Packing Hamilton Cycles in ε-Regular Graphs

Alan Frieze
Michael Krivelevich
General question:

What is the maximum number of edge disjoint Hamilton cycles that can be found in a graph G?
Background: Random graphs

Let a graph G have property H_k if it contains a collection of $b_k = 2^c$ edge disjoint Hamilton cycles plus a further edge disjoint perfect matching if k is odd.

Clearly, $G = 2^H_k$ if $k > (G)$.

Consider the graph process $G_0; G_1; \ldots; G_t$ where $G_0 = (\{n\}; n)$ and $G_i + 1$ is obtained from G_i by adding a random edge. Let $t_k = \min\{t : (G_t) = k\}$ and $h_k = \min\{t : G_t \in H_k\}$.

- p.3
Background: Random graphs

Let a graph G have property \mathcal{H}_k if it contains a collection of $\lceil k/2 \rceil$ edge disjoint Hamilton cycles plus a further edge disjoint perfect matching if k is odd.
Let a graph G have property \mathcal{H}_k if it contains a collection of $\lceil k/2 \rceil$ edge disjoint Hamilton cycles plus a further edge disjoint perfect matching if k is odd.

Clearly, $G \notin \mathcal{H}_k$ if $k > \delta(G)$.

Background: Random graphs

Consider the graph process $G_0; G_1; \ldots; G_t$ where $G_0 = (\mathbb{Z}_n; \mathbb{Z}_n)$ and G_{i+1} is obtained from G_i by adding a random edge.
Background: Random graphs

Let a graph G have property \mathcal{H}_k if it contains a collection of $\lfloor k/2 \rfloor$ edge disjoint Hamilton cycles plus a further edge disjoint perfect matching if k is odd.

Clearly, $G \notin \mathcal{H}_k$ if $k > \delta(G)$.

Consider the graph process G_0, G_1, \ldots, G_t where $G_0 = ([n], \emptyset)$ and G_{i+1} is obtained from G_i by adding a random edge.
Background: Random graphs

Let a graph G have property \mathcal{H}_k if it contains a collection of $\lceil k/2 \rceil$ edge disjoint Hamilton cycles plus a further edge disjoint perfect matching if k is odd.

Clearly, $G \notin \mathcal{H}_k$ if $k > \delta(G)$.

Consider the graph process G_0, G_1, \ldots, G_t where $G_0 = ([n], \emptyset)$ and G_{i+1} is obtained from G_i by adding a random edge.

Let $t_k = \min \{ t : \delta(G_t) = k \}$ and $h_k = \min \{ t : G_t \in \mathcal{H}_k \}$.
Theorem Bollobás and Frieze(1985)
If $k = o(\ln \ln n)$ then whp $t_k = h_k$.

Conjecture: Whp $G_{t^2 H}(G_{t^2})$ for $1 < t^2 n$.

Question: What is $H(G_{t^2})$?
Theorem Bollobás and Frieze (1985)
If \(k = o(\ln \ln n) \) then \(\text{whp} \ t_k = h_k \).

Conjecture: \(\text{Whp} \ G_t \in \mathcal{H}_\delta(G_t) \) for \(1 \leq t \leq \binom{n}{2} \).
Theorem Bollobás and Frieze (1985)

If $k = o(\ln \ln n)$ then whp $t_k = h_k$.

Conjecture: Whp $G_t \in \mathcal{H}_{\delta(G_t)}$ for $1 \leq t \leq \binom{n}{2}$.

For a graph G let $\pi_H(G)$ denote the size of the largest family of edge disjoint hamilton cycles in G.
Theorem Bollobás and Frieze (1985)
If $k = o(\ln \ln n)$ then whp $t_k = h_k$.

Conjecture: Whp $G_t \in \mathcal{H}_\delta(G_t)$ for $1 \leq t \leq \binom{n}{2}$.

For a graph G let $\pi_H(G)$ denote the size of the largest family of edge disjoint hamilton cycles in G.

Question: What is $\pi_H(G_{n,1/2})$?
Theorem Bollobás and Frieze (1985)
If $k = o(\ln \ln n)$ then whp $t_k = h_k$.

Conjecture: Whp $G_t \in \mathcal{H}_\delta(G_t)$ for $1 \leq t \leq \binom{n}{2}$.

For a graph G let $\pi_H(G)$ denote the size of the largest family of edge disjoint hamilton cycles in G.

Question: What is $\pi_H(G_{n,1/2})$?

Theorem Whp $\pi_H(G_{n,1/2}) \geq \frac{n}{4} - O(n^{5/6} \ln n)$.
\(\varepsilon \)-regular graphs
Let $G_{n, \alpha, \varepsilon}$ denote the set of graphs G on vertex set $[n]$ which have the following properties:

P1 $\delta(G) \geq \alpha n$.

P2 If S, T are disjoint subsets of $[n]$ and $|S|, |T| \geq \varepsilon n$ then
\[
\left| \frac{e_G(S,T)}{|S||T|} - \alpha \right| \leq \varepsilon,
\] where $e_G(S, T)$ is the number of $S - T$ edges in G.

ε-regular graphs
Let $G_{n,\alpha,\varepsilon}$ denote the set of graphs G on vertex set $[n]$ which have the following properties:

P1 $\delta(G) \geq \alpha n$.

P2 If S, T are disjoint subsets of $[n]$ and $|S|, |T| \geq \varepsilon n$ then
\[
\left| \frac{e_G(S,T)}{|S||T|} - \alpha \right| \leq \varepsilon,
\]
where $e_G(S, T)$ is the number of $S - T$ edges in G.

Nb: Whp $G_{n,p} \in \mathcal{G}(n, p - O(n^{-1/2} \ln n), O(n^{-1/3} \ln n))$, for constant p.

ε-regular graphs
Theorem Suppose that α is constant and

$$10 \left(\frac{\ln n}{n} \right)^{1/6} \leq \varepsilon \ll \alpha.$$

If $G \in G_{n,\alpha,\varepsilon}$ then G contains $(\frac{\alpha}{2} - 3\varepsilon)n$ edge disjoint Hamilton cycles.
Bipartite Graphs: Make analogous definition $B_{n,\alpha,\varepsilon}$ and obtain analogous result:

Directed Graphs: Make analogous definition $D_{n,\alpha,\varepsilon}$ and obtain analogous result:
Hamilton cycle game

Maker and Breaker alternately choose edges from the complete graph K_n. Maker aims to choose as many edge disjoint Hamilton cycles as possible among his edges. Theorem: Maker can choose $n^4\Omega(n^2)$ edge disjoint Hamilton cycles. Improves a result of Lu who showed n^{16} could be chosen. Played on K_n, we have the same result. Played on D_n, Maker can choose $n^2\Omega(n)$ edge disjoint directed Hamilton cycles.
Hamilton cycle game

Maker and Breaker alternately choose edges from the complete graph $K_{n,n}$. Maker aims to choose as many edge disjoint Hamilton cycles as possible among his edges.
Hamilton cycle game

Maker and Breaker alternately choose edges from the complete graph $K_{n,n}$. Maker aims to choose as many edge disjoint Hamilton cycles as possible among his edges.

Theorem Maker can choose $\frac{n}{4} - o(n)$ edge disjoint Hamilton cycles.
Hamilton cycle game

Maker and Breaker alternately choose edges from the complete graph $K_{n,n}$. Maker aims to choose as many edge disjoint Hamilton cycles as possible among his edges.

Theorem Maker can choose $\frac{n}{4} - o(n)$ edge disjoint Hamilton cycles.

Improves a result of Lu who showed $\frac{n}{16}$ could be chosen.
Hamilton cycle game

Maker and Breaker alternately choose edges from the complete graph $K_{n,n}$. Maker aims to choose as many edge disjoint Hamilton cycles as possible among his edges.

Theorem Maker can choose $\frac{n}{4} - o(n)$ edge disjoint Hamilton cycles.

Improves a result of Lu who showed $\frac{n}{16}$ could be chosen. Played on $K_{n,n}$, we have the same result.
Hamilton cycle game

Maker and Breaker alternately choose edges from the complete graph $K_{n,n}$. Maker aims to choose as many edge disjoint Hamilton cycles as possible among his edges.

Theorem Maker can choose $\frac{n}{4} - o(n)$ edge disjoint Hamilton cycles.

Improves a result of Lu who showed $\frac{n}{16}$ could be chosen. Played on $K_{n,n}$, we have the same result.

Played on $D_{n,n}$, Maker can choose $\frac{n}{2} - o(n)$ edge disjoint directed Hamilton cycles.
Acknowledgements
Acknowledgements

Noga Alon for suggesting the use of some approximations to 0-1 permanents in regards to showing the existence of 2-factors with few cycles.
Acknowledgements

Noga Alon for suggesting the use of some approximations to 0-1 permanents in regards to showing the existence of 2-factors with few cycles.

Oleg Pikhurko for suggesting that the Erdős-Selfridge method, combined with our theorem on packing Hamilton cycles yields the result on Hamilton cycle games.
Packing Hamilton Cycles $G \in G_{n,\alpha,\varepsilon}$
Packing Hamilton Cycles $G \in G_{n,\alpha,\varepsilon}$

Γ is a random subgraph of G with density $5\varepsilon/2$.

$G_1 = G \setminus \Gamma$
Packing Hamilton Cycles \(G \in G_{n, \alpha, \varepsilon} \)

\(\Gamma \) is a random subgraph of \(G \) with density \(5\varepsilon/2 \).

\(G_1 = G \setminus \Gamma \)

\(G \) has an \(r \)-factor \(F \), \(r = 2s = \lfloor (\alpha - 4\varepsilon)n \rfloor \).
Packing Hamilton Cycles $G \in G_{n,\alpha,\varepsilon}$

Γ is a random subgraph of G with density $5\varepsilon/2$.

$G_1 = G \setminus \Gamma$

G has an r-factor F, $r = 2s = \lfloor (\alpha - 4\varepsilon)n \rfloor$.

F can be partitioned into s 2-factors, F_1, \ldots, F_s each having $o(n)$ cycles.
Packing Hamilton Cycles $G \in \mathcal{G}_{n, \alpha, \varepsilon}$

Γ is a random subgraph of G with density $5\varepsilon/2$.

$G_1 = G \setminus \Gamma$

G has an r-factor F, $r = 2s = \lfloor (\alpha - 4\varepsilon)n \rfloor$.

F can be partitioned into s 2-factors, F_1, \ldots, F_s each having $o(n)$ cycles.

Each F_i can be converted into a Hamilton cycle preserving disjointness and with the help of Γ.
Properties of G_1, Γ
Properties of G_1, Γ

$\delta(\Gamma) \geq 2\varepsilon n$ and for disjoint S, T with $|S|, |T| \geq \varepsilon n$ we have $e_\Gamma(S, T) \geq \varepsilon |S| |T|$.

Follows easily from Chernoff bounds.
Properties of G_1, Γ

$\delta(\Gamma) \geq 2\varepsilon n$ and for disjoint S, T with $|S|, |T| \geq \varepsilon n$ we have $e_{\Gamma}(S, T) \geq \varepsilon |S| |T|$.

$\delta(G_1) \geq (\alpha - 3\varepsilon)n$ and for disjoint S, T with $|S|, |T| \geq \varepsilon n$ we have $e_{G_1}(S, T) \leq (\alpha - \varepsilon)|S| |T|$.
Properties of G_1, Γ

$\delta(\Gamma) \geq 2\varepsilon n$ and for disjoint S, T with $|S|, |T| \geq \varepsilon n$ we have $e_{\Gamma}(S, T) \geq \varepsilon |S| |T|$.

$\delta(G_1) \geq (\alpha - 3\varepsilon)n$ and for disjoint S, T with $|S|, |T| \geq \varepsilon n$ we have $e_{G_1}(S, T) \leq (\alpha - \varepsilon)|S| |T|$.

Follows easily from Chernoff bounds.
G_1 has an r-factor
G_1 has an r-factor

We use a theorem of Tutte:
G_1 has an r-factor

We use a theorem of Tutte: Let S, T, U be a partition of $[n]$. Then let

$$R(S, T) = \sum_{v \in T} d(v) - e_{G_1}(S, T) + r(|S| - |T|),$$

where $d(v)$ is the degree of v in G_1.
G_1 has an r-factor

We use a theorem of Tutte: Let S, T, U be a partition of $[n]$. Then let

$$R(S, T) = \sum_{v \in T} d(v) - e_{G_1}(S, T) + r(|S| - |T|),$$

where $d(v)$ is the degree of v in G_1.

Let $Q(S, T)$ be the number of odd components of the graph G_U induced by U. A component C of G_U is odd if $r|C| + e_{G_1}(C, T)$ is odd.
G_1 contains an r-factor iff for every partition of $[n]$ into S, T, U we have $R(S, T) \geq Q(S, T)$.
G_1 contains an r-factor iff for every partition of $[n]$ into S, T, U we have $R(S, T) \geq Q(S, T)$.

Case 1 $|S|, |T| \geq \varepsilon n$: $R(S, T) = \sum_{v \in T} d(v) - e_{G_1}(S, T) + r(|S| - |T|)$,
G_1 contains an r-factor iff for every partition of $[n]$ into S, T, U we have $R(S, T) \geq Q(S, T)$.

Case 1 $|S|, |T| \geq \varepsilon n$:

$$R(S, T) = \sum_{v \in T} d(v) - e_{G_1}(S, T) + r(|S| - |T|),$$

$$R(S, T) \geq |S|((\alpha - 4\varepsilon)n - (\alpha - \varepsilon)|T|) + \varepsilon n|T| - ||S| - |T||.$$
G_1 contains an r-factor iff for every partition of $[n]$ into S, T, U we have $R(S, T) \geq Q(S, T)$.

Case 1 $|S|, |T| \geq \varepsilon n$: $R(S, T) = \sum_{v \in T} d(v) - e_{G_1}(S, T) + r(|S| - |T|)$,

$$R(S, T) \geq |S|((\alpha - 4\varepsilon)n - (\alpha - \varepsilon)|T|) + \varepsilon n|T| - ||S| - |T||.$$

If $|T| \leq (1 - \frac{3\varepsilon}{\alpha - \varepsilon})n$ then $R(S, T) \geq \varepsilon n|T| - n \geq \varepsilon^2 n^2 - n \gg n$ and $Q(S, T) \leq |U| < n$.
G_1 contains an r-factor iff for every partition of $[n]$ into S, T, U we have $R(S, T) \geq Q(S, T)$.

Case 1 $|S|, |T| \geq \varepsilon n$:

$$R(S, T) = \sum_{v \in T} d(v) - \epsilon_{G_1}(S, T) + r(|S| - |T|),$$

$$R(S, T) \geq |S|((\alpha - 4\varepsilon)n - (\alpha - \varepsilon)|T|) + \varepsilon n|T| - ||S| - |T||.$$

If $|T| \leq (1 - \frac{3\varepsilon}{\alpha - \varepsilon})n$ then $R(S, T) \geq \varepsilon n|T| - n \geq \varepsilon^2 n^2 - n \gg n$ and $Q(S, T) \leq |U| < n$.

If $|T| > (1 - \frac{3\varepsilon}{\alpha - \varepsilon})n$ then $|S| < \frac{3\varepsilon}{\alpha - \varepsilon} n$ and $R(S, T) \geq \varepsilon n|T| - n - 3\varepsilon n|S| \geq \varepsilon n (1 - \frac{3\varepsilon}{\alpha - \varepsilon}) n - n - \frac{9\varepsilon^2}{\alpha - \varepsilon} n^2 \gg n > |U|$.
G_1 contains an r-factor iff for every partition of $[n]$ into S, T, U we have $R(S, T) \geq Q(S, T)$.

Case 1 $|S|, |T| \geq \varepsilon n$: $R(S, T) = \sum_{v \in T} d(v) - e_{G_1}(S, T) + r(|S| - |T|),$

$$R(S, T) \geq |S|((\alpha - 4\varepsilon)n - (\alpha - \varepsilon)|T|) + \varepsilon n|T| - ||S| - |T||.$$

If $|T| \leq (1 - \frac{3\varepsilon}{\alpha - \varepsilon})n$ then $R(S, T) \geq \varepsilon n|T| - n \geq \varepsilon^2 n^2 - n \gg n$ and $Q(S, T) \leq |U| < n$.

If $|T| > (1 - \frac{3\varepsilon}{\alpha - \varepsilon})n$ then $|S| < \frac{3\varepsilon}{\alpha - \varepsilon}n$ and $R(S, T) \geq$

$$\varepsilon n|T| - n - 3\varepsilon n|S| \geq \varepsilon n (1 - \frac{3\varepsilon}{\alpha - \varepsilon})n - n - \frac{9\varepsilon^2}{\alpha - \varepsilon}n^2 \gg n > |U|$$

Another 4 equally simple cases finish the proof.
Extracting 2-factors

Lemma H is a $2d$-regular graph on vertex set $[n]$, where $d \geq \varepsilon n$. H contains a 2-factor with at most $10\varepsilon^{-1}(n \ln n)^{1/2}$ cycles.
Extracting 2-factors

Lemma H is a $2d$-regular graph on vertex set $[n]$, where $d \geq \varepsilon n$. H contains a 2-factor with at most $10\varepsilon^{-1}(n \ln n)^{1/2}$ cycles.

Proof
For simplicity we just prove $O(n/\ln n)$ cycles.
Lemma H is a $2d$-regular graph on vertex set $[n]$, where $d \geq \varepsilon n$. H contains a 2-factor with at most $10\varepsilon^{-1}(n \ln n)^{1/2}$ cycles.

Proof
For simplicity we just prove $O(n/\ln n)$ cycles.

Orient H so that vertices of \overline{H} have in-degree=out-degree d.
Extracting 2-factors

Lemma H is a $2d$-regular graph on vertex set $[n]$, where $d \geq \varepsilon n$. H contains a 2-factor with at most $10\varepsilon^{-1}(n \ln n)^{1/2}$ cycles.

Proof
For simplicity we just prove $O(n/ \ln n)$ cycles.

Orient H so that vertices of \vec{H} have in-degree=out-degree d.

B is the bipartite graph with vertex set $[n] + [n]$ where (x, y) is an edge of B iff (x, y) is an arc of \vec{H}.
Extracting 2-factors

Lemma \(H \) is a \(2d \)-regular graph on vertex set \([n]\), where \(d \geq \varepsilon n \). \(H \) contains a 2-factor with at most \(10\varepsilon^{-1}(n \ln n)^{1/2} \) cycles.

Proof

For simplicity we just prove \(O(n/ \ln n) \) cycles.

Orient \(H \) so that vertices of \(\vec{H} \) have in-degree=out-degree \(d \)

\(B \) is the bipartite graph with vertex set \([n] + [n]\) where \((x, y)\) is an edge of \(B \) iff \((x, y)\) is an arc of \(\vec{H} \)

A perfect matching \(M \) of \(B \) yields a unique 2-factor \(C_M \) of \(H \).
X is the number of perfect matchings of B.

Van der Waerden's conjecture. – p.15
X is the number of perfect matchings of B.

$$X \geq \left(\frac{d}{n} \right)^n n!.$$

Van der Waerden’s conjecture.
X is the number of perfect matchings of B.

$$X \geq \left(\frac{d}{n} \right)^n n!.$$

Van der Waerden’s conjecture.

$X_{k, \ell}$ is the number of perfect matchings M of B such that C_M contains at least k cycles of length ℓ.
\(X \) is the number of perfect matchings of \(B \).

\[
X \geq \left(\frac{d}{n} \right)^n n!.
\]

Van der Waerden’s conjecture.

\(X_{k,\ell} \) is the number of perfect matchings \(M \) of \(B \) such that \(C_M \) contains at least \(k \) cycles of length \(\ell \).

\[
X_{k,\ell} \leq \binom{n}{k} d^{k(\ell-1)} \ell^{-k} (d!)^{(n-k\ell)/d}.
\]

Minc conjecture
\[X^{-1}X_{k,\ell} \leq O(n) \left(\frac{ne^{\ell}}{dk\ell} \right)^k. \]
\[X^{-1}X_{k,\ell} \leq O(n) \left(\frac{ne^{\ell}}{dk\ell} \right)^k. \]

Put \(k = n^{3/4} \) and \(\ell_0 = \frac{1}{2} \ln n \). Then

\[X^{-1} \sum_{\ell=3}^{\ell_0} X_{k,\ell} < 1. \]
\[X^{-1}X_{k,\ell} \leq O(n) \left(\frac{ne^\ell}{dk\ell} \right)^k. \]

Put \(k = n^{3/4} \) and \(\ell_0 = \frac{1}{2} \ln n \). Then

\[X^{-1} \sum_{\ell=3}^{\ell_0} X_{k,\ell} < 1. \]

So there exists a 2-factor with at most

\[n^{3/4}\ell_0 + \frac{n}{\ell_0} \leq 2\frac{n}{\ell_0} \]

cycles.
Transforming 2-factors to Hamilton cycles

Assume inductively that for some $i \geq 0$ we have created edge-disjoint Hamilton cycles H_1, H_2, \ldots, H_i which are edge-disjoint from $F_{i+1}, \ldots, F_{s-\varepsilon n}$.
Transforming 2-factors to Hamilton cycles

Assume inductively that for some $i \geq 0$ we have created edge disjoint Hamilton cycles H_1, H_2, \ldots, H_i which are edge-disjoint from $F_{i+1}, \ldots, F_{s-\varepsilon n}$.

Assume further that $|H_j \setminus F_j| \leq 6\ell_0$ for $1 \leq j \leq i$.
Continue until path cannot be extended in this way
At least $2\varepsilon n$ choices for x and for y
Edge of Γ_1
We need at most 3 edges of Γ_1 to reduce the number of cycles by one.

At most $6n^2/\ell_0 \ll \varepsilon^2 n^2$ are needed altogether to create $\sim \alpha n/2$ disjoint Hamilton cycles.
Bipartite graphs: very similar.

Only need to observe that the path lengths are odd in the Hamilton cycle stage.
Digraphs:
Digraphs:
We show that Maker can build a graph in $G_{n; 1/2 \ldots 1/4}$.

F is the hypergraph with hyper-edges $A_1; A_2; \ldots; A_k$ and $B_1; B_2; \ldots; B_j$.

$A_1; A_2; \ldots; A_k$ is a collection of $\binom{n}{M}$-sets where $M = (\log n)^2$ and $M = \frac{2}{\log n}$. For $1 \le i \le n$, every $d(1 = 2 + \ldots + 4) \subset$ subset of the edges incident with i contains at least one of A_i and B_j.

$B_1; B_2; \ldots; B_j$ enumerate following edge sets: Choose disjoint subsets $S; T$ of $\binom{n}{\log n}$, of size at least $\frac{n}{4}$. Choose subset B of $S \cup T$ edges with $|B| = d|S|\frac{|T|}{(1 + \ldots + 4)} = 2e$.

Hamilton Game
Hamilton Game

We show that Maker can build a graph in $G_{\frac{n}{2} - \frac{\epsilon}{4}, \frac{\epsilon}{4}}$.
Hamilton Game

We show that Maker can build a graph in $G_{n, \frac{1}{2} - \frac{\varepsilon}{4}, \frac{\varepsilon}{4}}$.

\mathcal{F} is the hypergraph with hyper-edges $A_1, A_2, \ldots, A_\mu, B_1, B_2, \ldots, B_\nu$.
Hamilton Game

We show that Maker can build a graph in $G_{n, \frac{1}{2} - \frac{\varepsilon}{4}, \frac{\varepsilon}{4}}$.

\mathcal{F} is the hypergraph with hyper-edges $A_1, A_2, \ldots, A_\mu, B_1, B_2, \ldots, B_\nu$.

A_1, A_2, \ldots, A_μ is a collection of $\mu = nM$ ℓ-sets where $\ell = (\log n)^2$ and $M = 2^\ell / n^2$. For $1 \leq i \leq n$, every $\lceil (1/2 + \varepsilon/4)n \rceil$ subset of the edges incident with i contains at least one of $A_{(i-1)M+j}$, $1 \leq j \leq M$.
Hamilton Game

We show that Maker can build a graph in $G_{n, \frac{1}{2} - \frac{\varepsilon}{4}, \frac{\varepsilon}{4}}$.

\mathcal{F} is the hypergraph with hyper-edges $A_1, A_2, \ldots, A_\mu, B_1, B_2, \ldots, B_\nu$.

A_1, A_2, \ldots, A_μ is a collection of $\mu = nM \ell$-sets where $\ell = (\log n)^2$ and $M = 2^\ell / n^2$. For $1 \leq i \leq n$, every $\lceil (1/2 + \varepsilon/4)n \rceil$ subset of the edges incident with i contains at least one of $A_{(i-1)M+j}$, $1 \leq j \leq M$.

B_1, B_2, \ldots, B_ν enumerate the following edge sets: Choose disjoint subsets S, T of $[n]$, of size at least $\varepsilon n / 4$. Choose subset B of $S - T$ edges with $|B| = \lceil |S||T|(1 + \varepsilon/4)/2 \rceil$.
Maker has only to ensure that the choices E_M, E_B of Maker, Breaker respectively are a 2-colouring of F.
Maker has only to ensure that the choices E_M, E_B of Maker, Breaker respectively are a 2-colouring of \mathcal{F}.

Lemma If the hyper-edges of a hypergraph \mathcal{F} satisfy
$$\sum_{X \in \mathcal{F}} 2^{1-|X|} < 1$$
then Maker can force a 2-colouring of \mathcal{F}.
Maker has only to ensure that the choices \(E_M, E_B \) of Maker, Breaker respectively are a 2-colouring of \(\mathcal{F} \).

Lemma If the hyper-edges of a hypergraph \(\mathcal{F} \) satisfy
\[
\sum_{X \in \mathcal{F}} 2^{1-|X|} < 1
\]
then Maker can force a 2-colouring of \(\mathcal{F} \).

The sum in the lemma is the expected number of mono-coloured hyper-edges in a random 2-colouring of \(\mathcal{F} \).
A round consists of a play by Maker and Breaker.
A round consists of a play by Maker and Breaker.

At the start of a round, C_M, C_B denote edges chosen so far by Maker and Breaker.
A round consists of a play by Maker and Breaker.

At the start of a round, C_M, C_B denote edges chosen so far by Maker and Breaker.

R denotes unchosen edges
A round consists of a play by Maker and Breaker.

At the start of a round, C_M, C_B denote edges chosen so far by Maker and Breaker.

R denotes unchosen edges.

For $X \in \mathcal{F}$, $\delta_{X,M}, \delta_{X,B}$ are the 0-1 indicators for $X \cap C_M \neq \emptyset$, $X \cap C_B \neq \emptyset$ respectively.

$\delta_X = \delta_{X,M} + \delta_{X,B}$.
Potential function

\[\Phi = \sum_{\substack{X \in \mathcal{F} \\ \delta_X \leq 1}} 2^{-|X \cap R| + 1 - \delta_X}. \]
Potential function

\[
\Phi = \sum_{\substack{X \in \mathcal{F} \\ \delta_X \leq 1}} 2^{-|X \cap R|+1-\delta_X}.
\]

This is \(< 1\) initially, by assumption and if it is \(< 1\) at the end when \(R = \emptyset\) then Maker has succeeded.
Suppose that in some round, Maker chooses edge a and Breaker chooses edge b. Φ' is the new value of Φ.
Suppose that in some round, Maker chooses edge a and Breaker chooses edge b. Φ' is the new value of Φ.

$$
\Phi' - \Phi = - \sum_{\substack{a,b \in X \\delta_X = 0}} 2^{|X \cap R|} - \sum_{\substack{a \in X \\delta_{X,B} = 1}} 2^{-|X \cap R|} - \sum_{\substack{b \in X \\delta_{X,M} = 1}} 2^{-|X \cap R|} \\
+ \sum_{\substack{a \in X, b \notin X \\delta_{X,M} = 1}} 2^{-|X \cap R|} + \sum_{\substack{a \notin X, b \in X \\delta_{X,B} = 1}} 2^{-|X \cap R|}
$$
\[
\leq - \left(\sum_{a \in X} 2^{-|X \cap R|} - \sum_{a \in X} 2^{-|X \cap R|} \right) \delta_{X,B = 1} \delta_{X,M = 1} \\
+ \left(\sum_{b \in X} 2^{-|X \cap R|} - \sum_{b \in X} 2^{-|X \cap R|} \right) \delta_{X,B = 1} \delta_{X,M = 1}
\]
\[
\leq - \left(\sum_{a \in X \atop \delta_{X,B} = 1} 2^{-|X \cap R|} - \sum_{a \in X \atop \delta_{X,M} = 1} 2^{-|X \cap R|} \right) \\
+ \left(\sum_{b \in X \atop \delta_{X,B} = 1} 2^{-|X \cap R|} - \sum_{b \in X \atop \delta_{X,M} = 1} 2^{-|X \cap R|} \right)
\]

which is non-positive if Maker chooses \(a \) to maximise

\[
\sum_{a \in X \atop \delta_{X,B} = 1} 2^{-|X \cap R|} - \sum_{a \in X \atop \delta_{X,M} = 1} 2^{-|X \cap R|}
\]