conclude that, for fixed n, the basis b,,b,, ..., b, produced by the algorithm
indicated in this section can be used to find, in polynomial time, a new basis satisfying
(7), but now with ¢, = (¢ - n)". Here ¢ denotes some absolute positive constant.
On the other hand, the definition of v, implies that there exists an n-dimensional
lattice L such that |x| > v)/2- d(L)"/" for all x € L, x % 0, cf. [1, Chapter I, Lemma 4,
p. 21]. Any basis b,,b,, . .., b, for such a lattice clearly satisfies

n

[118)> v/ d(L).

Pk
Therefore the best possible value for ¢, satisfies ¢, > (¢’ - n)"/? for some absolute
positive constant ¢’.

4. A fixed number of constraints. In this section we show that the integer linear
programming problem with a fixed value of m is polynomially solvable. It was noted
by P. van Emde Boas that this is an immediate consequence of our main result.

Let n,m,4,b be as in the introduction. We have to decide whether there exists
x € 7" for which Ax < b. Applying the algorithms of Kannan and Bachem [7] we can
find an (n X n)-matrix U with integral coefficients and determinant = 1 such that the
matrix AU = (a,’j)K,gm.,g]@ satisfies

a,=0 for j>i. (19)
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Putting y = U ~'x we see that the existence of x € Z" with Ax < b is equivalent to the
existence of y € Z" with (AU)y < b. If n > m, then the coordinates y,,,,, ..., p, of y
do not occur in these inequalities, since (19) implies that a,=0 for j > m. We
conclude that the original problem can be reduced to a problem with only min{#n,m}
variables. The latter problem is, for fixed m, polynomially solvable, by the main result
of this paper.

5. Mixed integer linear programming. The mixed integer linear programming prob-
lem is formulated as follows. Let k and m be positive integers, and »n an integer
satisfying 0 < n < k. Let further 4 be an m X k-matrix with integral coefficients, and
b € 7™. The question is to decide whether there exists a vector x = (x[, x5, . . ., X))
with

N

x, €L for 1<i

N

n,
x, €R for n+1<i<k

satisfying the system of m inequalities Ax < b.

In this section we indicate an algorithm for the solution of this problem that is
polynomial for any fixed value of », the number of integer variables. This generalizes
both the result of §1 (n = k) and the result of Khachiyan [8], [4] (n = 0).

Let

K'={xeR:Ax < b),
K={(x,%3,...,%)ER": thereexist x, ., ..., x €R
such that (x;,x,, ..., x) € K'}.

The question is whether K N 7" = @.

Making use of the arguments of Von zur Gathen and Sieveking [12] we may again
assume that K’, and hence K, is bounded. Next we apply the algorithm of §2 to the
compact convex set K C R". To see that this can be done it suffices to show that we
can maximize linear functions on K, see §2, Remark (d). But maximizing linear
functions on K is equivalent to maximizing, on K’, linear functions that depend only
on the first n coordinates x,x,, ..., x,; and this can be done by Khachiyan’s
algorithm.

The rest of the algorithm proceeds as before. At a certain point in the algorithm we
have to decide whether a given vecter y € R" belongs to 7K. This can be done by
solving a linear programming problera with k — » variables. This finishes the descrip-
tion of the algorithm.

As in §4 it can be proved that the mixed integer linear programming problem is also
polynomially solvable if the nuriber of inequalities that involve one or more integer
variables is fixed; or, more gererally, if the rank of the matrix formed by the first »
columns of A is bounded.
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Improved algorithms for
integer programming and
related lattice problems
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ABSTRACT:
The integer programming problem is: Given
mXn and mXl matrices A and b respectively of

integers, find whether, there exists an all inte-
ger nXl vector x satisfying the m inequalities
Ax<b. In settling an important open problem,
Lenstra (1981) showed in an elegant way that
when n, the number of dimensions is fixed, there
is a polynomial-time algorithm to solve this
problem, His algorithm achieves a running-time

of O(cn *p(length of data)) where p is some
polynomial and ¢ a constant independent of n.
Since such an algorithm has several important
applications - cryptography (Shamir (1982)),
diophantine approximations (Lagarias (1982)),
coding theory (Conway and Sloane (1982), etc.
it is importaht to improve the running time.

We present an algorithm here that has a running

time of O(ngnL log L) where L is the length of
the input. Whereas Lenstra's algorithm in the
worst case reduces an n-dimensional problem to

<" - (n-1) dimensional problems, our algorithm
effectively reduces an n-dimensional problem
to at most polynomially many (n-1) dimensional
problems, thus achieving our time bound. The
algorithm we propose, first finds a "more
orthogonal” basis for a lattice (see the next
section for the definition of a lattice) than
those of Lenstra (1981) and Lenst:rgl,l Lenstra
and Lovasz (1982), but in time O(n poly
(length of input)). It then uses an enume-
ration technique to solve integer program-

ming and related problems. The proof that only

1
O(nd n) possibilities need to be tried for this
enumeration is based on Minkowski (1911)'s
fundamental theorem on the geometry of numbers.
The integer programming algorithm depends on
algorithms we devise for finding in a similar

time bound, the shortest nonzero vector in a
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lattice and the closest point of a lattice to a
point in space. These then yield better algo-~
rithms than known before for simultaneous dio-
phantine approximations (Lagarias (1982)).

While this paper presents mainly the theo-
retical improvements that can be made in the
algorithms, we discuss in section 6 why in
practice our estimates of running time may be
overly pessimistic,

The last part of the paper discusses some
complexity issues. It is an interesting open
problem as to whether finding the Euclidean
shortest non-zero vector of a given lattice is
NP-hard., (See Lenstra (198l1), Van Emde Boas (1981)
and Lagarias (1982)).

We show first that this problem is polynomial-
time Cook (Turing) reducible to the language:
SHORT={(K;b1,b2,...,bn)]bl,...,bn are integer n

vectors and the Euclidean short-
est, non-zero vector of the form

n

.Z Zibi’ z; integers has length
i=1

at most k}

Using this reduction, we show that given a sub-
routine for SHORT which works in time T~SHORT (%)
-2 length of data, we can find in time

(p{(n) *T-SHORT ()) (p-a poly) a good approximation
to the closest vector of a point to a lattice.

We conjecture that the latter problem is NP-Hard
(see also conjecture 2 of Lagarias (1982)). The
proof of this conjecture would say that SHORT is
Cook NP-complete and our reduction is essentially
a polynomial-time Turing rather than a Karp (many
one) reduction. To my knowledge, no other lan-
guage is known to be NP-complete under Turing
reductions which is not trivially also many-one
NP complete.

Notagig&
n-
® -

zt .

Euclidean n space

set of n-vectors with integer components.

For vectors a and b {(a,b) is the dot
product of a and b.



for a vector a la[ = la[z = Euclidean length of a
Iall = L;-length of a = g|ail

L(b,,b,,...,b ) = lattice generated by véctors b ’
172 n . X
b,;eecs,b_ which are possibly de-
2 n Y

pendent.

If bl’b2""'bn is a list of vectors, we denote

by bi(j) the projection of bi onto the orthogonal
1

>.>
for i=j=2. bi(l) is defined to be equal to bi for
all i.

complement of the space spanned by bl'bz""'bj-

In each section, equations, inequalities,
etc, are numbered successively beginning with 1.
In the section in which it appears we refer to
equation (10) - say simply as (10). But in other
sections, we precede it with the section number.
Thus (2.10) appearing in section 4 refers to
(10) of section 2.

Section 1. Basic definitions and techniques.

, n
A lattice in R~ (Euclidean n-space) is a
set L generated by finitely many vectors

k

{f z.,b, |z, are all
= T4

If bl,...,bk are also independent,

i
bl’b2""'bk of R, L =

integers}.

then we call them a basis of the lattice. It is
a classical theorem that every lattice has a
basis (see Cassels (1959) or Lekherkerker (1969)-
these two books on geometry of numbers cover

the subject extensively). If bl'b2""’bn are
the basis of a lattice L in Hin, then volume of
the parallel piped enclosed by bl’bz""’bn is

called the determinant of the lattice L =
L(bl’bZ""’bn) denoted d(L). This determinant
is Invariant under change of basis. It equals,
of course, the determinant of the matrix which
has b ,b2,...,b for its columns. The lat-
tice generated gy bl’bZ""'bn remains in-

variant under the so called unimodular ope-
rations:

(1) Adding an integer multiple of one of the
generators to another

(2) Multiplying a generator by -~-1.

Conversely it can be shown that if bl'b2""'bn
and gl,bz,...,gn are two bases for the same lat-

tice L, then we can get one from the other by a
sequence of unimodular operations. Thus the
number of elements in any basis of a lattice

L is the same, this is called the dimension of
the lattice.

We will have occasion to use the following
fact often.

Proposition 1: Suppose v is an element of a
lattice L, v#0 and Av¢gL for 0<A<l. Then there
is a basis of the lattice containing v.
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Proof:  (See for example Lekherkerker (1969) or
Cassels (1959)). Let n be the dimension of the
lattice. The proof will be by induction on n.
For n=1, it can be checked that any lattice must
be of the form {zb_.: 2z an integer} and thus the
only v that satisfies the hypo;hesis of ,the prop-

osition is v=bl. Now assume n=2, Let L be the

projection of L perpendicular to v, i.e.,

L=1{p- KETAA N

) beL}

(The guantity inside the parenthesis is the pro-
jection of b onto the hyperplane through the
origin perpepdicular to v). It is not difficult
to see that L has dimension (n-1), let b2,

A
b3""’gn be a basis of ﬁ. Let b2,b3,...,b bhe

n

the vectors in L whose projections are gz,
A

63""'bn' We wish to assert that {v,bz,...,bn}

is a basis of L. Clearly v,b2,...,bn are in L.

It suffices to show that for any w in L, w can

n
be ‘expressed as I .z,b, with v=b.,, z,€Z .. Let
s i7i 1 i
i=1
A A
Let w = w - ixhzl~v. w is in L and hence equals
(v,v)
n N n
Lzb,, z,62 . Consider (w- L z,b,}) =w'. w'
. ivi i s ivi
i=2 i=2

must be a scaler multiple of v - say = Av, If

A is not an integer, then since wl=kv and v

are in L, (A-|A]|) v is in L contradicting the

hypothesis., Hence A is an integer and w =
n

.Zzzibi + Av puts w in L(v,b2,...,bn). Note
i=

that the proof of the proposition actually proves
the following stronger result:

Proposition 2: The following "algorithm"”
yields a basis bl’b2""’bn of the lattice L.

Procedure input lattice L of dimension n. b0+0.

do for i =1 to n by 1:

Pick any v#0 such that (v,b.)=0 for j=0,

X J
1,...,i-1.
Find the smallegt positive A such that Av is
in the lattice L obtained by projecting L
onto the orthogonal complement of span

(TP Y
Find w in L such that w projects onto Av in
L.
L, W
b1+1

end
return {bl'bZ""’bn}

Of course this is not quite an algorithm - we do
not know how the input is specified etc. etc. But
a more rigorous version of this algorithm will be
given later - in section 2 - it is called SELECT-
BASIS.

We are often interested in this paper in pro-
jecting and "unprojecting" vectors. Projecting
a vector b onto a hyperplane through the origin

£l
with v as normal yields the vector b%%ié%
?

To project a vector onto a subspace, we just find



an orthogonal basis of the complement of the sub-
space and project perpendicular to each basis
vector successively. We also use one other ob-
servation. Suppose bl’bZ""’bn form a basis of

a lattice L and L is obtained by projecting L per-
pendicular to bl' Then for any vector w in L,

there is a unique vector w in L such that
|0y o) | | oyb | .

5 " 5 ) and w is w's pro-
To see this, let w'

(w,bi)eE}
jection perpendicular to bl'

be some vector of L such that w' projects onto w.
Then {w'+z bt z € Z } is contained in L and

also has this property. Clearly a unique element
of this set satisfies the dot product condition
above. The set does not depend on the choice of
w' and hence our assertion follows.

One other theorem we need from Geometry of
Numbers is the fundamental theorem of Minkowski
(1911) .

Theorem l. (Minkowski): If L is an n-dimensional
lattice, the length (in Euclidean norm*) of a
shortest nonzero vector of L is at most

Jata@n /o,

This is a direct consequence of the more
usual statement of Minkowski's theorem. See
Lekerkerker (1969), Theorem 1, page 120 for ex-
ample.

Preamble to the paper: Lenstra (1981) showed
that given vectors bl’bz”"’bn with integer co-

A~
ordinates in K!n, one could find a basis bl’
~

by,...,b_ for the lattice L(b ,b,,...,b ) = L
such that

2
(1) (n"/4)

noo .

I b, | =a(e2

: i

i=1

He called bases satisfying the above condition

"reduced" bases. His algorithm for doing this
. 3

takes time 0(cn * polynomial (length of data)).

Later Lenstra, Lenstra and Lovasz (1982) gave

a polynomial time algorithm for finding a re-

~ ~ A
duced basis b.,b,,...,b_ and in addition to (1)
172 n

showed for their reduced basis that

< 2
2n/ . length of a shortest

nonzero vector of L

We will use the Lenstra, Lenstra, Lovasz algo-
rithm in our algorithm. So familiarity with

these two very important papers, especially

the basis reduction algorithm of the latter is
highly recommended for reading this paper. How-
ever, we have used their basis reduction algorithm
only as a black box and this paper should be quite

Throughout the paper, unless stated otherwise

we use the L2 norm.
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self-contained if the reader remembers that the
LLL algorithm yields a basis satisfying (2)
above. The one result from Lenstra (1981) that
we use, again, only as a black box in section 5
may be stated as follows: Given a polytope

<

{x: 2x=b} in R™ where A and b are the data, we
can find in polynomial time a linear transforma-
tion T , Ppin'R" in R and R, r € R SUCH that

B(p,r) ¢ {tx: Ax—S—b} C B(p,R)

R/, <, 3/2

and 2n
where B(y,s) is the ball of radius s with y as
centre. This says, roughly, that we can apply a
linear transformation to make the polytope
"round."

Section 2: The algorithm for finding the
shortest vector

A. First we describe our algorithm to find
the shortest nonzero .vector in a lattice L given
by its generators, bl'bz""'bn and then show how

this is used for integer programming. The pro-
cedure that finds a shortest nonzero vector in n
dimensions works recursively by calling the sub-
routine for lattices of dimension (n-1l) or less.
Using polynomially many calls on such lower di-
mentional subroutines, we find a basis CLPRRE

a, for lattice L(bl,...,bn) (bl""’bn given)

which satisfies the following properties:

(1) for j=2,...,n-1, aj(j) is the shortest
vector in the lattice L. generated by
aj(J), aj+1(3),...,an(3 which is
(n-j+1) dimensional.

< 2
@ la] == la,]
V3
a
1
) Ja,ma, (2| =|—5—

Whereas in the reduced basis of Lenstra, Lenstra
and Lovasz (1982), the length of the first vector

. . 2
is guaranteed to be at most 2(n/ )(d(L))l/n, for
our basis 817e.-,8 , We can easily prove (4) be-

low using Minkowski's theorem, conditions (2)
{3) and the fact that d(L) = |al|d(L2)

lay| =V @@/

(In other words, our a, is a much shorter vector
in general than theirs - but of course we spend
more time finding it).
Having obtained such a basis a.,...,a_, we
1 n

show that the shortest vector must be of the form

*

We sometimes use the phrase "shortest vector”
for "shortest nonzero vector" when the meaning
is clear



n
y= £ o.a where (ul,...,an) €T
i=1

where T is a subset of Z . We sfow that it is
enough to consider a set T of cardinality at most

2n|al|n
(53 EYeR)
(4) is used to bound the expression (5). We
enumerate all members of T, find the corre-

sponding y and take the shortest.
We now present an
shortest nonzero vector
b ) where b,,...,b_ are
n 1 n

algorithm that finds a
in the lattice L(b,,...,
independent’ input Vectors

with integer coordinates. To facilitate the re-
cursion, the algorithm will accomplish more. To
describe what more, suppose VitVoreedVy is the

final basis returned by the algorithm. As be-
fore let vi(j) denote the projection of v, onto

the (n-j) dimensional subspéce Vj of R ortho-

> >
gonal to the span of Vl'v2""’vj-1’ for i=j=2.
Let vl(l) = vl and Vl = Hin. Then our basis
{vl,...,vn} satisfies: (cf: (1) through (3)).

(6) for =1,2,3,...,n-1, v.(3) is the
shortest vector “in L, - the
projection of the lattice L

(bl""'bn) = I, onto Vj' (Thus
v, is the shortest vector in L).

1
[v. (3) ]
a2t

(7) b

lv; (3 - vi(j+1)| : for

> >
i=551

Procedure. SHORTEST (n;bl,bz,...,bn)

The preceding paragraph explains what
L =

Comment .
exactly this procedure accomplishes.
L(bl,...,bn).

1. If n=1 then return (bl).

2. Use the basis reduction algorithm of
Lenstra, Lenstra and Lovasz (1982) to make
{bl,bz,...,bn} a reduced basis. :

3. Si + projection of bi perpendicular to bl

for i=2,3,...,Nn.

4. {bz,b3,...,bn} + SHORTEST (n-1; b,,bj,...

b ).
n
5. for i=2 to n do

Find the unique element a; in L such that

ai's projection perpendicular to bl is
b, and (a.,b,) e(—l(bl'bl)| 2y 2|
i and tay; )
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end

Comment . We now have a basis bl,bz,...,b
satisfying conditions (1) and (3). n

1 and b2

go to 3.

(6) If |b,|<v3|b)| then do swap b

end

Comment. We now satisfy condition (2);
caution: lb2|, Ibl| may be irrational, but their

squares are not, so we use them instead.

(7) 1f ‘bj(j)|;|b1| for some j, then

j0 < minimum such j else
j0 < n+l
(8) BASIS <« {bl,bz,...,bj -
0
Comment. We show later that some nonzero shortest
vector of L(bl""'bn) is in L(bl,...,bjo_l).
(9) call ENUMERATE (BASIS) to obtain v. = a
shortest nonzero vector in L(bl""'bn)'
Comment. This procedure is explainer later,
(10) {bl,bz,...,bn} + SELECT_BASIS(n;v,,
bl""'bn)
Comment. Procedure explained later. It returns

a basis of L containing v, as the first vector
(cf. Proposition 1.1)
(11) E; + projection of bi perpendicular to

bl for i=2,...,n

(12) {b,,by,...,b }¢ SHORTEST (n-1; b,
Byieenib,
(13) For i=2,3...,n find a, such that a, is
in L, ai's projection  perpendicular to
b, is b, and (a,,b )e)fbl'bl)ll(bl'bl)l
1 i i1 P 2 |
(14) Return (bl,az,...,an).

Procedure. SELECT—BASIS(n;bl,bz,...,b )

n+l

Comment . are rational vectors in

n+l
Kak for some k=n and span an n-dimensional sub-

bl,b reserb

space of le. The procedure returns a basis
YL VYT of L=L(bl’b2""bn+1)' It first

finds the shortest vector of L in the direction

of bl ~ this is a;. Then it projects L oxtho-

gonal to a, to get a lattice L. It works by re-

cursively finding a basis of A
1.2).

(cf. Proposition



If n=0 then return the empty set.
If bl is independent of b2’b3""’bn+1
then al<-b1
else do
find a2,a3,...,an+l(rationals-these are
n+l
unique) such that I o.b.=b,
3=2

M least common multiple of the denominators
of az,...,an+l

Y+gcd(Ma2,Ma3,...,Man )

+1

if (M/a) is integral then al«bl
else do:
find p, gq€Z rel-prime

such that 3 - LE J = p/q
1 Y Y
g b

end

Let b2’b3""'bn+1 be the projections of

b2"."Eﬁ+l perpendicular to a,;if any one of

1
is zero then delete it to get

).

b2,...,bﬂ+l-say_.bj o t 1
a basis a2,...,an for L(bz,b3,...,b

n+1l
else_ Ccall EFLECT~BASIS (n—l;b2'E3';."b“+l) to
get Byrevesd  as the basis of L(b2,b ""’bn+l)‘

Find Ayr83500048, in L such that aj projects onto
2. and |(a.,a) % |(a,,a,) | /2

3 5191 1791
Return (al,az,...,an)

end.

Proposition 0.

by the above procedure is a basis of L =

The basis ajs8y5e.,8) returned

L(bl’b2""'bn+l) assuming bl'b2""'bn+l have
rank n,
Proof: By Proposition 1.2, it suffices to

show that a, is the shortest vector of L in the

direction bl. We have
Mo Mo Mo
2 3 n+1l
Mb, = — b+ — b_ +.,..+ ————
1 Y Y b2 Y 3 + Y bn+1 and
MoL2 Man+l . . .
—?~ resey are relatively prime integers.
Any other vector in L(b2,...,b ) in the direc-

tion of b, must thus be an integer multiple of
the vector in the square brackets which equals

M =R

¥ bl =g bl' Thus any vector of L(bl'bz""'bn+1)
in the direction of bl is an integer multiple of
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= b

1 q

P q
q P1- Conversely, a bl and q

bl belong to L and
p and g are relatively prime implies é—bl does too.

Hence we have the lemma.

Proposition 1. The vectors v,,...,V_.returned by
the procedure SHORTEST (n;bl,%2,...,gn) form a

basis of L{(b,,...,b ).
Proof: For n=1, ghe proof is clear. We proceed
by induction. At the end of step 4 of the pro-

cedure, Eé,53,...,5; form a basis of the lattice

L,=L projected onto the hyperplane h perpendic-
ular to b, at the origin and thus by Proposition

1.2, al,a2,...,an form a basis of L(bl,...,bn) at

the end of step 5. By repeating this argument,
they form a basis of L at the beginning of step
10. By Proposition 0, again procedure SELECT-
BASIS works correctly to produce a basis of our
lattice. Hence the current proposition is proved.

Proposition 2. The vectors returned by SHORTEST
satisfy conditions (6) and (7).
Proof: Easy.

Proposition 3. Let j
of procedure SHORTEST.

be as defined in step 7
Then a shortest nonzero

integer combination of bl’b2”"'bj -1 is also
a shortest nonzero integer combination of bl,
b2,...,bn.
n
Proof: Suppose v = I a.bi is a shortest non-

i=1
zero integer combination of bl'b2""’bn and one
of a, , a.
oo Jo
jection v' of v onto V the orthogonal complement
of span {bl,b2,...,b is nonzero. But then
jo_l
since the shortest véctor of L projected onto V
is of length b, (i), (by (6)) |v'|Z|b. (3.0 1.
Jo © Jg 0

veuy an is nonzero. Then the pro-

+1

> > L2
Then clearly |v|Z|v'] =|bj (jo)lflbl

. T b
hus 1

is a shortest vector of L.
tion 3.

This proves proposi-

Proposition 4, The procedure SHORTEST cal%s it-
self on lower dimensional lattices at most = n

times (when started on a n dimensional latt%ce).

Proof: By Lenstra, Lenstra and Lovasz, the exe-

cution of their basis reduction algorithm (in

step 2 of progg?ure SHORTEST) ~yields a basis of L
=

<
with [bll= 2 A, (L) where X, (L) is the length

of the shortest vector of L. Each execution, but
the first of the loop of steps 3-6 of SHORTEST

cuts down Ibll by a factor of (—%—). Thus each

5 iterations of the loop cuts it down by a factor
of 2, Thus there are at most (5 n/2) executions
of the loop.



Description of procedure ENUMERATE. Suppose
BASIS = {bl,bz,...,bm} in step 8 of procedure

SHORTEST and suppose a shortest vector of L(bl,
m

b2,...,bm) is y = .Z aibi.
i=1

of length at most |b1| and the projection of y

Then since y must be

onto Vm the orthogonal complement in R of span
{bl,...,bm_l} must be of length at most [bll'

This projection has length lambm(m)l, we must have

‘aml = bm(m)[

More generally we have the following lemma:

With the above notation, suppose
are fixed integers. Then there

Proposition 5.
Bi+1'8i+2""'8m 0
is an easily computed integer Bi such that for all

integers Q) ,0,,...,0%, , and Bi,

I i-1 m
I ab.+B.b.+ 2 B.b.
I I I

WA

b

]

b, |
0 o} 1
Bie[si' B+ 2 b ()]

~
Proof: For any vector v, we denote by v the
component of v along bi(i), i.e.,
(v,(bi(i)) m
—~————————————- b (i). Let u= I
(bi(l),bi(l)) i j=idl
i-1 m

L a,b.+8ibi + I
=1 j=i+l

B.b, and w =

B.b.. Clearly, Q =

n
B.b, (i) + I 8.b,
te j=i+1 77
are fixed, the last sum is fixed.
(t bi(i))' t a scaler. Then

A

. Since Bj' j=i+l,ceeym
Let it be

W= Bib, ()4t by (1) = (B +t)b, ()

lw|Zlo, | >1wlZ]s, |

{(Bi+t)bi(i)|Bi€E } are colinear points at
distance |bi(i)| between two adjacent ones.

Clearly then the lemma follows.

NOTE: We needed |bl|§|bi(i)| to state the
lemma as it is. If lbl|<|bi(i)l, we need to try

at most 2 values of a, - not 2 (|b,|/[b (1)),
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Procedure ENUMERATE (bl,b2,...,bm)

Comment. bl’b2""'bm are vectors satisfying

(1), (2) and (3). The procedure here finds the
shortest vector of L(bl’bZ""’bm)‘

if m=1 then return (bl)'

for each o integer in the range
b, | b, |
- L to + L
BT * TowT
do:
CALL LIST (m-1)

end:

Comment : LIST(m~1) returns T - a list of candi-
dates (ul,dz,...,um) as per proposition 5.

Return the shortest nonzero vector in the set

m
?Z ajbj: (ul,...,an)eT}.

j=1
end ENUMERATE.

procedure LIST (k)

Comment. When this procedure is called, the
integers uk+1' ak+2,...,am are fixed.

if k=0 then do
T«TU{(al,a2,...,um)}
Return
end
0 s
Compute Bk based on proposition 5,

for each iTteTer o in the range
b

0 0 1
+2
[?k’ By b, (k) ]
do
Call LIST(k-1)
end
end LIST.
Lemma 1. The procedure ENUMERATE tries out at
m n Ibl|
most 20 I ( “/b.(i)]|)) sets of values which
=2 .

is at most (2n)n sets of values.

Proof: The first part follows from the last
m

proposition. The denominator I Ibi(i)l is
i=2

clearly the determinant of the lattice L' gene-
rated by b,(2), by(2),...,b (2). |by(2)| is the

length of the shortest vector in L', thus



m=1
b, (2]
< ~1 <
-«{%zfrr-—— S (/D™ £ a"? (by Minkowski).
< 2 < 1.
Further |b I= ~~ |b,| and |b,-b (2)|= imply
1 /3 2 272 2
that (/’2—1b2(2)|)=[b1 . Thus we need to enumerate

at most

- N\
(/5)(m l)'nn/z i(zn)n/2 possibilities.

We show in the next section that if the input
vectors to SHORTEST (n;...) are all integral and
each is of length at most B, then all numbers pro-
duced by the algorithm are rationals with nume-
rators and denominators that can be represented

2 , .
in O(n (log B+ log n}) bits. (lemma 3 of section
3). Assuming this for the moment, we prove the
following theorem.

Theorem 1l: With input vectors of integer compo-~
nents each of length at most B, the algorithm

2
SHORTEST (nj;...) 3/ I
(log log B)).

runs in time 0((4n (log B)

NOTE: © In common usage, we might call this a
0((4n3/2)n) algorithm, This however counts only

the number of arithmetic operations-additions,
substractions, multiplications and divisions and
not the number of bit operations. Since log B
could be substantial, and the number of bits of
numbers grows nontrivially, such an analysis is
imprecise. )

Proof: Let T(n) be the maximum number of arith-
metic operations (not bit operations) performed
by SHORTEST(n;...) for any input bl,...,bn of

n vectors. Then it is easily seen that all steps
of the algorithm except recursive calls to

SHORTEST (n~1;....) and the enumeration step take
only polynomially many operations. Thus we have,

T(m = 2 r(n-1)+qn)

g-some polynomial
+ (2m™/?
(by proposition 4 and lemma 1)
Thus T(n) is 0((3+9)n>/%)™). By lemma 3 of the
next section, each arithmetic operation is per-
formed on operands of length O(nz(log B+log n))
and hence take O(nz(lcg B+log n)* (2log n+log

log B+log log n)) bit operations.
3/2)n

This multi-

plied by T(n) is at most 0((4n
log B). Hence tpe theorem.

*log B log

.
Section 3. Size of the numbers involved in the

algorithm.

Since this algorithm manipulates numbers
and keeps all numbers exactly, it is important to
derive bounds on the number of bits needed to
represent them. It is easy to see that they are
rationals. We will derive bounds on the size of
the numberators and denominators of all these
numbers.
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First we note that even though the algorithm
at various times works on the projections of the
original lattice L; it always has values of b (1),
b2(2),...,bn(n) for some basis bl""'bn of tﬁe

whole lattice. Here as usual b, (i)=projection of
bi onto the orthogonal complement of the space
spanned by by,...,b, , for iZ2 and b, (1)=b, .

i-1
n
Proposition 1. Max Ibi(i)] never increases
i=1

during the execution of SHORTEST.

Proof: We consider the algorithm step by step.
The proof is by induction on n. For n=1, the
proof is trivial. So assume n22, For step 2, the
LLL algorithm never increases the quantity as seen
from their paper (page 13, last but one paragraph).
For step 4, the inductive hypothesis suffices. 1In
step 6, lbl(l)] strictly decreases, 'b2(2)] does

not increase and ]b3(3)|,..., lbn(n)] remain the

same. For steps 7 through 10, the enumeration and
basis selection processes, the proof is a little
harder, but is dealt with in proposition 2. For
step 13 again, we invoke the inductive hypothesis,
completing the proof of this proposition.

Steps 7 through 10 of the algorithm
1,...,bn) do not increase

Proposition 2.
SHORTEST ~ (n:b
max[bi(i)l.

i

Proof: Suppose bl""’bn is the basis of the lat-

tice at the beginning of step 7 and suppose v
found to be a shortest nonzero vector of L(b

bn) by enumeration. Define ul=vl, u2=bl, u3=b2...

bn. Let ui(j) be defined as usual for iZj.

is

resey

u =
n+l
Clearly, precisely one of the ui(i)'s is zero.

N -
Let this be u, (). Finally let i /by, een b De

1
the basis returned by SELECTﬁBASIS(vl,bl,...,bn).
gl=vl. Further for 1=2,3,...,j-1, the algorithm

SELECT BASIS chooses b (1) to be a vector of length
at most luz(ﬂ)l. Now %ug(l))=projection of by _
orthogonal to v., b and thus we must

1 £-2
have

bl,...,

(1) - 131(2)|§|u2(2)|§[b£_1<1-1)| for 2=2,3,...,

j-1.For £=j,3+l,...,n Igl(k)[ is the same as
1b2(2)l because bj_l(j-l) is discarded and after
that SELECT BASIS just returns what is left.

(2) ]EQ<1)|=]b2<2)] for %=3j,3+1,...,n and
) b =lv IEp ] . @, ), ana (3)
establish the proposition.

We now define, for any basis b,,...,b_ of the
. \ .. 1 n
n-dimensional lattitce

2
(4) di = (d(L(bl,bz,...,bi))) .

It is easy to see that di is the determinant of
the iXi matrix with entrles (bj,bl) for 1%j,

1%2i. Since our original basis vectors had integer



coordinates, this is also true of any
other basis. Thus the d are all inte-
gers. Clearly,

Ib (J)i
1

(5) a. =

1

H = -

3

The following proposition resembles a sim-
ilar one in the LLL paper.

Proposition 3. All numbers produced by the
algorithm are rationals of the form p/g, p,q in Z
where q is one of the di's.

Proof:

b (1), the progectlon of bJ orthogonal

(foxr j= 1—2) is given by (6) b (i)=

b~ El 8 kbk where 5

Taking a dot product with by (1-2 i-1) and noting
that (bl'b (i))=0, we have

are some real numbers,

i-1
(bj,bz) = I ij(bk,bl) for 2=1,2,...,i-1.
k=1
These are (i~1) independent equations in the (i-1)
variables ij with a matrix whose determinant is

d « Thus (d.

i-1
from (6) (b (i)a

Hence

The

) are all integers.
) is an integral vector.

proof of the prop051tlon for other guantities -

for example the uij's of the LLL algorithm is

similar and we omit it.

Lemma 1: Except while executing the Lenstra,
Lenstra and Lovasz algorithm and step 9,10 all
the vectors produced by the algorithm ? RTEST
(n;bl,...,bn) are of length at most nB where

the input bl,...,bn consists of integral vectors

each of length at most /B.

Proof: While [bl(l)[ never increases, |bi(i)l

could increase for i>l. So to prove the lemma,
we proceed by induction, but to avoid mistakes
one must prove by induction on i that SHORTEST
(i;al,az,...,ai) never produces vectors that

are too long where i is between 1 and n and

aj—bn l+3(n i+j) for j=1,2,...,i. Throughout

this proof VB will denote the length of the

longest of bl,...,bn which were the original in-

put to SHORTEST(nj;...). For i=1, the proof is
trivial. Assume i22 and no execution of SHORT-
EST(i~1l;...) within SHORTEST(n;...) ever pro-
duces a vector of length more than (i—l)/g
except while executing LLL. We consider an exe-
cution of SHORTEST(i;al,...,ai) where again aj=

bn—i+j(n_i+j) for j=1,2,...,1 step by step.

Step 1 OK Step 2 exclused by hypothesis. Step
3 does not increase lengths of vectors. Step 4
Here SHORTEST(i-l;...) is called and we use in-
duction to assert that the lengths of all vectors
are bounded by (i-1)/B except while executing LLL.
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5: This adds one more "component" to the
vectors but the component is no more than the
curxent lbn (n- 1+1)|/2 which by Proposition 1

is at most B . Thus from the previous sentence,
the lengths of the vectors at the end of Step 5

are at most (i-1)vB + vB = ivB . Steps 6,7 and 8
do not affect the lengths of the vectors. Steps 9
and 10 are excluded by hypothesis. But we note
that at the end of SELECT BASIS, we have a basis

aLl,az,...,a.l such that

lag (21 15/8

(by Proposition 2)

and each aj can be expressed as

j-1
a =a; ()+ I Miiag (i)

<1 .
[= E) for all i,j.
i=1

where ID..
Jx

(To see this use induction on k where k is the
argument if SELECT BASISZl .e., deal with SELECT _
BASIS(k;...)). Thus |a,|=ivB for all &. The
proof that steps 11,12"and 13 keep the bounds on
the lengths is similar to that for steps 3,4 and
5 and is therefore omitted. This proves our cur-
rent lemma., We will now consider the "problem”
steps separately.

Lemma 2: In SHORTEST(n;bl,...,b ) during every
execution of LLL algorithim all numbers produced

2
are bounded in magnitude by (nB)cn
constant c.

for some fixed

Proof: Whenever the LLL algorithm is called, all
the input vectors - say - CRATYRRRYL N have ra-

tional components with common denominator d where
by Proposition 3, d is one of the di and hence by

Proposition 2 is bounded by B*. Also, by the pre-
vious lemma, their lengths are all bounded by

(n/g). Furthex, it is easily seen that the LLL
algorithm behaves identically on input (dal,da ceer
dai) as it does on input Byr8yreeedy except that

in the second case all vectors are divided by 4.
(dal,...,dai) are integral vectors and thus the

bounds proved in the LLL paper apply to them.
these as input, we have (from their Proposition
(1.26)) that all numbers produced by their algo-
rithm are bounded in magnitude by

For

(max|da, |)
=1 *

which is at most

(Bn—l n.‘/—B—)cn < (nB)cn

Proposition 4. Steps 9 and 10 do not produce any
number of magnitude greater than n“s,

Proofs It is easily seen using Minkowski's theo-
rem that in the enumeration process, all the
multipliers of the vectors are at most n for
some constant . SELECT BASIS is also easy to
analyse. Hence the proposition follows.



Lemma 3: On input bl""’bn which are independent

vectors with integer components and of length at
most vB, all numbers produced by the algorithm
SHORTEST(n;bl,...,bn) can be represented in

O(n2(log B+log n)) bits. Further, the numbers pro-
duced by the algorithm can be represented in
O(nlog n+log B) bits except while it is executing
the Lenstra, Lenstra, Lovasz algorithm.

Section 4. Finding the closest vector:

In this section, we consider the following
"closest vector problem”:

Given b

l'b2""’bn independent vectorxs in

(1) ®R"” with rational components and b, in R%n,
£ind b in L(bj,...,b ) such that |by-b]is a mini-

mum, This is the inhomogeneous problem. We solve
this as a "warm-up" for the integer programming

problem in the next section. The algorithm we give
first finds using SHORTEST "a nice" basis b

1_,
gZ""’gn' (I.e., a basis satisfying (2.6) and
. n
(2.7)) . Next we use an upper bound % ] Bj(j)|= M
j=1

(say) on the distance between any b, and its
closest lattice point. (This bound is proved in
Proposition 1 to follow) to assert that we need to
enumerate not too many values of (al,uz,...,un)

n ~n
such that ] X ajbj—bO] is within this upper bound.
j=1
Arguing as in the case of shortest vectors (Prop-
osition 5 and lemma 1 of section 2), this gives

us a bound of M'/d(L) for the number of possible
n-tuples (al,...,un) to enumerate. Unfortunately,
this can be tooc large. So we have to use another
idea: If ]gi(i)l is the largest among all

~
Ib.(j)l, then we are able to show that not too
many values of (ai,ui+l...,an) are candidates to

be tried. For each such candidate, we project to
a (i=l) dimensional problem and solve these re-
cursively. The details are explained after the
algorithm.

procedure CLP(n;bo,bl,...,bn)

Comment: This procedure returns the vector in L(bl

b2,...,bn) that is Lz—cloiest>to bO' bl,...,bn are
independent vectors in Z ™, k=n.
{bl,...,bn} « SHORTEST (n;b;,b,, ... b )
Return CLP'(n;bO,bl,...,bn)
end CLP.
procedure  CLP' (no b, ,b b )
1 o' 1!"'! n
Comment: Does the same as CLP, but assumes b.,...

bn is a "nice" basis for L(bl,...,bn)—i.e., ig the

output of SHORTEST.

if n=1 then return the easily computed closest
point. Find i such that

'
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n
max ]bj(j)l.

Ib, (i) ]
i 321

CANDIDATES +~ ¢ .

for each "possible" A, ,A. A
= i

yeeer in Z do:
+1 n -

Comment::

This is the enumeration step, explained
later, '

n
if i=1 then CANDIDATES«CANDIDATES{}{ L A.,b.}
=i 33
else do

vie CLP’(i—l;bo—v, bl’b tese,b )

2 i-1

CANDIDATES+CANDIDATES {J {v'+v}

end

Return the element of CANDIDATES that is closest
to bO'
end CLP'

To show that the number of (Ai’ki+l""’xn) that

we need to enumerate is small, we need to show the
proposition,

Proposition 1.

If L=L(b1""’bn) is a lattice in
k> e
yk=n b,...,bn independent and boeﬂik with b0=

R
projgction of by onto span {bl,bz,...,bn}, then

there exists a point b in L such that

Further if i is such that lbi(i)|= maxlbj(j)l,
= 1<|n . j
then clearly, Ib—b0|=lz bi(l)l. J

Proof: It is not difficult to see that we can
guccegsively choose integers LT l""'al (in

that order) such that
n _ b o]
(Zagp;b), b.(3)] =—d—
=3 2270 bl 2
for all j. (Because the choice of o, does not

affect the earlier inequalities obtained). Since
bl(l), b2(2),...,bn(n) form an orthogonal basis

of the space span {bl,...,bn} and Eb also lies in
that space, the lemma follows,

Proposition 2. With the notation of the last prop-
osition, there exists ag easily determined set

\ —=(n-i+1)
—i+ <

T an il ith |7]= a2 such that if

n

L A.b, is a closest point to b.,...,A.€%Z , then
ioq 1 J 0 h)

J

{Ai’xi+1""’kn} belongs to T.

n
Proof: Suppose § A bj=v in I, is a closest point to

3

b Then clearly, v must be the closest point in L

a°



tob.. By the last proposition, then we must have
Now we have ‘v—b

O' 9
T————[—bn(n) —sznl[bn(n) |-t

for some fixed real number t. Thus these are at

n .
3o, (. 12| (v o

b_(m) | /[b () |=|A |lp_ ()] -

most (%]bi(i) |/1b_(m [) candidates for A . Now we
"show a similar bound for Ai"“’xn using an argu-

ment very like that of Proposition 5 of Section 2.
So suppose Aj+l’ Aj+2,...,ln are fixed integers,

> . s
j=i. Then arguing as in that proposition, there

by (1) /1) y=nlo, (1) |/

are at most max(2,2-%

]bj(j)l possible values of Aj such that the length

of v in the direction of bj(j) remains bounded by

Clearly as before we may easily compute
these values A.. Thus we have shown that we need
to consider a set T of candidates {Ai,ki+l,...,kn)
where

< D
|T|=
j=i

Ib, (1) | is the length of the shortest vector in

i

b +l(1),...,bn(1).

nlbi(i)l/lbj(j)|

the lattice generated by bi(i)’
Thus by Minkowski's theorem,

%(n—i+l)
n

1
. S(n~i+l)
|7|S a7 (i

LA

Hence the lemma.

Theorem 1. The algorithm CLP(n;bo,bl,...,bn)

with input integral vectors all of length at most
VB returns the closeit point of L(bl""'bn) to
=nh

bO in at most 0((4n)” ) arithmetic operations.

Further all numbers produced by the algorithm are
rationals with numerator and denominator expres-

sible in O(nz(log B+log n)) bits each.

Proof: It is easily seen from the algorithm that
T(n) the number of arithmetic operations is
bounded by

T(n)é number of arithmetic operations for
SHORTEST (n;...)
(n-i+l)

+ n2 T(i-1)

+ g(n)

where g(n) is a polynomial in n, the second term
is the number of operations needed to solve the
lower dimensional problems whose number is at most
3 -

5{n—1+l)

n by the last proposition.

Using Theorem 1, Section 2 we get the first
part of the current theorem. The bound on the
size of the numbers is obtained without much diffi-
culty. The enumeration process, it can be easily
seen does not involve integers that are too large.
We omit this proof here.
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Section 5. Integer Programming.

Integer programming again is the following
problem:

(1) Given m*Xn and mX1 matrices A and b of inte-
gers, 8etermine whether there is a x in Z
such that AxSb, Using a result of Lenstra
(81), we can reduce it to the following
problem:

(2) Given b, by,...,b  independent vectors in Z n

A mXn and b mX1 of integers determine whether
there is an x in L(bl’bz""'bn) such that

<
Ax=b, where the following additional condi-
tions are satisfied:

(3) a peﬁin r and R reals such that

(@  wrrx S oam?

(6) B(p,r) C {xeR®, axSb} C B(p,R).
(B(g,s) = ball of radius s with g as center).

We proceed as follows: Apply SHORTEST to
bl,...,b . Let now Ib (1)]- maxlb (J)l Then
there is clearly a point b of L(bl,...,b ) (by
proposition 1 of section 4) such that Ib-plé
%Ibi(i)l.

We consider two cases: (as in Lenstra)

Then clearly the answer to

>n
Case 1l: r= >

question 2 is Yes and we stop.

Case 2: x< %1bi(i)| whence R<n5/2|bi(i)|. In

this case, we argue as in the last section that

there are not too m:ny values of A, A1+l’°"’ln
integers such that I ijj belongs to B(p,R). We
j=1

then enumerate all these values of Ai""'An and

for each, solve a (i~1l) dimensional problem.

To push through this recursion, we need to
solve the following generalization of problem
(2):

(4) Given b

b2,...,bn independent vectors in E!n

l’
A,b mXn and mXl matrices of integers and b, in R
does there exist an x such that AxSb and (x-b.€L

(bl’b2""'bn)? We will call problem (4) gene~

ralized integer programming GILP for want of
another name. We solve it by the following pro-
cedure:

procedure, GILP(n;bO,bl,bz,...,bn;A,b).
Comment . See description of problem (4) above.

The procedure returns Yes or No.

1. Use Lenstra's result which applies a suitable
linear transformatlon on the space and en-
sures condition (3). We refer to the trans-
formed guantities by their old names bo'bl’
b2,...,bn; A,b.

2. {bl’b2""'bn} < SHORTEST {bl,bz,...,bn}



n
3. Let b, (i) =max Ib (3]
i . 3
J=1
>
4, if r = %]bi(i)l then return Yes
<
Comment . We may now assume that r = %1bi(i)|
<
and R = n5/2lbi(i)].
5. if i=) then do.

for each candidate Al,A2,...,An integers do.

Comment. Enumeration is explained later.

n
if b0+ X Ajbj=x satisfies AxSb then return Yes.
=1

end
Return No
end
n-i+1

for each candidate {ki,x An}ez

it1fccc

do: Comment. We explain later what the
candidates are.
n
6. bO < bO + .Z'Ajbj
J=1
7. bo + projection of bo onto span {bl,b2,...,
b, .}
8. v « {veR™: projection of v orthogonal to
span {bl""'bi-l} = b—bo}
Comment. Since we are "fixing" Ai’Ai+1""’An’

we are fixing the projection of our final po-

n
+ % A.b,) onto the ortho-
R
J_
gonal complement of span {bl,bz,...,b

tential candidate (b0

i-l}' Thus
we are only looking for candidates in V,
(i-1) dimensional affine set.

V is

9.

Taking bl(l)/]bl(l)],...,bi_l(i-l)/lbi

_ G-
as the basis of span {bl'b2""'bi-1} express
{x: axSBINV as {y: a'ySb'} where a' is m' by

(i-1). Let Eb be bé in this coordinate sys-—
tem, bj be b% for j3=1,2,...,i~1.

10, if (GILP(i—l;bé,b' i,...,b'

1’ R
returns Yes then return Yes,
end
Return No
end GILP

b'")

As usual, we first explain the enumeration process.
At the beginning of Step 5, we may assume that R
5/2

is at most Ibi(i)l'n . Thus the vectors that

are of the form b0

belong to the polytope {x: AxSb} all have the prop-

+a, a in L(bl""’bn) which could

. 2
erty that |b0+a—p|§]bi(i)|n5/ . Hence they must

2 . s
each be of length at most ns/ bi(l)] in the di-
rection of bn(n) which says that we need to try
at most

|
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2572 [, (4)]

. bn(n)( values of An'

Arguing in a similar vein (cf Proposition 5 of
section 2 and Proposition 2 of section 4), the
number of candidates for Ai'xi+l""'kn is at

. . n
most 2n—1+ln5/2(n—1+l) 1

J=_llbi<i>l/|bj(j>l

which again by Minkowski's theorem is at most

((1.29)p) 3 (P7i*D)

That the algorithm works correctly is very easy to
check.

Theorem 1: The algorithm GILP(n;,.,..) on an in~
put of length L, correctly solves the n-
generalized integer programming problem in

3
0((1-3n) n) arithmetic operations. Each integer

5-1n

produced by the algorithm is O(n .L) bits in

size and thus the overall running time is

0(n™ L 1og(1)).
Proof. The first part of the theorem follows by

an argument very similar to the proof of Theorem 1
of section 4, The second part is a little
trickier. By going through the construction to
"round out” a polytope due to Lenstra (1981), one
finds that this increases the number of bits by at

most a factor of nzlog n, This is because
Lenstra's algorithm obtains the affine transfor-
mation that rounds out the polytope {x:Axfb}

by mapping (n+l) of its vertices (in n dimen-
sions) to (0,0,0,...,0), (1,0,...0), (0,1,...,0)
eee, (0,0,...,0,1), The claim above easily fol-
lows by reckoning a bound on the size of numbers
needed to express the vertices and then observing
that the matrix associated with the linear trans-

formation is simply S_l where S is a nXn matrix
with each row being one of the (n+l) vertices.
The algorithm SHORTEST then increases the sizes

by at most a factor of O(n2log n) by Lemma 3 of
section 3. But when the algorithm SHORTEST is
finished, the sizes are much smaller by lemma 1
of section 3, and thus it is easily checked that
the process of projecting to a lower dimensional
problem does not increase the sizes beyond the
bound obtained for SHORTEST, Thus each re-
duction in the dimension of the »nroblems in-
creases the size of nurbers by at most a factor

of O(n4(log n)2) which is 0(n4'l). Since this
happens at most n times, the sizes of the numbers

are all bounded by O(n(s.l)nL). The last sentence

in Theorem 1 follows since the time taken to add,
subtract, multiply or divide 2 N-bit integers is

O(N log N) (Aho, Hopcroft and Ullmann (1974).
Remark: It is unfortunate that in this algorithm

the bound we derive on the size of the integers is
exponential in n., While this does not increase
the order of the running time of the algorithm, it
would be nice to prove a polynomial bound on the
sizes of the integers involved, perhaps after



modifying the algorithm slightly. The obvious

try in this direction does not work - i.e,, if the
polytope {x: axSb} satisfies roundness conditions
(3), it is trivially seen that its projections
onto affine sets do not necessarily satisfy (3).

Section 6:

While we have improved Substantially the theo-

retical bounds on the running times of known algo-
rithms, the bounds we give may still seem too long
in practice.
are expected to run a lot faster than dictated by
the theoretical bounds. Primarily, this is because
the LLL algorithm used here to initialize the pro-
cedure SHORTEST yields in practice much shorter
vectors ‘than the bounds proved by them; in addition
it should be the case that the procedure enumerate
tries a lot fewer cases on the average than we

can prove using Minkowski's Theorem. Of course

all of these statements have to be tested empiri-
cally.

Section 7: Complexity Issues.

It was conjectured in Lenstra (1981) that
the problem of finding a shortest vector in a lat-
tice L = L(bl""'bn) given bl""'bn is Np-hard.

This conjecture is still open. Van Emde Boas has
proved (among others) the following language to
be NP-complete:

: n
L2-Closest = {(bo,bl,...,bn;K)|bo,bl,...,bneﬂ

and JbeL(b),...,b,) such that

o<
|b-by| = K},

We do not solve the conjecture here, but relate

the complexity of finding the shortest vector to

L2—closest. First define a language

L,-SHORTEST = {(b),... /b ;K) ! ibeL(bl, ceesb ),

b#0 such that |b| = KJ.

Theorem l: Given bo'bl""’bn in Ezn, with poly-

nomially many calls to a subroutine for deciding
membership in L2—Shortes§ and polynomial addi-
tional time we can find a vector y in L(bl”"'bn)
such that for all y' in L(bl,...,bn),

l < v

Y"bo‘ = n.ly —bol

Remark., The theorem asserts that the problem of
finding an approximate closest vector to within a
factor of n is polynomial-time Turing (Cook) re-
ducible to L,-Shortest. The reduction given is
essentially %uring—it invokes more than one call
to the subroutine, We show first that given a
subroutine that accepts L.,-shortest, we can
actually find a shortest vector in a lattice.
Suppose L=L(bl,...,bn), biez‘lindependent is the
lattice in which we want to find a shortest non-
zero vector. Define
1
n)4

(1) %= |(n @)

Let T be the linear transformation given by

However, all the algorithms given here

204

.ll+23n
(T multiplies the ith coordinate by
-i ,3
(2n+1 1+2 n).
Lemma: Suppose L=L(b1""’bn) where biezzn and

are independent and define £ and T as in (1) and
(2). Then for L*=TL, any shortest nonzero
vector of L* must be of the form

3 3 - 3
@ v = @My, @y ey
where <yl'y2""’yn) is a shortest and nonzero

vector of L and for any other shortest vector
(Yi:Yé,---,yé) of L, we have

n
(@) |y, [<ly} [for ig=min {i:]y, [#|y!|}

0 0 i=1
(In other words (Iyll,...,lynl) is the lexico-

graphically least among the shortest vectors of L).

*
Proof: Suppose Xl(L) and Al(L ) are the lengths

regpectively of the shortest nonzero vectors of L
and L*, Then clearly,

) Ao =N .

Suppose now Y is a shortest vector in L* and the
corresponding (yl,yz,...,yn) (according to (3)) is

not a shortest vector of L. Then

> 3 > 3n .
Y1227 vy ry0eee vy ) DEVTT O (@) 41)
=n3“xl(L)+23“>23“Al<L)+2"x1(L) (from (1)).
This contradicts (5) and hence y=(yl,y2,...,yn)

must be a shortest nonzero vector of L.

n)2yi+-..+(23n+2)2yi. Suppose y'=

Further,

lv| 2= (2308
(yi,...,y;) is another shortest vector of L and

(4) is violated. Then v, iyi +1. It can be seen
0 o] .

eagily that this together with the fact that

|y5|§ % for all j (by the definition of £ in (1)

and Minkowski) implies that Y¥'=Ty' is shorter
than Y in L*-a contradiction. Thus (|yll,...,
ly_|) must be lexicographically least among all
the shortest vectors of L. From (3) and the fact
that a shortest nonzero vector y=(yl,...,yn) of

<
L must satisfy [y.|=21/4 for all j, we see easily

that if ]Y|2 is given, then (Iyll,lyzl,...,lyn|)

can be determined: Expand the integer ]Y[z to



the base £ to write
6n
2_ 3 2_ 2_ 2_
|¥| —jEOajl ;othen yi=a) , y)=0,  1iseess ¥p=0,
as is easily seen.

All of this has only given us (Iyll,lyzl,...,

[y |} for some shortest vector of L, we still need
the signs of the components. Towards this end,
first note that L* has the property that if Y is a
shortest vector of L*, then for any other shortest
vector Y' of L*, |Yi|=lY£|(by (4)). Let (|Y1|,

]YZI,...,]YnI) be the magnitudes of the coordi-
nates of a shortest vector Y of L* obtained by
the above procedure., Consider the (n-1) di-
mensional lattice:

L' = L*N {x: xllyzl—leyll = 0}

Clearly, Al(L')=Al(L*) iff there is a shortest

vector of L* with the first two coordinates posi-
tive. Let L" = L*{}{x:. x1|Y2,+x2|Yl|=0}. Then

kl(L“) = ll(L*) iff there is a shortest vector of

L* with the first two coordinates of opposite
signs. So, we do the following: using our sub~
routine for L,-Shortest, we check if Al(L') =

Al(L*). If so we find (recursively) a shortest
veéctor in L' and hence figure out a shortest
vector of L*, then of L. If not, we find (re-
cursively) a shortest vector of L" and do like-
wise, Note that to solve the problem of finding
a shortest vector in n-dimensions, we solve one
instance of the corresponding (n-1) dimensional
problem plus polynomially many calls to Ly~short-
est.

Lemma 2: With polynomially many calls to a sub-
routine accepting the language Lz—Shortest and
polynomial additional time, we can find a short-
est nonzero vector in a lattice.

Proof. We can construct from the input lat-
tice L, the lattice L* discussed above. For L*,
we may find (kl(L*))2 (=|Y|2 in the discussion

above) by binary search using polynomially many
calls to the language oracle. This then gives
us a shortest vector of L as described above.

Remark: A lemma similar to the one above holds
for most known NP-complete languages and several
other ones-like linear programming. For example,
it is easy to see by using self-reducibility that
given an algorithm to test whether a given Boolean
formula is satisfiable, we may use it to find a
satisfying assignment. This speaks for the
versality of the language SAT. (the set of sat-
isfiable Boolean formulas). It is interesting’
that the language L2—shortest not yet known to
be NP-complete has this versatality.

We now study the relationship between the
problgm of finding a closest vector of a lattice
in R, to a given point in R~ (called the "in
homogeneous problem") to that of finding a short-
est nonzero vector of a lattice (called the "homo~
geneous problem"). The device we use to relate
these two may be called the process of
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"homogenaisation". The technique has been used,
for example, in polyhedral theory. The idea is
to relate the inhomogeneous problem for a lat-
tice L in n dimensions to a homogeneous problem
for a lattice L' constructed from L in (n+1) di-
mensions.

. . n
Suppose we are given bl’b2""’bn'b0 in Z

and are asked to find a point b of L=L(bl,...,bn)
which is approximately (to be defined later)

- closest (in Euclidean distance) point of L to b_,

We first check whether b is in L by using, for
example the polynomial-time algorithm of Bachem
and Kannan (1979) to solve linear diophantine
equations. If so, we may stop. Otherwise we

find (using the subroutines for the homogeneous
problem) A, (L) (the length of a shortest nonzero
vector of L: Caution: this may be irrational, so
we will only find an approximation to it in the
actual algorithm, but to simplify the current
discussion, assume we Know Al(L) exactly.). We

then consider the lattice L' in Qn+l
bi=(bi'0) for i=1,2,...,n and

generated by

1]
bn+l
(bo,(‘51)|X1(L)|). We find a shortest nonzero

_ . . . .
vector v (Vl""’vn+1) of L', This gives us in

formation about the vector closest to b0 in L as
summarized by the following lemma:

Lemma 3: Suppose L=L(b1,...,b ) is a lattice in
ZN and bO in Z" is not”in L, "Let L' be as de-
fined above and let v=(v1,...,vn+l) be a shortest

nonzero vector of L' with v £0. Then if v =0,
n+l n+

1
]bo-blz-alxl(L)] for all b in L.

If v, ,#0 then v_ .= -(-51)|A1(L)| and (vy,9,,...,

vn)+bo is the closest vector in L to bo.

Proof. The shortest vector v=(v1,v2,...,v )

n+l
<
must clearly satisfy Ivn+l|=|kl(L)| because

there is a vector of length IAl(L)l in L and hence

3 1]
in L'. Thus v .

ntl
loss of generality, we assume Vo

=0 or #(+51)|A;(1)| . wWithout

< .
+1—0 and hence is

0 or -(*51) [Al(L)l. Let b be a closest point of
n

L tob, and b= L a:b.. If |b-b_[S+8|A_(L)],then
s} . 373 0 1
j=1
n < . 2 2 %
T.ht = - .
|_z o,b} bn+l] A @] (8 +(e51)%)
J=1
<
2 @ |
and thus the shortest vector v of L' will have
Vo1 —(-Sl)lAl(L)l and is nonzero. This proves
2

the first statement.

For the second, clearly if Vn+l#0' v %0

n+l

implies :n+l= —'Sllkl(L)]. Then v equals
<bH! 1) .
( bl .t z ijj) and the last component of v being

j=1



fixed at absolute value *51 ([Xl(L)I, will be short-
n

est when I ijj is closest to bo. Thus the lemma
1

is proved.

Acknowledgement: I wish to thank Gary Miller for
helpful discussions.
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