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Constructive Algorithms for Discrepancy Minimization

Nikhil Bansal*

Abstract

Given a set systertV,S), V = {1,...,n} andS = {S4,..., S}, the minimum discrepancy
problem is to find a 2-coloring’ : V' — {—1,+1}, such that each set is colored as evenly as
possible, i.e. findt’ to minimizemax ¢y, ‘Ziesj X(3)].

In this paper we give the first polynomial time algorithms &screpancy minimization that
achieve bounds similar to those known existentially uskhreggo-called Entropy Method. We also
give a first approximation-like result for discrepancy. &fieally we give efficient randomized
algorithms to:

1. Construct ai®(n'/?) discrepancy coloring for general sets systems whea O(n), match-
ing the celebrated result of Spencerl[17] up to constanbfactPreviously, no algorithmic
guarantee better than the random coloring bound, @€(n log n)'/?), was known. More
generally, forn > n, we obtain a discrepancy bound®@fn'/? log(2m/n)).

2. Construct a coloring with discrepan@yt'/? logn), if each element lies in at mossets. This
matches the (hon-constructive) result of Srinivagan [19].

3. Construct a coloring with discrepan€}( A log(nm)), where is the hereditary discrepancy
of the set system.

The main idea in our algorithms is to produce a coloring owveetby letting the color of the elements
perform a random walk (with tiny increments) starting frorartil they reach-1 or +1. At each
time step the random hops for various elements are cordeleiag the solution to a semidefinite
program, where this program is determined by the curretd siad the entropy method.

1 Introduction

Let (V,S) be a set-system, whefé = {1,...,n} are the elements arf§l= {S51,...,S,,} is a collec-
tion of subsets of/. Given a{—1,+1} coloring X’ of elements in/, let X(S;) = Zz‘esj X (i) denote
the discrepancy ol for setS. The discrepancy of the collectighis defined as

dis(S) = min max |X'(S;)].
X je€lm]

Understanding the discrepancy of various set-systems dexs & major area of research both in math-
ematics and computer science, and this study has reveaeiddtng connections to various areas of
mathematics. Discrepancy also has a range of applicatiossveral topics in computer science such as
probabilistic and approximation algorithms, computagiogeometry, numerical integration, derandom-
ization, communication complexity, machine learning,im@ation and so on. We shall not attempt to

describe these connections and applications here, butthefeeader to [6,/9, 12].
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1.1 Discrepancy of General Set Systems

What is the discrepancy of an arbitrary set system witllements and sets?

This is perhaps the most basic question in discrepancyyth€tgarly, if we color the elements randomly,
for any setS, we expectX'(S)| to be aboutO(|S|'/?) = O(n'/?), i.e. about the standard deviation.
Moreover, by standard tail bounds, the probability thE{.S)| > cn'/? is at moste=(<*). So, by
union bound over the: sets, the discrepancy of the set system wiltk¢n log m)'/?). This bound for
randomly colorings is also tight in general.

Surprisingly, it turns out that better colorings alwaysséixA celebrated result of Spencer [17] states
that: Any set system on elements andn > n sets hag)((nlog(2m/n))/?) discrepancy. This
guarantee is most interesting when= O(n). In particular whenn = n, Spencer showed a bound of
6n!/2 (commonly referred to as the “six standard deviations iffiesult). This is the best possible
bound up to constant factors. Spencer’s result is one ofitdights of discrepancy theory and is based
on a clever use of the Pigeonhole Principle, a techniqued@aatioped by Beck [4]. The technique has
since been used widely and is referred to as the Entropy Methahe Partial Coloring Lemma (we
discuss this method and its application to obtain Spenoesislt in sectiofi]2).

However, prior to our work, it was not known how to make thisulealgorithmic. In fact, no better
efficient algorithm than simply random coloring was knowrd aeducing this gap has been a long-
standing questiori [12, 17} [1,119]. Due to its fundamentalaighe Pigeon Hole Principle, Spencer’s
result is widely believed to be more non-constructive themreoexistential results such as those based
on the probabilistic method or the Lovasz Local Lemma. Weguo

“|s there a polynomial time algorithm that gives discrepgirf€n!/2 . . .. The difficulties in convert-
ing these theorems to algorithms go back to the basic theofehis Lecture and lie, | feel, in the use of
the Pigeonhole Principle ...”. — Joel Spencer [18] (Page 69).

It is also known that any non-adaptive or online algorithror (@etails see [2], page 239) must
have a discrepancy 6i(1/nlogn), and it has been conjectured [2], page 240, that no polyridimia
algorithm may exist for finding a coloring with discrepangyn.

In this paper we resolve this question and show that.

Theorem 1.1. Given any set system withelements and setsS;, .. ., Sy, there is a randomized poly-
nomial time algorithm that with probability at leasf log n, constructs § —1, +1} coloring X with dis-
crepancyO(n'/?). More generally fonn > n, our algorithm achieves a bound 6f(n'/2 log(2m /n))
and succeeds with probability at lealstlog m.

We note that for generah > n, our algorithm has a somewhat worse dependencg@rom) than
the tightO(n'/21og(2m/n)'/?) bound achievable non-constructively. Also, it suffices dasider the
case ofm > n: if m < n, one can essentially reduego m using standard techniques [17], implying a

(tight) discrepancy o) (y/m).

1.2 Bounded Degree Sets: The Beck-Fiala Setting

Another significant result in discrepancy theory is a theodeie to Beck and Fiala[[5]: The discrepancy
of any set systeniV, S) is at most2t — 1, wheret is the maximum degree ¢V, S), i.e. the maximum
number of times an element appears in setS.in

The proof of this result is algorithmic. This bound was impd slightly to2¢t—3 by Bednarchak and
Helm [7], and this is currently best known bound independént. Beck and Fiala [5] conjectured that
the minimum discrepancy is alway3(t'/?), and this remains a major open question. If the guarantee
is allowed to depend on, Beck and Spencer|[4, 18] showed that the discrepan6y({i&'? log t log n).
Refining their analysis, the bound was improvedta'/? log n) by Srinivasan[[19]. Both these proofs
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are based on the entropy method and are non-constructiegbédt known result along these lines is due
to BanaszczyK 3] that achieves a boundif!/2 log'/? n). This result is based on certain inequalities
for Gaussian measures endimensional convex bodies due o [10] and also seems toHerantly
existential to the best of our knowledge.

In this paper we give a constructive version of Srinivasagsallt.

Theorem 1.2. Given any set syste(, S) with n elements and degree at mesthere is a randomized
polynomial time algorithm that with probability at leasfn, constructs & —1,+1} coloring X with
discrepancyO(t'/2logn).

1.3 Pseudo-Approximation and Hereditary Discrepancy

A natural question thus is whether the discrepancy of aqaati instance can be approximated effi-
ciently. Very recently Charikar et &l![8] have shown veryoeg lower bounds for this problem. In
particular, they show that there exists set systems wite= O(n) sets, such that no polynomial time
algorithm can distinguish whether the discrepanay @s Q2(,/n), unlessP = N P.

Here we prove the following pseudo-approximation resuthwespect to hereditary discrepancy.
Recall that the hereditary discrepancy of a set systéirt) is defined as the maximum value of
discrepancy over all subsetd” of V. Specifically, giveniW C V, let )y, denote the collection
{SNW :S e S}. Then, the hereditary discrepancy(df, S) is defined as

herdis¢S) = max disc(Sjw)-

We show the following result:

Theorem 1.3. Given any set syste(W, S) with hereditary discrepancy at maost there is a randomized
polynomial time algorithm that with probability at leasfn, constructs a{—1,+1} coloring X with
discrepancyO (A log(mn)).

This answers a question of Matousek|[14].
A consequence of our proof of theorém]1.3 is the followingt ue define the hereditary vector

discrepancy of a set systeffy denoted hervecdi$§), as the smallest value of such that for each
subsetV C V, the following semi-definite program is feasible.

I > willl < X foreach sef, 1)
i€S;NW

il = 1 View )

Being a relaxation, clearly hervecd{gt) < herdis¢S). Our proof of theorerh 113 actually produces
a coloring with discrepancg (hervecdi¢sS) - log(mn)). Applying theoreni 113 to each restricticty;,
for W C V also implies that herdig€) = O(hervecdis¢S) - log(mn)). While do not know how to
compute or even approximate hervecdscin polynomial time, it might be an interesting quantity to
investigate, as any approximation for it would imply aD (5 log(mn)) approximation for hereditary
discrepancy.

1.4 Organization

Our algorithms are based on an iterative application of s#afinite programming. In particular, we
construct the coloring over time by solving a sequence ofi-slfinite programs, and use the solution



of the SDP to define correlated random walks with tiny incrnetedor each color. The walk for each
element continues until it reachl or +1. Interestingly, the non-constructive entropy method isagom
component in our algorithm: The semi-definite programs Weatonstruct at each stage are guided by
the parameters given by the entropy method.

We give a high-level overview of our method in sectidn 3. Wgibén sectiori 2 by describing some
preliminary concepts that we need. At the end of sedtion 2alse describe the entropy method, and
show how it is applied to obtain the results of [17] and| [19].skctior 4 we prove theordm 1.3 which
is technically the simplest result. The ideas developerkthbso imply theoreri 1.2 which is proved in
sectior 4.B. Sectidn 4 lays the basic groundwork for se@iamere we eventually prove theorém]1.1.

2 Preliminaries

2.1 Gaussian Random Variables

We recall the following standard facts about Gaussianibligtons. The Gaussian distributidvi(u, o?)
with meany, and variances? has probability distribution function

1 2 2
= = (@—p)?/20
f(x) (271')1/20'6 °

Additivity: If g; ~ N(u1,0%) andgs ~ N(uz2,03) are independent Gaussian random variables,
then for anyty, 2 € R, the random variable

tig1 + taga ~ N(t1pn + tape, 1107 + 1303).
The additivity property of Gaussians implies that
Lemma2.1. Letg € R™ be a random Gaussian, i.e. each coordinate is chosen indiegpely according
to distribution N (0, 1). Then for any vector € R, the random variabldg, v) ~ N(0, |[v||3). Here as
usual,||v||2 = (33, v(i)?)/? denotes thé, norm ofw.

2.2 Probabilistic Tail Bounds for Martingales

We will use the following probabilistic tail bound repealted

Lemma 2.2. Let0 = Xy = X1,..., X, be a martingale with incremenlg, = X; — X;_1. Suppose
for 1 < i < n, we have thalt;|(X;_1,...,Xo) is distributed as);G, whereG is a standard Gaussian
N(0,1) andn; is a constant such that;| < 1 (note thatr; may depend oKX, ..., X;_1). Then,

Pr[|X,| > Avn] < 2e /2.

Proof. Let « be a parameter to be optimized later. We have,

1 2 2
E[e®i|X; 1,...,Xo] < / ay (T vty
e o = ‘ <(27T)1/277i6 Y

—00

a2n? > 1 (y—an?)? /22
= ¢ 771/2./ (me ¢ m)/2m>dy

2,2 2
el N /2 < e /2.
Now,

E[eaX"] _ E[eaXn_lann] _ E[GQX”_IE[GQY”Xn,h o >XOH < GQQ/QE[BO{X"_l].
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Thus it follows by induction tha[e*X"] < e**"/2. Finally,
PI‘[Xn > )\\/ﬁ] _ Pr[eaXn > ea)\\/ﬁ] < efa)\\/ﬁE[eaXn] < efa)\\/ﬁJra?n/Q'

Settingae = \/+/n and noting thaPr[X,, > \\/n| = Pr[X,, < —\/n] implies the claim. O

2.3 Semidefinite Programming

Let M,, denote the class of all symmetnicx n matrices with real entries. For two matricdsB <
R™ " the Frobenius inner product of and B is defined asA ¢ B = tr(ATB) = Y1, > =1 @ijbij.
ForY € R™*", letY > 0 denote that it is semidefinite, i.e. all its eigenvalues am@megative. Then a
general semidefinite program has the following form

max CeY
s.t. D;eY < d,, 1<i<k
Y > 0
Y € M,
whereC, Dy, ...,D; € M, anddy, ..., d; are real numbers.

Semidefinite programs form an important class of convex narog and can be solved efficiently
to any desired level of accuracy. Singeis a symmetric semidefinite matrix, it can be written as
Y = WTW for someW € R™. Lety;; denote the(i, j)-entry of Y and letw; be thei-th column of
W, theny;; = (w;,w;) for eachi,j. Thus, one can equivalently view an SDP as an arbitrary finea
program on variables of the forgw;, w;) wherew; € R™ for somem (however, in the SDP solution,
one cannot control the dimensiam of the vectorsw;. In generalm could be as high as the number of
vectorsw;). We refer the reader t0 [20] for further details about sesfiiite programming.

2.4 The Entropy Method

We recall here the partial coloring lemma of Beck [4], basedhe Entropy Method. We also describe
how it is used to obtain the results of [17] and|[19]. The fore pvesent below is from [13].

Lemma 2.3(Entropy Method) LetS be a set system on anpoint setl/, and let a numbe g > 0 be
given for each sef € S. Suppose\ g satisfy the condition

ﬂ < 3
§g<m>—5 ©

Ke /9 if x> 0.1
g(A) = —1\ i
Kln(A™") ifA<0.1
and K is some absolute constant (wlog we will assume fkiat- 3). Then there is a partial coloring

X that assigns—1 or +1 to at leastn /2 variables (and0 to the rest of the variables), and satisfies
|X(S)| < Ag foreachS € S.

where

This result is proved by arguing (via an entropy/countinguarent) that there are exponentially
many coloringsXy, ..., X, such that for every,j, 1 < i < j < ¢, the difference in discrepancy
|X:(S) — &;(9)] < Ag for all S. Sincel is exponential, there must exist two colorings among tiese
sayX; andXs, that differ onQ2(n) coordinates. Ther(,X; — A»)/2 gives the desired partial coloring.



Spencer’s Result[[17]: The coloring is constructed in phases. In phgs®eri = 0,...,logn, the
number of uncolored elements is at mast< n/2¢. In phasei, apply lemma 213 to these, elements
with A% = c(n; log(2m/n;))/2. Itis easily verified thaf{3) holds for a large enough conista This
gives a partial coloring on at least/2 elements, with discrepancy for any seat mostA%. Summing
up over the phases, the overall discrepancy for any set i®stt m

L= <n2—i log ( 2m ))1/2 — O((nlog(2m/n))"/2).

- n2—t
(A

Srinivasan’s result [19]: Again the coloring is constructed in phages 0, ... ,logn, where at most
n; < n/2" elements are uncolored in phase In phasei, let s; ; denote the number of sets with
number of uncolored elements &, 2/11). As the degree of the set system is at migsive have
s;; < min(m,n;t/27). Using this fact, a (careful) calculation shows tHat (3) tansatisfied if we
setAg = ct'/2 for some large enough constant The logn phases imply a total discrepancy of
O(t'/?1ogn).

3 Our Approach

We consider alinear variant of colorings, where a colorsngvector: € [—1,1]" instead of —1, +1}".
Our algorithm constructs the final coloring iteratively everal steps. Let; € R™ denote the coloring
at timet. We start with the coloring:y = (0,0, ...,0) initially. We update the coloring over time as
xy = x¢—1 +y by applying suitably chosen (tiny) updatgsc R™. Thus the color:, (i) of each element
i € [n] evolves over time, until it reachesl or +1. At that time the color of is consideredixedand is
never updated again. The procedure continues until allldraents are colored eitherl or +1.

The updatesy; are chosen carefully (by rounding a certain SDP) and ar¢éeckl® the parameters
in the partial coloring lemma as follows: Consider the flogtelements at timg i.e. whose color has
not been fixed thus far until time— 1. For ease of discussion here, let us assume that all éements
are floating. Suppose we know the existence (using entroplgader otherwise) of a partial coloring
X on these floating elements, such th(.S)| < Ag for eachS € S. Then we find a collection of real
numbersy (i), for i € [n] that satisfy the following properties.

1. Unbiased GaussianConditioned upon the evolution of the algorithm until time 1, each entry
n¢(7) is distributed as an unbiased Gaussian with standard aeviatt mostl.

2. Large ProgressThe sum of standard deviationsg{:) overi € [n] is at leastn /2.

3. Low Discrepancy:The entries). (i) are correlated such that for every $&t conditional on the
evolution of the algorithm untit — 1, the sumziesj n:(7) is distributed as an unbiased Gaussian
with standard deviation at moatg.

Then we sety, (i) = v-n (i), wherey is a small scaling parameter, say for example 1/n, and update
x(i) = x4-1(7) + (i) for all « € [n]. By property[1, note the colar.(i) of each element forms a
martingale, that stops upon reaching or +1. By properties Il and| 2, at each time step, at I€Hst)
elements have an increment of magnitsdiey). So after abou(1/+2) steps, in expectation, about
Q(n) elements will reach-1 or +1 and get fixed. Moreover, by propeity 3, the discrepancy oheac
setS also forms a martingale with increments of magnitude ropghlyAs). Thus inO(1/+?) steps,
the expected discrepancy of sewill be aboutO(Ag). Note that this gives a procedure that roughly
corresponds to the partial coloring lemma: In particulareg any coloringe € [—1, 1] with « floating
variables, it produces another coloring (i1/+?) steps) with at most/2 floating variables, such that
each sefS incurs an additional discrepancy Afs in expectation.
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This already suffices to show theorelms 1.3[ant 1.2. Let usdentheoreni 1]3. We apply the above
procedure folO((log n)/~?) time steps, until all the variables are fixed{te1, +1}. As the hereditary
discrepancy is\, we can always sehgs = ), irrespective of the elements fixed {e-1,+1} thus far.
This implies an expected discrepancy®@f\/log n) for each sefs. By standard tail bounds and taking
union over then sets, this implies a®(\ log(mn)) discrepancy coloring.

However the above idea by itself does not suffice for thedrelin The problem is that here we
want to guarantee that the discrepancyduveryset isO(n!/2), whereas the above idea only gives us
discrepancy)(n!/2) in expectation So would end up losing@(log'/? n) factor due to the union bound
over the sets (obtaining nothing better than a random e@priSo, our second idea is to observe that
we can control the parametefss for each set. We refine the probabilistic procedure abover®hyfi
adjusting the parameteXg for each setS over time, depending on how “dangerou$”has become,
while ensuring that\ ¢’s still satisfy the entropy conditio (3). To illustrateetidea, we sketch below a
simplerO((nloglog log n)'/?) constructive bound.

Consider the following: Initially, we set alhg = ¢n'/2 for large enough: so that[(B) is satisfied
easily and has some slack. As previously, we obtain a carneipg vectory; and add it to the coloring
thus far. We repeat this fap(1/+?) steps, at which point we expect half the colors to reach eithe
or +1. During these steps, if the discrepariey(S)| reachec(n log log log n)'/2 for some sefS, we
label S dangerous and set it8s = n'/?/logn. This ensures that the discrepancy incremg(s)
will have standard deviation at mostn'/? / log n) henceforth, making extremely unlikely to incur an
additionalen!/? discrepancy over the nei(1/+2) steps. However, reducing ties comes at the price
of increasing the entropy contribution of s¢in the left hand side of{3). Indeed, for the algorithm to
be able to proceed, we need to ensure fhat (3) still holdstivithe reduced\ s (otherwise, we cannot
guarantee the existence of the update veciprgith required properties).

To show that[(B) still holds, we use two facts. First, thatyoalsmall fraction of sets will get
dangerous. Second, the entropy contribution of each dangeset is not too high. In particular, by
Lemmal2.2, at mo2exp (—2logloglogn) = 2(log logn)~2 fraction of sets ever get dangerous dur-
ing the 1/42 steps. So, with probability at leasy/2, the number of dangerous sets never exceeds
4n(loglogn)~2. We condition on this event. On the other hand, each dangesetsS contributes
g(Ag/|S[Y?) < g(1/logn) < Kloglogn to @), and hence the total entropy contribution of danger-
ous sets (conditioned on the event abovedis/(loglogn)?) - Kloglogn = o(n). Thus [3) will
continue to hold, if there was some (reasonably small) giadlegin with.

A refinement of this idea, by considering multiple dangereusls, allows us to reduce the discrep-
ancy down taO(n'/?) implying theoreni L11.

4 An pseudo-approximation for Discrepancy

We prove theoreri 113. L€f/,S) be a set systemly = [n], S = {S1,...,Sn} with hereditary
discrepancy\. For anyx € R", let z(S;) denote theziesj x(4). Our algorithm will construct the
final coloring iteratively in several steps. Let € R™ denote the coloring at time We start with
xo = (0,0,...,0) initially. At each time steg, we updater; = z;_1 + ; for some suitably chosen
vectory, € R™. Atthe end, the final solution; € {—1, +1}" will satisfy thatz ¢(S;) = O(Alog(mn))
for eachj € [m)].

During the algorithm, if elementreachest1 or —1 at timet, i.e. z,(i) becomest1 or —1, we say
thati is fixedand it will never be updated again. A variableaié/e at beginning of time, if it has not
been fixed by time — 1. Let A(¢) denote the set of alive variables at end of tim8o,A(0) = [r], and
A = () at the end, and moreoved(¢)| is non-increasing with. Let us assume that the algorithm knows
A (it can try out all possible values fo). We now describe the algorithm.



4.1 Algorithm

Initialize, z(i) = 0 for all i € [n]. Lets = 1/(4n(log(mn))'/?). Letl = 8logn/s%.
For each time step= 1,2, ..., ¢ repeat the following:

1. Find a feasible solution to the following semidefinite gnam:

1) will3 < A*  foreach ses;, 4)
1€S;

lilf = 1 Vie A(t—1) 5)

loill; = 0 Vig A(t—1) (6)

This SDP is feasible as setting-v; = X'(i)X (j), whereX is the minimum discrepancy coloring
of the set system restricted #(¢ — 1) is a valid solution. Let; € R", i € [n] denote some
arbitrary feasible solution to the SDP above.

2. Constructy, € R™ as follows: Lety € R™ be obtained by choosing each coordinat8 indepen-
dently from the distribution\V (0, 1). For eachi € [n], let;(i) = s{g, v;).
Updater; = ;1 + ;.
If |z:(¢)| > 1, for anyi, abort the algorithm.

3. Foreach, setx(i) = 1if 24(i) > 1 —1/norseta;(i) = —11if 24(i) < -1+ 1/n.
UpdateA(t) accordingly.

Return the final coloring:,.

4.2 Analysis

We begin with some simple observations.

1. At each time step, we havel|v;||3 = 1 for eachi € A(t — 1) and||v;||3 = 0 fori ¢ A(t —1).
Thus, by lemm&2]1, conditioned éne A(t — 1), we havey;(i) ~ N(0,s?) fori € A(t — 1)
and~.(i) = 0 otherwise. Similarly, conditioned on the evolution of tHgaaithm until t — 1,
the incrementy,(S;) for S; at timet is an unbiased Gaussian with variance at mdsf (the
precise value of the variance will depend ofb;) = >_;cs, .ic (1) vi» Which depends on the
SDP solution at time, which in turn depends on the evolution of the algorithm Iuittie ¢ — 1,
in particular on the set of alive variablegt — 1)).

2. The rounding in step 3 of the algorithm can effect the diidiscrepancy by at most- (1/n) = 1,
as each variable is rounded up or down at most once and is meagified thereafter. Not& > 1,
unless the set system is empty, so we will ignore the effetttisfrounding step henceforth.

3. For the algorithm to abort in stép 2 at timet is necessary that; (i) > 1/n = 4s(logn)/?, as
stef 8 ensures that; 1(i)| < 1—1/n. Sincey(4) is distributed asV (0, s?), this probability is at
mostexp (—81nmn) = (mn)~%. Since there at most variables and only = O(n?log?(mn))
time steps, by union bound the probability that the algarittver aborts due to this step is at most
1/(mn)*.

The following key lemma shows that the number of alive vdéathalves inO(1/s%) steps with
reasonable probability. The proof below follows a simplexsentation due to Joel Spencer.



Lemma 4.1. Supposey € [—1,+1]|" be an arbitrary coloring with at most alive variables. Let
be the coloring obtained after applying steps$ (I)-(3) of algorithm for 8/s> time units. Then the
probability thatz hask/2 or more alive variables is at mosy/4.

Proof. For1 <t < u = 8/s?, lety; denote the coloring at timestarting fromy, i.e. aftert applications
of steps[(1L){(B). Lef be the set of alive variables at= 0. Let k; denote the number of variables alive
the end of timet. For each time, let us definer, = >, w:(i)? if k—; > k/2. Otherwise, define
ry = ri_1 + s2k/2. Now, we claim that conditioned on any coloripg i, the increment; — r;_; is

at leasts?k /2 in expectation (over the gaussigne R" at timet). This is clearly true ifk; < k/2.
Otherwise ifk; > k/2, then

E[re — ri—1lye—1] = Elre|lye—] —r(t —1)

> (1) + ’Yt(i))2] - Z ye-1(i)?

2

= Z (2yt71E[%(i)] + E[%(i)z]) > 5%k > Szk?/Q-
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The last step follows aB,[v:(i)] = 0 andE,[v:(i)?] = s* for each alive variable i;_, and is 0
otherwise.

If there are still at least /2 alive variables at = u, thenr, = >, v:(i)> < k. Moreover, for
any run of the algorithm, it holds that, < k + ust/z This is because as long As> k/2 it must be
thatr, < k, but if k; becomes less thaty2, r; increases by exactls?k/2 at each subsequent time step.
Combining these facts we have,

us?k/2 < Elry] < Prlk, > k/2] -k + (1 — Pr[k, > k/2]) - (k + us’k/2)

and hence
k

> < —
Prlf 2 K/2) < s

= 1/4.

Let £ denote the event that the final colorimgis a propef —1, +1} coloring.

Lemma 4.2. Pr[E] > 1/n. That is, a proper coloring is produced with probability atlst1 /n.

Proof. We apply lemm&4l1 withy = 2, at epochs = 0,8/s%,16/s2,...,(8logn)/s* = £. As the
number of alive variables initially i, with probability at least1 — 1/4)1°¢™ > 1/n, the number of
alive variables reduces more than half at each epoch, arat tika@ number of alive variables is zero at
t="4. O

We now prove theoreiin_1.3. Lé?; denote the (bad) event that s&t has discrepancy more than
2log?(mn) - As¢*/? at the end of time step. Let B = B, V By V ... V B,,, and letB¢ denote
the complement of3. To prove theorerh 113, it suffices to show tia{B° N E] > 1/(2n). Since
Pr[B¢N E] > Pr[E] — Pr[B] andPr[E] > 1/n by Lemmd4.R, it suffices to show that[B] < 1/2n.

As z,(S;) = SL_, vw(S;) forms a martingale, with each increment distributed (conditional
upon the history untit — 1) as unbiased Gaussian with variance at mdst, by lemmd 2.2 we have
Pr[B;] = Pr[|z¢(S;)| > 2log!/2(mn) - Ast/?] < 2exp(—2log(mn)) = 2/(m?n?). By union bound
over them sets,Pr[B] < 2/(mn?) < 1/(2n) which implies the result.



4.3 Constructive version of Srinivasan’s result

We prove theorerh 1.2. Let denote the number of elements, andsetdenote the number of sets.
Since, each element lies in at maestets, we can assume that < nt¢. The algorithm is essentially
identical to that in sectionl4. The only difference is thataay stept in the algorithm, the entropy
method, as applied in [19], only guarantees us a partiakicgdinstead of a complete coloring) of the
alive variablesA(t — 1) with discrepancy:t!/2. So we modify the first step of the algorithm above as
follows:

Find a feasible solution to the following semidefinite pramr

1) wll3 < ¢ foreach sef; 7
i€s;

> wills = A -1)[/2 8
i€A(i—1)

lwill3 < 1 Vie A(t —1) 9)

loill; = 0 Vig A(t—1) (10)

The constant is not stated explicitly in[[19], but it can be calculated f@ct our algorithm can do
a binary search ondo determine the smallest valudor which the SDP has a feasible solution). This
program is feasible, ag(1) = X'(i), whereX' is the partial coloring ofd (¢ — 1) with discrepancy:t'/2,
is a feasible solution.

The analysis is essentially identical to that in secibn 5.i\lemma& 411, during6/s? steps, the
number of alive variables reduces by a factor of 2, with pbilig at leastl /2 (note that we havé6 /s>
steps above instead 6f s> steps in Lemma4l1, because of the partial coloring instéambmplete
coloring of A(t — 1)). Thus, there is a proper coloring with probability at leb&t at end of(16/52) -
log n steps. The expected discrepancy of eactfsetthis coloring is at most'/?(log n)/2. As there
at mostnt sets, arguing as at the end of secfiod 4.2, conditioned aainibg a proper coloring at the
end, each set has discrepancy at @&t log n)'/?(log(nt))'/?) = O(t'/?log n).

5 Constructive version of Spencer’s result

In this section we prove theorédm11.1. In fact, we will prove thore general guarantee otn'/2 log(2m/n))
for set systems with, elements andh sets, wheren > n.

To show this, we will design an algorithmic subroutine witle following property.

Theorem 5.1. Letx € [—1, 1] be some fractional coloring with at mostalive variables (i.e.i with
x(i) ¢ {—1,+1}). Then, there is an algorithm that with probability at leds®, produces a fractional
coloringy € [—1,1]™ with at mosta/2 alive variables, and the discrepancy of any set increasest by
mostO(a'/? log(2m/a)).

Given theoreni 5]1, the main result follows easily.

Lemma 5.2. The procedure in theorein 5.1 implies an algorithm to find appro{—1,+1} color-
ing with discrepancyO(n'/?log(2m/n)). Moreover, the algorithm succeeds with probability at teas
1/(2log m).

Proof. We start with the coloring: = (0,0, ...,0), and apply theorem 5.1 fér= log log m steps. With
probability at leas2— = 1/ log m, this gives a fractional coloring with at mostn/2¢ = n/logm alive
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variables, with the property that the discrepag¢y) of any set is at most

éo ((2%)1/2 log <m2s+1>> 0 (nl/z log (27”1)) '

Finally, to obtain a proper coloring from y, we randomly round each alive variablgi.e. set
z(i) = —1 with probability (1 — y(i))/2 or to+1 with probability (1 4 y(7))/2.

In expectationE[z(i)] = y(i). Since there at most/log m variables, by Chernoff bounds, the
probability that a sef incurs an additional discrepancy effin/log m)'/2 is at most2e—<*/2. Thus,
choosinge = 21og'/? m, with high probability every set incurs an additional desgancy ofo(n'/?) <
O(n'/?1og(2m/n)). O

We will focus on proving theorem 3.1 henceforth. We first diggcthe subroutine, and then analyze

5.1 Algorithmic Subroutine

Consider the following subroutine. The input is a colorifsge [—1, +1]™ with at mosta alive variables.
Lets = 1/(41og%?(mn)), and lety = log(2m/a). Letd = 91og(20K) and letc = 64(d(1+1n K))*/2
be constants wherf is defined as in{3). For each time= 1,2, ... repeat the following steps until
t = 16/s? or fewer tham /2 variables are alive, whichever occurs earlier.

1. Foreach sef;, letr; denote the total discrepancy incurreddythus far, i.en; = |12 74(S;)|.
Define(0) = 0 and fork = 1,2, ..., define

B(k) = ca**(qg+1) (2 - %) .

Fork =0,1,2,..., we say thatS; is k-dangerous at timeif n; € [5(k), B(k + 1)).
If n; > 25(1) (note tha3(1) > B(k) for anyk) for any j, abort the algorithm and return fail.

2. Fork=0,1,2...,letS(k) C S denote the sub-collection of sets that are currekitiangerous.

Let A(t — 1) denote the set of variables that are currently alive.#Fer0, 1,. .., define
da(g +1)
k) = ——+.
o) = e

Find a feasible solution to the following semidefinite pramg:

ollwills = At -1)/2 (11)
i€[n)
1) wll3 < ak)  VE=0,1,2,..., ¥S; € S(k) (12)
i€S;
lvill3 < 1 Vie At —1) (13)
loill3 = 0 Vi ¢ At — 1) (14)

If the SDP does not have feasible solution, abort the algorénd return fail.
Otherwise, let; € R, i = 1,...,n be the solution returned by the SDP.
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3. We constructy, from thesev; as follows: Letg € R™ be obtained by choosing each coordinate
¢(i) independentlyV (0, 1). For eachi € [i], lety:(i) = s(g,v;). Updater; = x;_1 + ;. Abort
the algorithm if|z.(:)| > 1 for anyi.

4. For eachi, if x4(i) > 1 — 1/log(mn), setz:(i) = 1 with probability (1 + x4(i))/2 or to —1
otherwise. Similarly, ifz;(i) < —1 4 1/log(mn), setz,(i) = —1 with probability (1 — x¢(7))/2
or to+1 otherwise. Updatel(¢) accordingly.

5.2 Analysis

We first note some simple observations.

1. For the algorithm to abort in stép 3, it must be the caseyiat > 1/ log(mn) for somet, i (this
is ensured by ste[ 4 of the algorithm). However, sinee 1/(41log®?(mn)), this happens with
probability at mostl /(m*n*) and hence we ignore its effect henceforth.

2. The rounding in stepl4 adds an overall discrepancg @f'/?) to every set, during the course
of the subroutine. This is because, the variance incurreghvehvariable is rounded in step 4 is
O(1/log(mn)). Since at most variables will ever be rounded, the variance for any coirstis
O(a/log mn). The result now follows by standard tail bounds and takingmiover them sets.

The following lemma gives a sufficient condition for the SDRbe feasible.

Lemma 5.3. Consider any time. If for everyk = 1,2, ... no more thann,, = a2~ 19*+1) /K sets are
k-dangerous at, then the SDP defined Hy {(11)-[14) has a feasible solution.

Proof. We will show that if the conditions of the lemma hold, then hg £ntropy method, there exists
a feasible partial coloringt’ on at leas{A(t — 1)|/2 elements such thag'(S;)| < Ag, = (au(k))Y/?

is satisfied for eaclk-dangerous sef;, for k = 0,1,2,.... As X gives a feasible solution to the SDP
constraints[(11):(14), this will imply the result.

Thus, it suffices to show that conditidn (3) holds for the giehoice ofm; andAg;. Thatis,

At —1)] (15)

o] =

> o) < £(0/2) <

j€[m]
where); = Ag, - (|S; NA(t — 1))~1/2. Sinceg()) is a decreasing function of, to prove [I5), we can
use any lower bound ok;. For anyk-dangerous sef;, for k = 0,1,.. .,
Nj = As, - (195N A(E = D)2 = (k) (1A = 1)) = (dlg + 1)k +1) 7)1,

Let us defing (k) = (d(q + 1)(k +1)~%)1/2.
We now upper bound the left hand side [0fl(15). &8) = (d(q + 1))'/2 > 0.1, the contribution of
0-dangerous sets to the left hand sidelof (15) is at most

m - K -exp (=¢(0)?/9) = m - K - exp(—d(q +1)/9) < 2—10me><p(—q -1 < 2%- (16)
We now bound_, ., my, - g(C(k)). For anyk > 1, we have
g(¢(k)) < K - max(In(10),1n(1/¢(k))) < K - max(In(10),In((k + 1)*/2)) < 5K In(k + 1).
Thus,
> mi-g(Ck) < %cﬁ_lo(k“) 5K In(k +1) < a/20. (17)
k>1 k>1
By (18) and[(1T¥) it follows tha{(15) holds, which proves teenima. O
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Lemma 5.4. For k = 1,2,..., let D, denote the event that more than, = a2~ 0%+ /K sets ever
becomek-dangerous during = 1,...,16/s2. It holds thatPr[D;,] < 2-5*+1),

Proof. We first prove the claim fok = 1. Suppose some sgt; becomesl-dangerous at some time.
Then, there must be a timtevhen|n; | first exceeds3(1). However, untilé, n; was evolving as martin-
gale, with each conditional increment distributed as arias#l Gaussian with variance at magb)s?.
By lemma2.2, this has probability at most

o (“gaatarm) < (<)

1 1
= exp(—64(g + 1)(1 + In(K))) < =202 = ETW%' (18)

Thus the expected number of such sets is at m@stK )2~ and hence the claim fdr = 1 holds by
Markov’s inequality.

Fork > 2, the argument is similar. Fa$; to becomek-dangerous during phage it must have
becomek — 1-dangerous at some timtaluring phase and then traversed the distangg:) — 5(k — 1)
during at mostl6/s% time ster@. Since,(S;) (the conditional increment af;) has variance most
a(k —1)s®> whenevem; € [B(k — 1), 3(k)], due to the SDP constraiff {12), Lemmal 2.2 implies that the
probability thatS; becomes:-dangerous at any time is at most

exp (—(B(k) — B(k —1))?/(4a(k — 1)s> - (16/5))) < exp (—(c*(q + 1)k)/(64d))
— exp(—64(g+ 1)(1 +In K)k) < % g1, g-32(kt1)

By Markov’s inequality,Pr[D;,] < 2~°(+1) which proves the lemma. O

We can now finish off the proof of theordm b.1. LiBt= V2 Dy, and letE denote the event that
the number of alive variables is more thaf® att = v = 16/s2. Let D¢ and E© denote the complement
of D andE. Note that if D¢ holds, then by Lemmia 3.3, the SDP is always feasible, andigogithm
never aborts in steg 2 of the algorithm. Moreoverpgs < 1 for k& = ¢(logm) for large enough, it
follows that if Dy, holds then no set ever incurs a discrepancy of more fiiah < 25(1).

Now to prove theorer 5.1 it suffices to show tiRafD¢|E<] > 1/2.

By Lemmal5.4,Pr[D] < >, Pr[Dy] < 1/16. Also, Pr[E] < 1/4 follows by an argument
identical to that in the proof of lemmia4.1. In particulartie number of alive variables ais at least
a/2, we setr, = ) z4(1)%, otherwise, we set; = r;_; + s%a/4. Thus, irrespective of; i, the
incrementr; — r;_1 increases in expectation by

Su?= Y il > Pa/a.
)

i A(t—1)
Moreover, as; can never exceed+ ts?a/4, it follows that afteru steps,
us?a/4 < Elr <Pr(E)-a+ (1 —Pr(E))- (a+ us’a/4)

implying thatPr[E] < 4/(us?) = 1/4.
Thus,Pr[D¢|E°] > Pr[DN E€] > 1 — Pr[D] — Pr[E] > 1/2, and the result follows.

Istrictly speaking, there is a non-zero probability thadt a 2 or less dangerous set may becomdangerous at next
step, however this probability is super-polynomially shaal(8(k + 1) — 8(k))/s?a(k) > log® n (anda(k) ~ a(k — 1)).
Moreover, it can be made arbitrarily small by settingrbitrarily small, sayl /n. So, we can ignore this event in the analysis.
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