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Abstract

In this paper we prove the monotonicity of the second-order moments of the discrete
approximations to the heat equation arising from the Jordan-Kinderlehrer-Otto (JKO)
variational scheme [7]. This issue appears in the study of constrained optimization in
the 2-Wasserstein metric performed by Carlen and Gangbo [3] via a duality argument.
A direct argument, via Lagrange multipliers, is outlined in [3] and provided here.

1 Introduction

In [3], the authors perform a comprehensive study of constrained optimization in the space of
probability densities with finite second-order moments over R

N . An application is provided
in [4].

Given a probability density ρ0 on R
N with finite second-order moment, one seeks to minimize

I[ρ0; τ ](ρ) :=
1

2τ
d(ρ, ρ0)

2 +

∫

RN

ρ(x) log ρ(x)dx, (1.1)

over all ρ ∈ M having the same mean and variance as ρ0, where τ > 0 and

M :=

{

ρ : R
N → [0,∞)

∣

∣

∣

∣

∫

RN

ρ(x)dx = 1,

∫

RN

|x|2ρ(x)dx < +∞

}

.

More precisely, for given u ∈ R
N and θ > 0, if we denote by

Eθ,u :=

{

ρ ∈ M

∣

∣

∣

∣

∫

RN

xρ(x)dx = u,

∫

RN

|x − u|2ρ(x)dx = θ

}

(1.2)

and take ρ0 ∈ Eθ,u, we wish to prove the existence of a minimizer in Eθ,u for I[ρ0] defined
in (1.1).
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The duality argument used in [3], although natural and enlightening, appears complicated
and could readily be replaced, as the authors of [3] observe, by an easier one based on
Lagrange multipliers if one knew that the unconstrained minimizer ρ1 ∈ M of I[ρ0] satisfied

∫

RN

|x|2ρ1(x)dx >

∫

RN

|x|2ρ0(x)dx, (1.3)

i.e. the minimization
inf

ρ∈M
I[ρ0; τ ](ρ) (1.4)

increases the second-order moments. The inequality (1.3) is only conjectured in [3]. We are
going to prove:

Theorem 1. For every ρ0 ∈ M and every τ > 0, the minimizer

ρ1 := arg min
ρ∈M

I[ρ0; τ ](ρ)

satisfies
∫

RN

|x|2ρ1(x)dx ≥ Nτ +

∫

RN

|x|2ρ0(x)dx. (1.5)

The next statement will also be proved.

Proposition 1. Within the above notation and hypotheses,

∫

RN

|x|2ρ1(x)dx −

∫

RN

|x|2ρ0(x)dx = 2Nτ − d(ρ0, ρ1)
2. (1.6)

We then have:

Corollary 1. Within the above notation and hypotheses,

d(ρ0, ρ1)
2 ≤ Nτ. (1.7)

2 Regularity of the minimizer

We shall first work under the extra assumption that ρ0 ∈ L∞(RN ). Though the general case
will not be built on this, most of the arguments will be the same. Our choice of discussing
the essentially bounded case separately resides in the discrete comparison principle stated
and proved next. Although based on earlier work by different authors [8], [1], [6], [9], there
are significant issues arising due to the unboundedness of the domain and the singularity of
the logarithmic function at zero. Therefore, we find this result interesting in itself.
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2.1 Discrete comparison principle and regularity in the essentially bounded

case

We will prove the following:

Proposition 2. If ρ0 ∈ M ∩ L∞(RN ), then the minimizer ρ1 of (1.4) is also essentially
bounded in R

N and satisfies
‖ρ1‖∞ ≤ ‖ρ0‖∞.

Proof: Let φ(z) = z log z and let M ≥ ‖ρ0‖∞ be fixed. Take µ ∈ P (ρ0, ρ1) to be the
optimal transfer plan, and let E := {ρ1 > M} assuming |E| > 0. Then µ((RN\E)×E) > 0.
Otherwise

M |E| <

∫

E
ρ1dx = µ(RN × E) = µ(E × E) ≤ µ(E × R

N ) =

∫

E
ρ0dx ≤ M |E|,

which is a contradiction. Now define w0 and w1 by

∫

RN

w0ξdx =

∫∫

(RN\E)×E
ξ(x)dµ(x, y),

∫

RN

w1ξdx =

∫∫

(RN\E)×E
ξ(y)dµ(x, y),

for all ξ ∈ C(RN ). It is easy to check that 0 ≤ w0 ≤ ρ0 ≤ M and 0 ≤ w1 ≤ ρ1. Then, the
equality (valid for all ξ ∈ C(RN × R

N ))

∫∫

RN×RN

ξ(x, y)dµs(x, y) =

∫∫

RN×RN

ξ(x, y)dµ(x, y)+s

∫∫

(RN\E)×E

(

ξ(x, x)−ξ(x, y)
)

dµ(x, y),

defines for every s ≪ 1 a plan µs ∈ P (ρ0, ρs) with ρs := ρ1 − s(w1 − w0) ∈ M. Then

1

2τ
d(ρ0, ρs)

2 +

∫

RN

φ(ρs)dx (2.1)

≤ I[ρ0; τ ](ρ1) +

∫

RN

[φ(ρs)− φ(ρ1)]dx−
s

2τ

∫∫

(RN\E)×E
|x− y|2dµ(x, y)

due to the definition of d and µs. Due to the convexity of φ and the fact that w integrates
to 0, we have

∫

RN

[φ(ρs) − φ(ρ1)]dx ≤

∫

RN

(ρs − ρ1) log ρsdx

= −s

∫

RN

[log ρs − log M ]wdx

= −s

∫

E
[log(ρ1 − sw1) − log M ]w1dx + s

∫

RN\E
[log(ρ1 + sw0) − log M ]w0dx.
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We have used w0 = 0 in E and w1 = 0 in R
N\E. We now return to the right hand side of

the equation above and rewrite it as

−s

{
∫

E
[log(ρ1 − sw1) − log ρ1]w1dx +

∫

E
[log ρ1 − log M ]w1dx

+

∫

RN\E
[log M − log(ρ1 + sw0)]w0dx

}

=: −s(T1 + T2 + T3).

Obviously, T2 > 0. As for T1, we have that

0 ≤ [− log(ρ1 − sw1) + log ρ1]w1 ≤ [log ρ1 − log((1 − s)ρ1)]w1 ≤ −ρ1 log(1 − s) in E

if 0 < s < 1. Thus, T1 ↑ 0 as s ↓ 0.
The study of T3 is next. We write

log M − log(ρ1 + sw0) = log
M

ρ1 + sw0
≥ − log(1 + s)

since both ρ1 and w0 are less than M in R
N\E. Consequently, since w0 ≤ ρ0χRN\E in R

N ,

T3 ≥ − log(1 + s)

∫

RN

w0dx ≥ − log(1 + s).

Therefore,

−s

{

1

2τ

∫∫

(RN\E)×E
|x − y|2dµ(x, y) + T1 + T2 + T3

}

< 0

for sufficiently small s > 0. The minimality of I[ρ0; τ ](ρ1) (by (2.1)) is contradicted, i.e.
0 ≤ ρ1 ≤ M a.e. in R

N .

¤

Next we show that ρ1 ∈ H1(RN ) and τ∇ρ1(x) = [∇Φ(x) − x]ρ1(x) for a.e. x ∈ R
N , where

Φ : R
N → R is the convex potential whose a.e. gradient realizes the optimal transportation

of ρ1dx onto ρ0dx [2]. Then, as a consequence of ρ1 ∈ L∞(RN ), we infer ρ1 ∈ W 1,∞
loc (RN ).

Proposition 3. For every τ > 0 and every ρ0 ∈ M∩ L∞(RN ), the minimizer ρ1 of (1.4)
lies in H1(RN ) and

∇ρ1(x) =
1

τ
[∇Φ(x) − x]ρ1(x) for a.e. x ∈ R

N , (2.2)

where Φ : R
N → R is the unique ρ1dx-a.e. convex function such that ∇Φ#ρ1 = ρ0.

Consequently, ρ1 ∈ M∩ L∞(RN ) ∩ H1(RN ) ∩ W 1,∞
loc (RN ).

Proof: The argument is based on analyzing the Euler equation associated to (1.4). Accord-
ing to [7], let µ ∈ P (ρ0, ρ1) be optimal in the definition of d(ρ0, ρ1). Then [7],
∫∫

RN×RN

(y − x) · ξ(y)dµ(x, y) − τ

∫

RN

ρ1(x)∇ · ξ(x)dx = 0 for all ξ ∈ C∞
c (RN ; RN ). (2.3)
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We have
∣

∣

∣

∣

∫∫

RN×RN

(y − x) · ξ(y)dµ(x, y)

∣

∣

∣

∣

≤

(
∫∫

RN×RN

|x − y|2dµ(x, y)

)1/2

(2.4)

×

(
∫

RN

ρ1(y)|ξ(y)|2dy

)1/2

≤ ‖ρ1‖
1/2
∞ d(ρ0, ρ1)‖ξ‖L2(RN ).

Note that (2.3) and (2.4) imply that ρ1 has a distributional gradient ∇ρ1 ∈ L2(RN ; RN )
that satisfies

∫∫

RN×RN

(y − x) · ξ(y)dµ(x, y) + τ

∫

RN

∇ρ1 · ξdx = 0, (2.5)

for all ξ ∈ C∞
c (RN ; RN ). In view of (2.4) and (2.5) we obtain

‖∇ρ1‖L2(RN ) ≤
1

τ
‖ρ1‖

1/2
∞ d(ρ0, ρ1). (2.6)

Furthermore [8],

∫∫

RN×RN

ϕ(x, y)dµ(x, y) =

∫

RN

ρ1(y)ϕ(∇Φ(y), y)dy for all ϕ ∈ Cc(R
N × R

N ).

Applying this to ϕ(x, y) := x · ξ(y) gives, via (2.5),

1

τ

(

∇Φ − IdRN

)

ρ1 −∇ρ1 = 0 a.e. in R
N . (2.7)

Since Φ, as a convex function, is locally Lipschitz, the rest of the conclusion follows.

¤

Remark: From (2.7) one can easily see that, in fact, ∇ρ1 also lies in L1(RN ) and

‖∇ρ1‖L1(RN ) =
1

τ

∫

RN

{|∇Φ(x) − x|[ρ1(x)]1/2}[ρ1(x)]1/2dx

≤
1

τ
d(ρ0, ρ1)

by Hölder’s inequality. This leads us to believe that it may be possible to show that ρ1 ∈
W 1,1(RN ) without assuming ρ1 ∈ L∞(RN ) which comes as a consequence of ρ0 ∈ L∞(RN )
(Proposition 2).

2.2 The general case

Next we drop the assumption ρ0 ∈ L∞(RN ) and we plan to prove a more general proposition.
Let us consider the addition of an extra term to (1.1), namely an energy given by a smooth
potential ψ : R

N → [0,∞) satisfying

|∇ψ(x)| ≤ C[1 + ψ(x)], x ∈ R
N . (2.8)
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Thus, we obtain

Iψ[ρ0; τ ](ρ) :=
1

2τ
d(ρ, ρ0)

2 +

∫

RN

ψ(x)ρ(x)dx +

∫

RN

ρ(x) log ρ(x)dx (2.9)

which is the functional used in [7] to iteratively construct approximants to the solution of
the Fokker-Planck IVP

∂ρ

∂t
= ∇ · [ρ∇ψ] + ∆ρ, ρ(·, 0) = ρ0. (2.10)

Although most of our work is concerned with the case ψ ≡ 0, a notable exception is the last
section, where quadratic potentials are utilized.

Proposition 4. For every τ > 0 and every ρ0 ∈ M, the minimizer ρ1 of (2.9) over M lies
in W 1,1(RN ) and

∇ρ1(x) =

{

1

τ
[∇Φ(x) − x] −∇ψ(x)

}

ρ1(x) for a.e. x ∈ R
N , (2.11)

where Φ : R
N → R is the unique ρ1dx-a.e. convex function such that ∇Φ#ρ1 = ρ0.

Furthermore, the function ρ̃ : R
N → (0,∞) given by

ρ̃(x) := exp

{

1

τ

[

−
|x|2

2
+ Φ(x)

]

− ψ(x)

}

is integrable in R
N and

ρ1(x) = ρ̃(x)

/
∫

RN

ρ̃(y)dy for a.e. x ∈ R
N . (2.12)

Let us begin with a lemma. This may very well be folklore but we were not able to find it
anywhere.

Lemma 1. Let Ω ⊂ R
N be bounded with Lipschitz boundary. If f ∈ W 1,1(Ω) and g ∈

W 1,∞(Ω), then fg ∈ W 1,1(Ω) and ∇(fg) = f∇g + g∇f .

Proof: There exists [5] a sequence {fn}n ⊂ W 1,1(Ω)∩C∞(Ω) such that fn → f in W 1,1(Ω).
Since fn, g ∈ W 1,1(Ω) ∩ L∞(Ω), it follows [5] fng ∈ W 1,1(Ω) ∩ L∞(Ω) and ∇(fng) =
fn∇g + g∇fn which is equivalent to

−

∫

RN

(fng)∇ψdx =

∫

RN

(ψfn)∇gdx +

∫

RN

(ψg)∇fndx for all ψ ∈ C∞
c (Ω).

Since g∇ψ, ψ∇g and ψg are essentially bounded in Ω and fn → f in W 1,1(Ω), we may pass
to the limit to obtain

−

∫

RN

(fg)∇ψdx =

∫

RN

(ψf)∇gdx +

∫

RN

(ψg)∇fdx for all ψ ∈ C∞
c (Ω),

i.e. ∇(fg) = f∇g + g∇f as distributions. As f∇g, g∇f ∈ L1(Ω; RN ), the proof is
concluded.

¤
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We are now ready to prove Proposition 4.
Proof of Proposition 4: First of all, note that a more general version (2.3) is valid indepen-
dently of the assumption ρ0 ∈ L∞(RN ). More precisely [7],

∫∫

RN×RN

(y − x) · ξ(y)dµ(x, y) − τ

∫

RN

ρ1(x)[∇ · ξ(x) −∇ψ(x) · ξ(x)]dx = 0 (2.13)

for all ξ ∈ C∞
c (RN ; RN ). Thus, just as in establishing (2.7), we infer that (2.11) holds

for the distributional gradient of ρ1 (the only difference is that, in general, ∇ρ1 is not a
square-integrable function).
Since ρ1 is a probability density in R

N , for R > 0 large enough we have

1 ≥

∫

BR

ρ1dx =: αR > 0, where BR :=
{

x ∈ R
N

∣

∣ |x| ≤ R
}

. (2.14)

In what follows, f⌊R denotes the restriction to BR of a function f defined on R
N .

Since Φ is convex and ψ is smooth in R
N satisfying (2.8),

g :=
1

τ

(

Φ⌊R −
1

2
|Id|2⌊R

)

− ψ⌊R ∈ W 1,∞(BR).

This implies

e−g ∈ W 1,∞(BR) and ∇ρ1⌊R =
1

τ
(ρ1⌊R)∇g ∈ L1(BR; RN ).

Thus,
e−g ∈ W 1,∞(BR) and ρ1⌊R ∈ W 1,1(BR).

Lemma 1 applies to yield
e−g(ρ1⌊R) ∈ W 1,1(BR)

and

∇
[

e−g(ρ1⌊R)
]

= e−g

[

∇ρ1⌊R −
1

τ
(ρ1⌊R)∇g

]

= 0 a.e. in BR.

Along with (2.14), the last equation leads to

ρ1⌊R = αReg

/
∫

BR

egdy a.e. in BR.

We now let R ↑ ∞ and note that αR ↑ 1 to conclude the proof.

¤

Remark: Thus, we have ρ1 ∈ M ∩ W 1,1(RN ) ∩ W 1,∞
loc (RN ) because Φ is locally Lipschitz.

Recall that if ρ0 is essentially bounded, then ρ1 gains some extra regularity, more precisely
ρ1 ∈ M ∩ L∞(RN ) ∩ H1(RN ) ∩ W 1,1(RN ) ∩ W 1,∞

loc (RN ). However, as we shall see in the
next section,

ρ1 ∈ M∩ W 1,1(RN ) ∩ W 1,∞
loc (RN ) (2.15)

is enough for our purposes.

7



3 The main result

Let us begin with a lemma.

Lemma 2. Let Ψ : R
N → R be convex and f ∈ L1(RN ) ∩ W 1,∞

loc (RN ) be nonnegative (of
positive total mass). Also, suppose |∇Ψ|f ∈ L1(RN ) and ∇Ψ · ∇f ∈ L1(RN ). Then,

∫

RN

∇Ψ · ∇fdx ≤ 0. (3.1)

Proof: Let 0 < R < ∞. By a standard mollification (mollify f ) argument we obtain

−

∫

BR

∇Ψ · ∇fdx =

∫

BR

fd[∆Ψ] −

∫

∂BR

f [ν · TR(∇Ψ)]dHN−1, (3.2)

where [∆Ψ] is a nonnegative Radon measure (due to the convexity of Ψ) and TR is the
trace operator defined on BV (BR) with values in L1(∂BR), linear and continuous [5]. By
dominated convergence,

∫

BR

∇Ψ · ∇fdx →

∫

RN

∇Ψ · ∇fdx as R ↑ ∞

and
∫

BR

fd[∆Ψ] →

∫

RN

fd[∆Ψ] as R ↑ ∞

by monotone convergence.
Suppose (3.1) is false. Then, (3.2) implies there exists

lim
R↑∞

∫

∂BR

f [ν · TR(∇Ψ)]dHN−1 =: L ∈ (0,∞]. (3.3)

Next we claim that

for L1-a.e. R > 0 we have TR(∇Ψ) = ∇Ψ, HN−1-a.e. on ∂BR. (3.4)

Indeed, according to the Lebesgue-Besicovitch differentiation theorem, we have

∇Ψ(x) = lim
r↓0

Avg

∫

B(x,r)
∇Ψ(y)dy, LN -a.e. x ∈ R

N

since ∇Ψ ∈ L∞
loc(R

N ; RN ) ⊂ L1
loc(R

N ; RN ). On the other hand, ∇Ψ ∈ BVloc(R
N ; RN )

implies [5]

TR(∇Ψ)(x) = lim
r↓0

Avg

∫

B(x,r)∩BR

∇Ψ(y)dy, HN−1-a.e. x ∈ ∂BR for all R > 0.

Thus, (3.4) is verified. Combined with (3.3), it delivers

lim
R↑∞

∫

∂BR

f(ν · ∇Ψ)dHN−1 =: L ∈ (0,∞]

8



which contradicts the hypothesis that |∇Ψ|f ∈ L1(RN ), i.e. (as a consequence of the co-area
formula)

∫

RN

|∇Ψ|fdx =

∫ ∞

0

(
∫

∂BR

|∇Ψ|fdHN−1

)

dR < +∞.

¤

We are now ready to prove Theorem 1.
Proof of Theorem 1: Note that

∫

RN

|x|2ρ1(x)dx −

∫

RN

|x|2ρ0(x)dx =

∫

RN

[|x|2 − |∇Φ(x)|2]ρ1(x)dx

due to ∇Φ#ρ1 = ρ0. Thus,

∫

RN

|x|2ρ1(x)dx −

∫

RN

|x|2ρ0(x)dx = −

∫

RN

[x + ∇Φ(x)] · {[∇Φ(x) − x]ρ1(x)}dx

= −τ

∫

RN

[x + ∇Φ(x)] · ∇ρ1(x)dx. (3.5)

Since ρ0, ρ1 ∈ M and τ∇ρ1 = [∇Φ − Id]ρ1 a.e. in R
N , we deduce Id · ∇ρ1, ∇Φ · ∇ρ1 ∈

L1(RN ). As Φ is convex and ρ1 ∈ L1(RN )∩W 1,∞
loc (RN ) is nonnegative of unit mass, Lemma

2 applies to yield
∫

RN

∇Φ · ∇ρ1dx ≤ 0. (3.6)

By mollifying ρ1 locally (in BR), we deduce

∫

BR

x · ∇ρ1(x)dx =

∫

∂BR

ρ1(y)[ν(y) · y]dHN−1(y) − N

∫

BR

ρ1(x)dx

for every R > 0. Let R ↑ ∞ and apply dominated convergence to the left hand side and
monotone convergence to the last term in the right hand side to infer that the first term in
the right hand side has a limit, i.e.

lim
R↑∞

R

∫

∂BR

ρ1(y)dHN−1(y) = N +

∫

RN

x · ∇ρ1(x)dx =: l ∈ R.

The integrability of |Id|ρ1 implies, again as a consequence of the co-area formula for L1

functions, that l = 0. This, along with (3.5) and (3.6), implies (1.5).

¤

We now turn our attention to Proposition 1.
Proof of Proposition 1: It is based on the fact (proved above) that

∫

RN

x · ∇ρ1(x)dx = −N.
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Indeed, according to the previous proof,

∫

RN

|x|2[ρ1(x) − ρ0(x)]dx = Nτ −

∫

RN

∇Φ(x) · [τ∇ρ1(x)]dx

= Nτ −

∫

RN

∇Φ(x) · {[∇Φ(x) − x]ρ1(x)}dx

= Nτ −

∫

RN

|x −∇Φ(x)|2ρ1(x)dx −

∫

RN

x · [∇Φ(x) − x]ρ1(x)dx

= Nτ − d(ρ0, ρ1)
2 − τ

∫

RN

x · ∇ρ1(x)dx

= 2Nτ − d(ρ0, ρ1)
2.

¤

4 Further remarks

One obvious consequence of (1.5) is that the strict inequality (1.3) is always true. Still, is it
possible to have equality in (1.5) (along with 1.7)) and, if that is the case, when does that
happen? Retracing the proof of Theorem 1, we discover that we obtain equality in (1.5) if
and only if

∫

RN

∇Φ(x) · ∇ρ1(x)dx = 0. (4.1)

According to (3.2) and the subsequent argument, (4.1) implies

lim
R↑∞

∫

BR

ρ1(y)[ν(y) · ∇Φ(y)]dHN−1(y) =

∫

RN

ρ1(x)d[∆Φ(x)] = L ≥ 0. (4.2)

The same proof of Lemma 2 applies to yield L = 0. But ρ1 > 0 everywhere in R
N

(Proposition 4, (2.12)). Since [∆Φ] is a nonnegative Radon measure, it follows that [∆Φ] ≡
0. Thus, Φ is harmonic in the sense of distributions and the classical regularity theory
asserts that Φ is, in fact, smooth and ∆Φ ≡ 0 in the usual sense. As the only harmonic
convex functions are the affine functions, we infer that there exist a, b ∈ R

N such that

Φ(x) = a · x + b, for all x ∈ R
N . (4.3)

Note that ∇Φ ≡ a forces ρ0 (independently of what ρ1 is) to be the Dirac mass accumulated
at a, i.e. ρ0 = δa. However, there is yet another issue that we need to confront at this point.
Is Proposition 4 valid if ρ0 is not necessarily absolutely continuous with respect to LN , but
simply lies in the set

P2 :=

{

µ − Borel probability on R
N

∣

∣

∣

∣

∫

RN

|x|2dµ(x) < +∞

}

?
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Even before that, do we have a (unique) minimizer ρ1 ∈ M for every τ > 0 and every
ρ0 ∈ P2? The answers to these questions are surprisingly simple. It is enough to read
the proof [7] of the existence (and uniqueness) of the minimizer in M to realize that the
assumption ρ0 ≪ LN is nowhere used; only ρ0 ∈ P2 is essential. Also, the variations used
to find the Euler equation (2.3) are the push-forwards of ρ1 (already proved to exist in
M) by a special family of diffeomorphisms of R

N [7]. Therefore, we can deliver stronger
statements. First, the existence of the minimizer ρ1 of (1.4) in M:

Proposition 5. Let τ > 0 and ρ0 ∈ P2 be fixed. Then, there exists a unique minimizer in
M of the functional (1.1).

Secondly, the more general version version of Proposition 4 (with ψ ≡ 0):

Proposition 6. For every τ > 0 and every ρ0 ∈ P2, the minimizer ρ1 over M of (1.4) lies
in W 1,1(RN ) and

∇ρ1(x) =
1

τ
[∇Φ(x) − x]ρ1(x) for a.e. x ∈ R

N ,

where Φ : R
N → R is the unique ρ1dx-a.e. convex function such that ∇Φ#ρ1 = ρ0.

Furthermore, the function ρ̃ : R
N → (0,∞) given by

ρ̃(x) := exp

{

1

τ

[

−
|x|2

2
+ Φ(x)

]}

is integrable in R
N and

ρ1(x) = ρ̃(x)

/
∫

RN

ρ̃(y)dy for a.e. x ∈ R
N . (4.4)

Next we give the stronger version of the main theorem.

Theorem 2. For every ρ0 ∈ P2 and every τ > 0, the minimizer

ρ1 := arg min
ρ∈M

I[ρ0; τ ](ρ)

satisfies
∫

RN

|x|2ρ1(x)dx ≥ Nτ +

∫

RN

|x|2dρ0(x). (4.5)

Then, of course:

Proposition 7. Within the above notation and hypotheses,
∫

RN

|x|2ρ1(x)dx −

∫

RN

|x|2dρ0(x) = 2Nτ − d(ρ0, ρ1)
2. (4.6)

Finally, let us note that, obviously, the conclusion of Corollary 1 holds even for ρ0 ∈ P2.
This extended setting allows us to include the cases in which we obtain equality in (4.5)
and, implicitly, in (1.7). Indeed, we have seen that the equality in (4.5) forces ρ0 = δa for
some a ∈ R

N . We can, in fact, state the following:

11



Proposition 8. Equality in (4.5) is obtained if and only if

ρ0 = δa for some a ∈ R
N . (4.7)

Proof: At this point we only need to show that for every a ∈ R
N , the probability ρ0 = δa

(which lies in P2) produces a minimizer ρ1 over M such that
∫

RN

|x|2ρ1(x)dx = Nτ +

∫

RN

|x|2dρ0(x) = Nτ + |a|2. (4.8)

According to Proposition 6 and (4.4), we have

ρ1(x) = (2πτ)−N/2e−|a|2/(2τ)exp

{

1

τ

[

−
|x|2

2
+ a · x

]}

for a.e. x ∈ R
N (4.9)

which leads to (4.8) after some computation.

¤

Remark: Thus, as a byproduct, we have obtained a proof of the fact that the Gaussian
centered at a minimizes the energy

E(ρ) :=

∫

RN

|x − a|2

2
ρ(x)dx +

∫

RN

ρ(x) log ρ(x)dx

over M. In particular, if a = 0, we infer that the steady state of the Fokker-Planck equation

∂ρ

∂t
= ∇ · (xρ) + ∆ρ

is the minimizer of its corresponding total energy, i.e. the potential energy minus the
Gibbs-Boltzmann entropy.

5 Constrained optimization in M

As announced in the introduction, we can now employ (1.3) to prove the existence of a
minimizer for (1.1) over Eθ,u (defined in (1.2)). In this section, we follow the course of
action outlined by Carlen and Gangbo in [3].

Let us begin with a useful lemma.

Lemma 3. Let ρ0 ∈ M and τ > 0 be given. For every λ ≥ 0, denote by ρ(λ) the unique
minimizer [7] for

I[ρ0; τ ; λ](ρ) :=
1

2τ
d(ρ, ρ0)

2 +

∫

RN

ρ(x) log ρ(x)dx + λ

∫

RN

|x|2ρ(x)dx, (5.1)

over M. Then,

lim sup
λ↑∞

I[ρ0; τ ; λ](ρ(λ))

log λ
≤ N/2. (5.2)
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Proof: We have seen (simply take λ instead of 1/(2τ)) that the minimizer of

∫

RN

ρ(x) log ρ(x)dx + λ

∫

RN

|x|2ρ(x)dx

is the Gaussian

Gλ(x) =

(

λ

π

)N/2

exp
(

− λ|x|2
)

, x ∈ R
N . (5.3)

Since Gλ ∈ M, we infer
I[ρ0; τ ; λ](ρ(λ)) ≤ I[ρ0; τ ; λ](Gλ).

It is an easy computation to show

I[ρ0; τ ; λ](Gλ) =
1

2τ
d(Gλ, ρ0)

2 +
N

2
log(λ/π)

≤
1

τ

∫

RN

|x|2ρ0(x)dx +
1

τ

∫

RN

|x|2Gλ(x)dx +
N

2
log(λ/π)

=
1

τ

∫

RN

|x|2ρ0(x)dx +
NπN/2

2τλ1+N/2
+

N

2
log(λ/π).

Combined with the inequality in the previous display, this leads to (5.2).

¤

Next, we show that

Lemma 4. Let ρ0 ∈ M and τ > 0 be given. Then, there exists some λ1 > 0 such that

∫

RN

|x|2ρ(λ1)(x)dx ≤

∫

RN

|x|2ρ0(x)dx. (5.4)

Proof: Suppose

∫

RN

|x|2ρ(λ)(x)dx >

∫

RN

|x|2ρ0(x)dx =: m0, for all λ > 0.

In view of this, the minimizing property of ρ(λ) implies (let ρ = χ0 in (5.1))

1

2τ
d(ρ(λ), ρ0)

2 +

∫

RN

ρ(λ)(x) log ρ(λ)(x)dx <
1

2τ
d(χ0, ρ0)

2 +
N

2
log

N

3m0
(5.5)

for all λ > 0, where χ0 is the normalized indicator function of the cube [0, q]N with q :=
(3m0/N)1/2 (note that the second order moment of χ0 is thus m0). Thus, the left hand
side of (5.5) is bounded from above, uniformly with respect to λ. Due to (5.5) and the
super-linearity of φ(z) = z log z, we infer [7] that there exists ρ(∞) in M and a subsequence
of {ρ(λ)}λ>0 (not relabelled) for λ ↑ ∞ such that

ρ(λ) ⇀ ρ(∞) weakly in L1(RN ) as λ ↑ ∞.
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It follows that
∫

RN

|x|2ρ(∞)(x)dx ≤ lim inf
λ↑∞

∫

RN

|x|2ρ(λ)(x)dx. (5.6)

We also have, since ρ1 ∈ M minimizes I[ρ0; τ ], that the left hand side of (5.5) is bounded
from below by

1

2τ
d(ρ1, ρ0)

2 +

∫

RN

ρ1(x) log ρ1(x)dx = inf
ρ∈M

I[ρ0](ρ) ∈ R (see [7]) ,

uniformly with respect to λ. This, in view of (5.5) and (5.6), implies

I[ρ0; τ ; λ](ρ(λ))

log λ
grows at least as

λ

log λ

∫

RN

|x|2ρ(∞)(x)dx as λ ↑ ∞.

Since the integral is strictly positive, we obtain a contradiction to (5.2).

¤

We are now in the position to prove

Lemma 5. Let ρ0 ∈ M and τ > 0 be given. Then, there exists some λ0 > 0 such that
∫

RN

|x|2ρ(λ0)(x)dx =

∫

RN

|x|2ρ0(x)dx. (5.7)

Proof: Let ϕ : [0,∞) → R given by

ϕ(λ) :=

∫

RN

|x|2ρ(λ)(x)dx −

∫

RN

|x|2ρ0(x)dx.

Obviously, (1.3) implies ϕ(0) > 0 (in fact, due to (1.5), one has ϕ(0) ≥ Nτ). Due to
Lemma 4, there exists λ1 > 0 such that ϕ(λ1) ≤ 0. Therefore, it suffices to know that
ϕ is continuous to deduce (5.7) for some λ0 ∈ (0, λ1]. The minimizing property of ρ(λ) is
equivalent to

I[ρ0; τ ; λ](ρ(λ)) ≤ I[ρ0; τ ; λ](ρ) (5.8)

for all ρ ∈ M ∩ (L log L)(RN ). If we let λ → λ∗ > 0, we deduce, again from the super-
linearity of φ(z) = z log z, that there exists ρ∗ ∈ M such that

ρ(λ) ⇀ ρ∗ weakly in L1(RN ) as λ → λ∗

up to a subsequence (not relabelled). We refer to [7] once again to write (lower semiconti-
nuity argument)

d(ρ∗, ρ0)
2 ≤ lim inf

λ→λ∗

d(ρ(λ), ρ0)
2 and

∫

RN

ρ∗ log ρ∗dx ≤ lim inf
λ→λ∗

∫

RN

ρ(λ) log ρ(λ)dx.

According to (5.8), we infer that ρ∗ minimizes I[ρ0; τ ; λ∗] over M. But the minimizer is
ρ(λ∗) and is unique, so ρ∗ ≡ ρ(λ∗) and the convergence ρ(λ) ⇀ ρ(λ∗) is true for the whole
range of parameters λ → λ∗. That proves the desired continuity of ϕ.

¤

14



The next theorem is the motivation of this section and, as explained in the introduction, of
the whole paper.

Theorem 3. For every τ > 0 and every ρ0 ∈ Eθ,0 there exists a unique minimizer of (1.1)
over Eθ,0.

Note that we deliberately chose the mean u = 0 ∈ R
N . For a general u ∈ R

N , one has to
repeat the arguments above with the potential ψu(x) = λ|x − u|2 instead of ψ(x) = λ|x|2.
Proof of Theorem 3: We write down the minimizing property of ρ(λ0) from (5.7). Thus,

1

2τ
d(ρ(λ0), ρ0)

2 +

∫

RN

ρ(λ0) log ρ(λ0)dx + λ0

∫

RN

|x|2ρ(λ0)dx

≤
1

2τ
d(ρ, ρ0)

2 +

∫

RN

ρ log ρdx + λ0

∫

RN

|x|2ρdx

for all ρ ∈ M. In particular,

1

2τ
d(ρ(λ0), ρ0)

2 +

∫

RN

ρ(λ0) log ρ(λ0)dx ≤
1

2τ
d(ρ, ρ0)

2 +

∫

RN

ρ log ρdx

for all ρ ∈ M such that
∫

RN |x|2ρdx = θ =
∫

RN |x|2ρ0dx. The only thing left is to show that
∫

RN xiρ
(λ0)(x)dx = 0 for i = 1, ..., N . To unburden notation, let ρ1 := ρ(λ0). According to

Proposition 4 with the potential ψ(x) = λ0|x|
2, ρ1 ∈ W 1,∞

loc (RN ) and we may write
∫

BR

∂ρ1

∂xi
(x)dx =

∫

∂BR

ρ1(y)νi(y)dHN−1(y).

Due to (2.11), ∂ρ1/∂xi ∈ L1(RN ). Also, ρ1 ∈ L1(RN ). Therefore, we can pass to the limit
as R ↑ ∞ to deduce

∫

RN

∂ρ1

∂xi
(x)dx = 0, i = 1, ..., N.

We now integrate (2.11) componentwise to get

(2λ0τ + 1)

∫

RN

xiρ1(x)dx −

∫

RN

∂Φ

∂xi
(x)ρ1(x)dx = 0.

The proof is concluded by observing that ∇Φ#ρ1 = ρ0 gives
∫

RN

∂Φ

∂xi
(x)ρ1(x)dx =

∫

RN

xiρ0(x)dx = 0.

¤
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