On rainbow trees and cycles

Alan Frieze
Michael Krivelevich
We consider edge colorings.
We consider edge colorings.

A coloring is b-bounded if no color is used more than b times.
We consider edge colorings.

A coloring is b-bounded if no color is used more than b times.

A set of edges S is rainbow colored if no two edges in S have the same color.
We consider edge colorings.

A coloring is \(b \)-bounded if no color is used more than \(b \) times.

A set of edges \(S \) is rainbow colored if no two edges in \(S \) have the same color.

If \(b \leq (n - 1)/4e \) then every \(b \)-bounded coloring of \(K_{n,n} \) contains a rainbow perfect matching – Erdős and Spencer.
We consider edge colorings.

A coloring is b-bounded if no color is used more than b times.

A set of edges S is rainbow colored if no two edges in S have the same color.

If $b \leq (n - 1)/4e$ then every b-bounded coloring of $K_{n,n}$ contains a rainbow perfect matching – Erdős and Spencer.

If $b \leq n/64$ then every b-bounded coloring of K_n contains a rainbow Hamilton cycle – Albert, Frieze and Reed.
We consider edge colorings.

A coloring is b-bounded if no color is used more than b times.

A set of edges S is rainbow colored if no two edges in S have the same color.

If $b \leq (n - 1)/4e$ then every b-bounded coloring of $K_{n,n}$ contains a rainbow perfect matching – Erdős and Spencer.

If $b \leq n/64$ then every b-bounded coloring of K_n contains a rainbow Hamilton cycle – Albert, Frieze and Reed.

Extends to complete digraph with $b \leq n/128$.
We consider edge colorings.

A coloring is b-bounded if no color is used more than b times.

A set of edges S is rainbow colored if no two edges in S have the same color.

If $b \leq (n - 1)/4e$ then every b-bounded coloring of $K_{n,n}$ contains a rainbow perfect matching – Erdős and Spencer.

If $b \leq n/64$ then every b-bounded coloring of K_n contains a rainbow Hamilton cycle – Albert, Frieze and Reed.

Extends to complete digraph with $b \leq n/128$.

Both theorems use the (lop-sided) local lemma.
Rainbow Cycles

Theorem

There exists an absolute constant $c > 0$ such that if an edge colouring of K_n is cn-bounded then there exist rainbow cycles of all sizes $3 \leq k \leq n$.
There exists an absolute constant $c > 0$ such that if an edge colouring of K_n is cn-bounded then there exist rainbow cycles of all sizes $3 \leq k \leq n$.

We see immediately from AFR that if $b \leq n/128$ then every b-bounded coloring of K_n contains rainbow cycles of lengths $n/2 \leq k \leq n$. Indeed every set of $n/2 \leq k \leq n$ vertices contains a spanning rainbow cycle.
Rainbow Cycles

Theorem

There exists an absolute constant $c > 0$ such that if an edge colouring of K_n is cn-bounded then there exist rainbow cycles of all sizes $3 \leq k \leq n$.

We see immediately from AFR that if $b \leq n/128$ then every b-bounded coloring of K_n contains rainbow cycles of lengths $n/2 \leq k \leq n$. Indeed every set of $n/2 \leq k \leq n$ vertices contains a spanning rainbow cycle.

For smaller k we use the following: If $c > 0$ and an edge colouring of K_n is cn-bounded, then there exists a set $S \subseteq [n]$ such that $|S| = N = n/2$ and the induced colouring of the edges of S is $c'N$-bounded where $c' = c(1 + 1/(\ln n)^2)$.
Rainbow Cycles

For smaller k we use the following: If $c > 0$ and an edge colouring of K_n is cn-bounded, then there exists a set $S \subseteq [n]$ such that $|S| = N = n/2$ and the induced colouring of the edges of S is $c'N$-bounded where $c' = c(1 + 1/(\ln n)^2)$.

To prove this, we take a random $n/2$ set S.

To complete the theorem, we take c sufficiently small and we apply this $\sim \log_2 n$ times until we have shown the existence of rainbow cycles of length $N \leq k \leq n$ where $cN \leq 1$ and a set of N vertices for which the edge colouring is cN bounded.
Rainbow Trees

Theorem

Given a real constant $\epsilon > 0$ and a positive integer Δ, there exists a constant $c = c(\epsilon, \Delta)$ such that if $n \geq (1 - \epsilon)\Delta$ and an edge colouring of K_n is cn-bounded, then it contains a rainbow copy of every tree T with at most $(1 - \epsilon)n$ vertices and maximum degree Δ.
Rainbow Trees

Theorem

Given a real constant $\epsilon > 0$ and a positive integer Δ, there exists a constant $c = c(\epsilon, \Delta)$ such that if $n \geq (1 - \epsilon)\Delta$ and an edge colouring of K_n is cn-bounded, then it contains a rainbow copy of every tree T with at most $(1 - \epsilon)n$ vertices and maximum degree Δ.

Conjecture: There is a constant $c = c(\Delta)$ such that every cn-bounded edge colouring of K_n contains a rainbow copy of every spanning tree of K_n which has maximum degree at most Δ.
Our main tool is a theorem of Alon, Krivelevich and Sudakov:

Suppose that $\Delta \geq 2$ and $0 < \epsilon < 1/2$. Let H be a graph on N vertices with minimum degree δ_H and maximum degree Δ_H.

Suppose that
Our main tool is a theorem of Alon, Krivelevich and Sudakov:

Suppose that $\Delta \geq 2$ and $0 < \epsilon < 1/2$. Let H be a graph on N vertices with minimum degree δ_H and maximum degree Δ_H.

Suppose that

- N is sufficiently large.
Our main tool is a theorem of Alon, Krivelevich and Sudakov:

Suppose that $\Delta \geq 2$ and $0 < \epsilon < 1/2$. Let H be a graph on N vertices with minimum degree δ_H and maximum degree Δ_H.

Suppose that

- N is sufficiently large.
- Δ_H is not too large w.r.t. δ_H.

Our main tool is a theorem of Alon, Krivelevich and Sudakov:

Suppose that $\Delta \geq 2$ and $0 < \varepsilon < 1/2$. Let H be a graph on N vertices with minimum degree δ_H and maximum degree Δ_H.

Suppose that

- N is sufficiently large.
- Δ_H is not too large w.r.t. δ_H.
- H has sufficiently good expansion.
Our main tool is a theorem of Alon, Krivelevich and Sudakov:

Suppose that \(\Delta \geq 2 \) and \(0 < \epsilon < 1/2 \). Let \(H \) be a graph on \(N \) vertices with minimum degree \(\delta_H \) and maximum degree \(\Delta_H \).

Suppose that

- \(N \) is sufficiently large.
- \(\Delta_H \) is not too large w.r.t. \(\delta_H \).
- \(H \) has sufficiently good expansion.

Then \(H \) contains a copy of every tree with \(\leq (1 - \epsilon)N \) vertices and maximum degree \(\leq \Delta \).
Strategy: Given \(cn \)-bounded coloring,
Strategy: Given cn-bounded coloring,

- Construct $G_1 = G_{n,p}$ where $p = d/n$.
Strategy: Given cn-bounded coloring,
- Construct $G_1 = G_{n,p}$ where $p = d/n$.
- Remove all edges from G_1 that contain repeated colors.
Strategy: Given cn-bounded coloring,

- Construct $G_1 = G_{n,p}$ where $p = d/n$.
- Remove all edges from G_1 that contain repeated colors.
- Remove vertices of degree outside $[d/2, 2d]$ to create G_2.

Strategy: Given cn-bounded coloring,

- Construct $G_1 = G_{n,p}$ where $p = d/n$.
- Remove all edges from G_1 that contain repeated colors.
- Remove vertices of degree outside $[d/2, 2d]$ to create G_2.
- Remove some more vertices so that minimum degree is now $\geq d/4$.

Strategy: Given cn-bounded coloring,

- Construct $G_1 = G_{n,p}$ where $p = d/n$.
- Remove all edges from G_1 that contain repeated colors.
- Remove vertices of degree outside $[d/2, 2d]$ to create G_2.
- Remove some more vertices so that minimum degree is now $\geq d/4$.
- Show that whp G_3 satisfies the AKS conditions.
Strategy: Given cn-bounded coloring,

- Construct $G_1 = G_{n,p}$ where $p = d/n$.
- Remove all edges from G_1 that contain repeated colors.
- Remove vertices of degree outside $[d/2, 2d]$ to create G_2.
- Remove some more vertices so that minimum degree is now $\geq d/4$.
- Show that whp G_3 satisfies the AKS conditions.

Existence of rainbow trees has now been demonstrated.
Using the (lop-sided) local lemma one can also prove:

Let T be an arbitrary rooted tree with ν vertices.

Let T_1, T_2, \ldots, T_ν be copies of T with roots x_1, \ldots, x_ν.

Run a path through x_1, \ldots, x_ν to create the tree $T(\nu)$.

There exists an absolute constant $c > 0$ such that if an edge colouring of K_n is cn-bounded then there exists a rainbow copy of every possible $T(\nu)$.
Open Questions
Open Questions

- Tighten the constants.
Open Questions

- Tighten the constants.
- Show that there exists \(c = c(\Delta) \) so that every \(cn \)-bounded colouring of \(K_n \) contains a rainbow copy of every tree with \(n \) vertices and with maximum degree \(\leq \Delta \).
Open Questions

- Tighten the constants.
- Show that there exists $c = c(\Delta)$ so that every cn-bounded colouring of K_n contains a rainbow copy of every tree with n vertices and with maximum degree $\leq \Delta$.
- Show that there exists a constant $c > 0$ such in every cn-bounded colouring of K_n there are an exponential number of rainbow Hamilton cycles.
Open Questions

- Tighten the constants.
- Show that there exists $c = c(\Delta)$ so that every cn-bounded colouring of K_n contains a rainbow copy of every tree with n vertices and with maximum degree $\leq \Delta$.
- Show that there exists a constant $c > 0$ such in every cn-bounded colouring of K_n there are an exponential number of rainbow Hamilton cycles.
- Construct a polynomial time algorithm to find a rainbow Hamilton cycle in a cn-bounded coloring of K_n.
Open Questions

- Tighten the constants.
- Show that there exists $c = c(\Delta)$ so that every cn-bounded colouring of K_n contains a rainbow copy of every tree with n vertices and with maximum degree $\leq \Delta$.
- Show that there exists a constant $c > 0$ such in every cn-bounded colouring of K_n there are an exponential number of rainbow Hamilton cycles.
- Construct a polynomial time algorithm to find a rainbow Hamilton cycle in a cn-bounded coloring of K_n.
- Construct a polynomial time algorithm to find a random rainbow Hamilton cycle in a cn-bounded coloring of K_n.
Open Questions

- Tighten the constants.
- Show that there exists $c = c(\Delta)$ so that every cn-bounded colouring of K_n contains a rainbow copy of every tree with n vertices and with maximum degree $\leq \Delta$.
- Show that there exists a constant $c > 0$ such in every cn-bounded colouring of K_n there are an exponential number of rainbow Hamilton cycles.
- Construct a polynomial time algorithm to find a rainbow Hamilton cycle in a cn-bounded coloring of K_n.
- Construct a polynomial time algorithm to find a random rainbow Hamilton cycle in a cn-bounded coloring of K_n.
- For what values of c, p does a cnp bounded coloring of $G_{n,p}$ contain a rainbow Hamilton cycle whp?
THANK YOU