
Average-case analysis for combinatorial problems

A Thesis
Presented to

The Academic Faculty

by

Abraham D. Flaxman

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Department of Mathematical Sciences
Carnegie Mellon University

May 2006

Abstract

This thesis considers the average case analysis of algorithms, focusing primarily on NP-hard
combinatorial optimization problems. It includes a catalog of distributions frequently used
in average-case analysis and a collection of mathematical tools that have been useful in
studying these distributions. The bulk of the thesis consists of case-studies in average-case
analysis of algorithms. Algorithms for 3-SAT, Subset Sum, Strong Connectivity, Stochastic
Minimum Spanning Tree, and Uncapacitated Facility Location are analyzed on random
instances.

i

Acknowledgements

There are so many people to acknowledge and thank that I have trouble attempting this
section.

First, I must sincerely thank my advisor Alan Frieze. It is said over and over and
over again, all that matters to the graduate school experience is your advisor. I could
not have hoped for anything better than the advising I received from Alan. From his
encyclopedaic knowledge of probabilistic combinatorics to his uncanny ability to identify
tractable interesting research problems, Alan has been a inspiring role model.

I also owe a great debt to the ACO and Theory community at Carnegie Mellon Uni-
versity, including the students, the faculty, and the staff. Juan Carlos Vera, Tom Bohman,
Alan Frieze, R. Ravi, Avrim and Manuel Blum, Luis von Ahn, Maverick Woo, Bartosz Przy-
datek, Cliff Smyth, Konstantin Andreev, Anupam Gupta, Ryan Williams, Mor Harchol-
Balter, Gary Miller, Steven Rudich, Danny Sleator, Reha Tutuncu, Jochen Konemann,
Ojas Parekh, Ke Yang, Amitabh Sinha, Nina Balcan, and Javier Pena just begins listing
the folks that I have had many happy chats with about research and otherwise.

Special thanks are due to Santosh Vempala, who recommended I go to CMU for grad
school in the first place. And for that matter, thanks also to David Kelly, who showed me
what real math was about to begin with.

There are a number of researchers outside the CMU circle that I met during my summer
travels whom I would like to thank as well. Thanks to the folks I worked with at IBM,
especially Greg Sorkin, David Gamarnik, Don Coppersmith, John Lee, and Marcos Goy-
coolea. Thanks to Adam Kalai, Eric Vigoda, David McAllester, and Lance Fortnow, and
the others who shared their minds with me at TTI-C. Thanks to everyone from MSR-SVC,
especially Jason Hartline and Andrew Goldberg.

I would also like to thank my family and the friends I have not mentioned already.
Vaugely chronologically, big thanks to Isaac, Trevor, Helen, Nicole, Jen, Betty, Ian, Steven,
Ksenjia, Chad, Chuck, Larry, Devon, Laura, Lauren, John, Sarah, Daniel, Paul, Bin, Andy,
Joel, Katie, Dug, Matt, and all from Rustbelt Radio and the Big Idea Bookstore. Over the
years, you have all been there to share a story or a drink, go see a movie or have dinner, to
take part in the little day-to-day things that end up being everything.

I’d like to thank most-of-all my girlfriend Jessi. For our discussions of everything, for
eating and cooking together, for giving me attention, and for leaving me alone. Thank you
for sharing life with me.

iii

Table of Contents

1 Introduction 1

1.1 When good algorithms exist . 1

1.2 Central hypothesis of average-case analysis 2

1.3 Current directions . 2

1.3.1 Small worlds and power laws . 3

1.3.2 Smoothed analysis and semi-random instances 3

1.3.3 Searching for hard instances and planted instances 3

1.4 Outline of what follows . 3

1.5 Reference of mathematical notation . 4

1.5.1 Asymptotic analysis . 4

1.5.2 Discrete probability . 5

1.5.3 Combinatorics and graph theory . 5

2 Distributions for average-case analysis of algorithms 7

2.1 Unweighted graphs and the like . 7

2.1.1 The Erdős-Rényi graphs . 7

2.1.2 Alternatives to the Erdős-Rényi graphs 12

2.2 Problems with weights/distances: . 16

2.2.1 Independent random weights . 16

2.2.2 Geometric distances as edge weights 16

2.3 Smoothed analysis and semi-random instances 16

3 Tools 19

3.1 Moment Inequalities . 19

3.1.1 First Moment Method . 19

3.1.2 Second Moment Method . 19

3.2 Tight Concentration Inequalities . 20

v

vi TABLE OF CONTENTS

3.2.1 Chernoff’s Bound . 20

3.2.2 Hoeffding-Bernstein Inequality . 20

3.2.3 Azuma-Hoeffding Inequality . 20

3.2.4 Talagrand’s Inequality . 21

3.2.5 Symmetric Logarithmic Sobolev Inequality 21

3.3 Principle of deferred decisions . 22

4 Sharp thresholds for a boolean k-CSP 23

4.1 Upper bound via First Moment Method . 24

4.2 Lower bound via Second Moment Method 25

5 3-SAT in planted random instances 29

5.1 Introduction . 29

5.1.1 The distribution . 30

5.1.2 The algorithm . 31

5.1.3 Outline of what follows . 32

5.2 Spectral Arguments . 33

5.3 Non-spectral Arguments . 38

6 Subset Sum on Medium-Dense Random Instances 45

6.1 Introduction . 45

6.1.1 Related Work . 46

6.1.2 Notation and Conventions . 46

6.2 The New Algorithm . 46

6.2.1 Subset Sum Modulo Power of 2 . 47

6.2.2 Subset Sum With An Odd Modulus 47

6.2.3 Combined Algorithm . 50

6.3 Analysis . 50

6.3.1 Correctness . 50

6.3.2 Success Probability . 51

6.3.3 Running Time . 53

6.3.4 Choice of Parameters . 53

6.4 Conclusions and Open Problems . 54

7 The diameter of randomly perturbed digraphs 55

7.1 Introduction . 55

7.1.1 Application: Smoothed Analysis . 56

TABLE OF CONTENTS vii

7.1.2 Application: Property Testing . 60
7.1.3 Outline of what follows . 61
7.1.4 Some facts and notation . 62

7.2 Proof that diameter of D is O(ε−1 lnn) whp 62
7.3 Proof that log-space algorithm recognizes strong connectivity whp 64

7.3.1 When D̄ is strongly connected . 64
7.3.2 When D̄ not strongly connected . 66

7.4 An example with growing degrees . 69
7.5 Proof of “impossibility” of log-space recognizer for (s, t)-connectivity . . . 71
7.6 Testing k-linkedness . 72
7.7 NL-completeness . 74
7.8 Conclusion . 75

8 2-stage spanning tree 77

8.1 Introduction . 77
8.2 Undirected case . 79

8.2.1 Threshold heuristic . 79
8.2.2 Concentration . 82
8.2.3 Beyond the threshold heuristic . 84
8.2.4 A lower bound on OPT . 86

8.3 Spanning arborescence problem . 87
8.3.1 Threshold heuristic . 87
8.3.2 Matching lower bound on

−→
OPT . 88

8.4 Open questions . 89
8.5 Hardness of approximation in worst case . 89

9 Facility Location 91

9.1 Introduction . 91
9.1.1 Random model . 92
9.1.2 Outline . 93

9.2 Approximation Algorithms . 94
9.3 An asymptotically optimal solution . 96

9.3.1 Some simple lemmas . 96
9.3.2 An upper bound on HEU . 98
9.3.3 Lower bound on OPT . 99

9.4 Proof of Main Theorem . 100
9.4.1 Properties of close-to-optimal solutions 101

viii TABLE OF CONTENTS

9.4.2 Properties of Solutions Found by Greedy Approximation Algorithms 106

Bibliography 111

List of Figures

5.1 Outline of algorithm for solving random satisfiable instances of 3SAT 31

6.1 Algorithm for solving dense SSP instances modulo a power of 2 48
6.2 Algorithm for solving dense SSP instances with an odd modulus 49
6.3 Algorithm for solving dense SSP instances 50

7.1 Algorithm A, a heuristic for recognizing strong connectivity 57
7.2 A heuristic for testing k-linkedness . 61
7.3 Procedure to generate Si and Tj . 63
7.4 Procedure to generate Si,r and Tj,r for r = 1, . . . , r� 73

8.1 Algorithm Aα: A threshold heuristic for 2-stage MST 78

9.1 A schematic representation of the asymptotically optimal solution. 96
9.2 Concentric squares S1, S5, and S7. 107
9.3 Two side-by-side copies of S7 . 109

ix

Chapter 1

Introduction

This thesis deals with the average-case analysis of algorithms for combinatorial search and
optimization problems.

The phrases combinatorial search and combinatorial optimization are used here to refer
to a wide range of problems. Some examples of combinatorial search and optimization
problems are: finding a minimum weight spanning tree, finding a minimum weight traveling
salesperson tour, finding a subset of a given set of integers that sums to a given number,
and finding a satisfying assignment to a Boolean formula.

The development of algorithms for combinatorial search and optimization problems has
been underway for the last century. However, algorithm is a somewhat informal term. Is
exhaustive search an algorithm? Should a procedure that fails or finds the wrong answer
on some inputs be considered an algorithm? For the purposes of this thesis, an algorithm
is a systematic procedure for solving some problem. It is something specific enough to be
translated into a computer language or a Turing machine. It doesn’t have to be correct on
all inputs, and it doesn’t have to run fast enough to find an answer. But it is good if it
does.

1.1 When good algorithms exist

This thesis is a small piece of the theoretical study of when good algorithms exist. The most
popular formalization is in terms of recognizing sets with a polynomial-time Turing machine,
and the famous question of P vs. NP. Though this beautiful formalism is simple enough
to teach in an undergraduate class and so difficult to solve that most proof techniques have
been proven not to work, it is not clear that it captures the true nature of “when good
algorithms exist”.

Objections are plentiful. Suppose a problem, like estimating the volume of a convex
body within a factor of (1+ ε) is possible in polynomial time, but the polynomial grows like
n23. Is it really fair to consider this a good algorithm? Or, what if the big-O notation hides
a constant so large that even a linear-time algorithm cannot be run? Worst-case complexity
theory can be overly optimistic.

On the other hand, it is possible that an algorithm for a particular problem takes

1

2 Chapter 1. Introduction

exponential time on some instances, like the simplex algorithm for linear programming, but
these instances are so infrequent that, in practice, the algorithm always succeeds with an
acceptably short running time. Worst-case complexity theory can be overly pessimistic as
well.

This thesis considers an alternative approach, which does not seek to replace worst-case
complexity theory, but to offer another perspective, one which should work in conjunction
with worst-case complexity theory and empirical study of algorithmic performance to predict
the difficulty of computational problems. The approach has come to be known as average-
case analysis of algorithms (or, alternatively, probabilistic analysis of algorithms). Average-
case analysis of algorithms is largely a way to avoid some of the pessimistic predictions of
complexity theory.

1.2 Central hypothesis of average-case analysis

The central hypothesis of average-case analysis of algorithms could be summarized as

“In the real world, problem instances incorporate elements of chance,
so an algorithm need not be good for all problem instances,

as long as it is likely to work on the instances which show up.”

The key difficulty in developing algorithms based on this hypothesis is imprecise nature
of how problem instances incorporate randomness in the real world. Historically, this hasn’t
stopped researchers from picking some particular distribution and performing an average-
case analysis of some algorithm with that distribution. Much of the work on average-case
analysis developed from random graph theory, which, in turn, emerged from the probabilistic
method. The earliest applications of the probabilistic method were purely mathematical
questions and so there was no reason to be concerned with “the real world” as referred
to above; to prove that there is a graph which simultaneously has large girth and large
chromatic number, you may choose any random distribution over graphs and show that the
probability these properties hold is nonzero with respect to that distribution.

However, it is tempting to make predictions about algorithmic performance on real-world
networks based on the theory of random graphs. Some of the first research to do so explicitly
appeared in the 1970s. For example, algorithms for several problems on unweighted graphs
were analyzed on graphs drawn from the Erdős-Rényi distributions (defined in Section 2.1.1)
by Grimmett and McDiarmid [148], Karp [164], Angluin and Valiant [20], and DeWitt and
Krieger [97, 98].

1.3 Current directions

In the past 10 years, the search for appropriate distributions has been influenced by several
developments.

1.4. Outline of what follows 3

1.3.1 Small worlds and power laws

The growth of the Internet and the prevalence of large networks therein has resulted in
a large collection of naturally occurring networks which are easy for researchers to obtain
and compare with graphs generated by various random distributions. This has led to a
wide variety of alternative models. Some of the most studied distributions were designed to
have small dense subgraphs or power-law degree distributions (described in Section 2.1.2).
Both of these properties have been observed in the real world, but are not likely to appear
under the Erdős-Rényi distributions. These distributions have been developed largely in
isolation from average-case analysis of algorithms, and it is remains to be determined if
they will yield useful predictions about designing heuristics. Some steps in this direction
are the analysis of algorithms web-graph crawling [89] and trawling [180], locating secret
societies in a power-law graph [88], and algorithms for finding short paths with only local
information [168, 7].

1.3.2 Smoothed analysis and semi-random instances

Smoothed analysis and semi-random instances provide an alternative approach to the dis-
tribution quandary. Instead of trying to tune distributions to more accurately reflect real
instances, this approach provides a way to study the performance of an algorithm on a
large collection of distributions simultaneously. Smoothed analysis and semi-random in-
stances can be described in terms of an adversary generating instances in the presence
of noise, which makes the similarity and difference between smoothed analysis and semi-
random instances clear; smoothed analysis corresponds to an oblivious adversary, while in
semi-random instances, the adversary may use an adaptive strategy [39, 213, 121].

1.3.3 Searching for hard instances and planted instances

A completely different motivation drives the search for difficult distributions, which are
especially useful if you can generate hard problems to which you know the answer. Such a
distribution serves as a one-way function, which is a basic cryptographic primitive [152]. In
the case of random instances of 3-SAT, just knowing that there is no efficient algorithm to
refute the satisfiability of a randomly generated problem would have powerful applications
to worst-case complexity theory [111].

1.4 Outline of what follows

The remainder of this thesis divides roughly into 3 parts. Chapter 2 is an extensive catalog
of the distributions which have been used in average-case analysis of algorithms. Many
of the distributions come from the theory of random graphs, which is also the area where
most of the proof techniques used in average-case analysis developed. Some of the other
distribtions were developed in response to observations of real data, in an attempt to capture
aspects of the data in a model simple enough to analyze theoretically. There is an element
of artistry to selecting a distribution for an average case analysis. Choose right and the

4 Chapter 1. Introduction

calculations will be a breeze, but make just a small change and you will be buried under
a pile of binomial coefficients (or derive theoretical conclusions which have no bearing on
reality).

There are many surveys and reference works already available about these distributions,
but none of the existing work concisely subsumes the material in Chapter 2. Some of
these alternative references are the books on random graphs [46, 216, 156, 220, 196] and
the surveys [132, 137, 175, 65], as well as work focusing on modelling real-world graphs
[225, 149, 24, 54, 202, 103, 56].

Chapter 3 contains a smattering of useful tools for proving theoretical results about
these distributions. These tools all appear in many other places and in many different
levels of detail. They are collected here for easy reference.

The remaining chapters provide a number of case studies in average-case analysis of
algorithms, including: Subset sum with n random integers each of (log n)2 bits, Planted
3-SAT, smoothed connectivity, facility location, 2-stage spanning tree. Additional details
about the algorithms and the combinatorial search and optimization problems that they
address will be reserved for the appropriate chapters, so that each chapter can be read
(nearly) in isolation.

All these case studies have appeared previously as conference and/or journal papers.
They provide some examples of the sort of “theoretical experimental” evidence that average-
case analysis can provide towards a theory of “when good algorithms exist”.

1.5 Reference of mathematical notation

This section collects the mathematical notation and conventions that will be used repeatedly
throughout this thesis.

1.5.1 Asymptotic analysis

Throughout this document, the variable n will be the central parameter for instance size
and running time. The frequently used asymptotic notation will always be in terms of n,
so

f(n) = O(g(n)) means that there exists n0 and C with f(n) ≤ Cg(n) for all n ≥ n0,
f(n) = o(g(n)) means that lim

n→∞ f(n)/g(n) = 0,

f(n) = Ω(g(n)) means that there exists n0 and C with f(n) ≥ Cg(n) for all n ≥ n0,
f(n) = ω(g(n)) means that lim

n→∞ f(n)/g(n) = ∞.

As another useful short-hand notation, a sequence of events E1, E2, . . . holds with high
probability (which is abbreviated whp) if P[En] = o(1). The sequence of events holds quite
surely (abbreviated qs) if P[En] = o(n−k) for any integer k.

1.5. Reference of mathematical notation 5

1.5.2 Discrete probability

For random variables and distributions, it will be convenient to use “blackboard” notation
as follows: if D is a distribution then write Z ∼ D to mean that Z is a random variable
distributed according to D.

Some common distributions of random variables are the following:

• The Bernoulli distribution, Be(p), corresponds the outcome of a single toss of a biased
coin which is heads with probability p and tails otherwise. Z ∼ Be(p) means that
P[Z = 1] = p and P[Z = 0] = 1 − p.

• The binomial distribution, Bi(n, p), corresponds to the number of heads the occurs in n
tosses of a biased coin that comes up heads with probability p. Formally, Z ∼ Bi(n, p)
means that

P[Z = k] =
(
n

k

)
pk(1 − p)n−k

• The uniform distribution U [0, 1] intuitively should have Z ∼ U [0, 1] mean that Z is
equally likely to be any real between 0 and 1. But that is hopelessly non-rigorous,
so formally (without getting any messy measure theory involved), Z ∼ U [0, 1] means
that for any 0 ≤ a ≤ b ≤ 1,

P[Z ∈ [a, b]] = b− a

• The exponential distribution, Exp(λ), is the unique distribution that is continuous
and memoryless. Formally, Z ∼ Exp(λ) means that for any t ≥ 0,

P[Z ≥ t] = e−λt.

More important that the formal definition is the fact that an exponentially distributed
random variable is “memoryless”,

P[Z ≥ t+ s | Z ≥ t] = P[Z ≥ s]

• The Normal distribution, N (µ, σ2), is a distribution the appears as a limit of the bi-
nomial distribution for many parameters, and also as the limiting sum of independent
random variables that satisfy certain requirements. Formally, Z ∼ N (µ, σ2) means
that

P[Z ≤ t] =
1√

2πσ2

∫ t

−∞
e−(τ−µ)2/(2σ2)dτ.

1.5.3 Combinatorics and graph theory

• For a finite set S, let |S| denote the number of elements in S.

• The “square-bracket” set notation [k] = {1, 2, . . . , k} is a convenient shorthand that
is common in combinatorics but not as common in other areas of mathematics.

6 Chapter 1. Introduction

• A graph, usually denoted by G, consists of a set of vertices, usually denoted V , and
a set of edges, usually denoted E, where e ∈ E is a set of 2 vertices, while a directed
graph (or digraph) will usually be denoted D, and will consist of a set of nodes, usually
denoted N , and a set of arcs, usually denoted A. Sometimes, when the edge set of
a graph G has not been given a specific name, it will be convenient to denote it by
E(G).

• As mentioned above, all asymptotic notation is in terms of n. When dealing with
graph problems, as often as is possible, n will denote the number of vertices in the
graph, and m will be the number of edges.

There are many good textbooks and reference works on graph theory, and a few of these
are by West [227], Bollobás [45] and Diestel [102].

Chapter 2

Distributions for average-case
analysis of algorithms

This chapter contains descriptions of some distributions which have been employed in
average-case analysis of combinatorial search and optimization problems. It is not meant
to be exhaustive catalog. It is meant to collect in one place some interesting distributions,
using somewhat uniform terminology and a level of rigor that is enough, but not too much.

2.1 Unweighted graphs and the like

2.1.1 The Erdős-Rényi graphs

The binomial random graph, Gn,p

For historical reasons, the most extensively studied distribution for random graphs is Gn,p,
which is called the binomial random graph or the Erdős-Rényi graph. Informally, ifG ∼ Gn,p,
then G is a random graph with n vertices, where each pair of vertices appears as an edge
independently with probability p. This can be defined formally by the following: G ∼ Gn,p

means that for any n-graph G� = ([n], E),

P[G = G�] = p|E|(1 − p)(
n
2)−|E|.

However, it is often more convenient to think of G ∼ Gn,p as an n-graph where each edge
appears independently with probability p. Because of the independence of candidate edges,
this distribution is particularly amenable to analysis by the method of deferred decisions.

According to Bollobás, the study of these graph was initiated by Erdős and Rényi in
1959 [106], and while other research [126, 140, 21] is similar in some ways, to attribute
the theoretical interest in this distribution to all of these researchers is to “misconceive
the nature of the subject. Only Erdős and Rényi introduced the methods which underlie
the probabilistic treatment of random graphs. The other authors were all concerned with
enumeration problems and their techniques were essentially deterministic.” [46, p. xii]

This distribution is the central to both of the excellent random graphs textbooks [46, 156]

7

8 Chapter 2. Distributions for average-case analysis of algorithms

The random graph with m edges, Gn,m

The distribution Gn,m was defined and studies by Erdős and Rényi at the same time as
Gn,p. Gn,m is the uniform distribution over graphs with n vertices and m edges. So, if
G ∼ Gn,m, then for G� = ([n], E) with |E| = m,

P[G = G�] =
((n

2

)
m

)−1

.

Sometimes a calculation will be easiest using the Gn,m distribution, and sometimes it
is more convenient to work with Gn,p with p chosen appropriately to make the expected
number of edges equal to m. A rule of thumb is that, for reasonable values of p, everything
interesting about Gn,m is the same in Gn,p for p = 2m/n2. (For a formal version of this rule
of thumb, see Bollobás [46, Theorem 2.2, p. 37–38]).

Some comments on Gn,p and Gn,m

Since average-case analysis of algorithms focuses on asymptotic algorithm behavior, it is
usually appropriate to think of n growing large while p and m grow as carefully chosen
functions of n.

An important phenomenon in Gn,p and Gn,m is the existence of sharp thresholds for
graph properties. As a concrete example, consider the property of being connected. For
G ∼ Gn,p, Erdős and Rényi showed that for any ε > 0,

P[G is connected] =

{
o(1), if np ≤ (1 − ε) log n;
1 − o(1), if np ≥ (1 + ε) log n.

The criteria for the existence of sharp threshold functions due to Friedgut [127, 128]
informally states

All monotone graph properties which do not have a
sharp threshold may be approximated by a local property

(for example, containing a triangle as a subgraph.)

It remains an intriguing open problem to show that this threshold function converges to a
threshold value.

It is possible that there is some mysterious relationship between thresholds and compu-
tation time, about which there will be more to say later in this section.

The random multigraphs with m edges, G̃n,m

It can sometimes simplify computation to consider the following distribution over random
multigraph. G ∼ G̃n,m is the random graph formed by choosing edges m times, where each
edge is chosen uniformly at random from the

(n
2

)
vertex pairs. For many reasonable values

of m, results for this distribution can be translated to Gn,m simply by showing that the

2.1. Unweighted graphs and the like 9

probability of having no repeated edges is at least a constant. One of the first papers to
explicitly define this distribution is [50].

The random regular graph, Gn,r

The random r-regular graph Gn,r is a distribution that is similar in spirit to Gn,m. To
formally define the distribution Gn,r, first let Gn,r denote the collection of r-regular n-
graphs. Then, for G ∼ Gn,r and G� ∈ Gn,r

P[G = G�] = |Gn,r|−1 .

However, this is not a particularly convenient formula for studying properties of random
regular graphs, and it is almost always easier to work with the configuration model of Bol-
lobás [43] (which was originally devised as a method to bound |Gn,r|). In the configuration
model, every vertex is associated with r “clones” and the rn clones are paired up by a uni-
formly random matching. Then the r clones associated with each vertex are contracted into
a single vertex, which yields a multigraph that may include self-loops. If this multigraph
happens to have no repeated edges and also no self-loops, then it is identically distributed
with Gn,r. When r is a constant, the probability that the configuration model yields a
simple graph exceeds a constant value for all n. For Gn,r with r large enough, it is possible
to couple this graph closely with Gn,p for appropriate values of p [166].

Non-regular graphs with a given degree sequence can also be generated easily with the
configuration model, and they have been the area of some research recently, including a
result of Molloy and Reed giving a criteria for the emergence of the giant component [195].
This relates to the recent interest in studying random graphs which are likely to exhibit
a power-law degree sequence. (There is more about distributions for power-law graphs in
section 2.1.2.)

Random planar graphs, etc.

In a manner analogous to the formal definition of random regular graphs above, it is possible
to define random graphs from any other family of special graphs. However, without the
configuration model, these distributions are very difficult to work with. For example, a
distribution over random planar graphs on n vertices can be defined by letting P denote
the set of all planar graphs n vertices, and taking P[G = G�] = |P|−1 for any G� ∈ P.

Directed graphs

All these distributions have analogous directed versions, and the directed Erdős-Rényi
graph, Dn,p is prominent enough to warrant specific mention. As you can guess, the formal
definition is as follows: for D ∼ Dn,p, any digraph D� = ([n], A) has

P[D = D�] = p|A|(1 − p)n(n−1)−|A|.

10 Chapter 2. Distributions for average-case analysis of algorithms

Similarly to the case with Gn,p, it is often more convenient to view D ∼ Dn,p as a digraph
where each pair of nodes appears as an arc independently with probability p. Many re-
sults for random graphs carry over directly to random digraphs. An important technique
developed by Karp describes the component structure of a random graph by comparing a
breadth-first search of the graph to a branching process, and this technique was first applied
to study the strongly connected component of a random digraph [165].

Related random graphs

Some other distributions that are related to these random graphs and worth mentioning are
the random k-out, and the random �-in-k-out. In the random k-out, every vertex chooses
k neighbors and adds directed arcs to them (usually with replacement). In the �-in-k-out,
every vertex chooses k neighbors to point at, and � neighbors to be point at by. These
directed random graphs, and the undirected graphs formed by ignoring the directions of
the arcs are often useful in studying the minimum obstructions to graph properties.

For example, the minimum conditions necessary for a random graph to contain a Hamil-
tonian cycle have driven algorithmic analysis on such graphs, most recently leading to the
proof that a 3-out is Hamiltonian whp [42].

Random subgraph of a given graph

One direction of generalization of the Erdős-Rényi graph distributions is to consider a
random subgraph of a given graph. The distribution Gn,p can be interpreted as starting
with the complete graph and allowing each edge to remain independently with probability
p. A natural generalization of this interpretation is to start with some other graph besides
the complete graph. A complete bipartite graph Kn1,n2, the edge-adjacency graph of a
d-dimensional hypercube, and an (n, d, λ)-expander graph all make good choices. Bipartite
random graph appears frequently in average-case analysis, such as the analysis of matching
algorithm [199, 29]. In the case of pseudo-random graphs, it is sometimes not necessary to
know the graph exactly and just knowing that it is an expander is enough [131].

Random lifts of graphs

Another way to generate a random graph based on a given graph is the random lift. Here
a base graph G is lifted to a random graph G̃ by replacing every vertex v of G with n
vertices v1, . . . , vn, and turning each edge uv ∈ G into a random matching between the
ui’s and the vi’s. The random lift of a given graph has been proposed both as a new
method of constructing exotic graphs for the probabilistic method, and as a technique
for adapting algorithms that work on Erdős-Rényi graphs to work on worst-case instances
[19, 18, 183, 64].

Hypergraphs

It is easy to imagine distributions on hypergraphs analogous to all the graph distribu-
tions above. The most common distribution is H

k
n,p, the random k-uniform hypergraphs,

2.1. Unweighted graphs and the like 11

where every k-set appears as a hyperedge independently with probability p = p(n). An-
other important hyper-multigraph is H̃

k
n,m, where m hyperedges are selected randomly with

replacement from
([n]

k

)
.

The H
k
n,p distribution has been used to analyze the performance of hypergraph coloring

algorithms by a number of researchers [208, 207, 3], and the sharp threshold for 2-colorability
is known quite precisely for sufficiently large k [4]. There is also a survey paper which focuses
on properties of random hypergraphs, [163].

k-SAT and other constraint satisfaction problems

From H̃
k
n,m, it is a small step to an interesting distribution over Boolean formulas, which is

called I
k
n,m in this thesis. This is a distribution over boolean formulas that can be expressed

as k-CNF formulas (which is to say, the formula can be written as an “AND of ORs”, where
each OR clause contains k literals). A realization of Ĩ

k
n,m is generated by taking H

k
n,m and

associating every vertex of the hypergraph with a variable, and then choosing to negate or
not negate each variable independently with probability 1/2.

Here is where the mysterious relationship between threshold phenomenon and compu-
tational difficulty first observed by Cheeseman, Kanefsky, Taylor [73] has been explored in
great detail. As mentioned above, it has been known since the pioneering work of Erdős
and Rényi that certain properties of random graphs exhibit threshold phenomena. What
Cheeseman, Kanefsky, and Taylor observed is that the running time of specific algorithms
for testing these properties seem to take the longest when faced with structures at the
threshold. For example, computer experiments suggest that In,m has a satisfiability thresh-
old at about m = 4.26n, meaning for m = (4.26 − ε)n the random instance is likely to
be satisfiable, while for m = (4.26 + ε)n the random instance is likely to be unsatisfiable
[95, 210]. (It is worth mentioning here that the number 4.26 is not likely to be exact,
and even the existence of a threshold constant is currently unproven. However, Friedgut’s
work, as mentioned above, has shown that there is a threshold function which may depend
on n for which taking m = (1 − ε)c(n)n results in a satisfiable formula whp while tak-
ing m = (1 + ε)c(n)n results in an unsatisfiable instance whp [127].) These experiments
also found that the computation time required to determine if the random instances were
satisfiable followed an “easy-hard-easy” pattern, with the longest running time coinciding
very closely with the satisfiability threshold. Subsequent experiments indicate that this
correlation does not occur for some algorithms other than the DPLL-based ones used in the
original experiments [83].

Planted distributions

Planted distributions are a common modification of the distributions above which are often
considered in average-case analysis of algorithms for combinatorial search problems. Planted
distributions generate problem instances together with a solution. One motivation for
studying these distributions is that if a planted distribution has no good algorithms, then
the instance-solution pairs constitute a one-way function, which is a basic cryptographic
primitive.

12 Chapter 2. Distributions for average-case analysis of algorithms

For example random graph with planted clique can be constructed by taking G ∼ Gn,1/2

and then adding every edge between the vertices in a vertex set of size k. If k = Ω
(
n1/2

)
then a polynomial-time algorithms are known which will recover the planted clique whp
[16, 113] (the paper of Feige and Krauthgamer shows that an algorithm is likely to succeed
even in the “semi-random” model, which is described in Section 2.3.) On the other hand, if
k = (1 + ε) log2 n for ε sufficiently small, then the planted clique is smaller than the largest
clique whp, and [160] shows that if a polynomial-time algorithm succeeds in finding the
planted clique, then it will also succeed in finding a clique of size (1 + ε) log2 n under the
non-planted distribution, Gn,1/2.

In the same spirit, it possible to construct random 3-colorable graphs [15], 2-colorable
hypergraphs [74], and satisfiable formulas [173, 117] and more complicated satisfiable con-
straint satisfaction problems [228]. Chapter 5 constitutes a detailed example of the average-
case analysis of a heuristic for 3-SAT on a planted random instance, which originally ap-
peared in [117].

One of the most popular planted distributions for average-case analysis is the planted
cut. A planted cut is formed by partitioning the vertices into 2 or more parts V1, V2, . . .
and then including each candidate edge between Vi and Vj independently with probability
pij [57, 158, 86, 191, 67, 55, 84].

2.1.2 Alternatives to the Erdős-Rényi graphs

Geometric random graphs

The distribution G(X ; r) of geometric random graph has a history in percolation theory,
but is of increasing importance in the study of sensor networks. To describe the distribution
of G ∼ G(X ; r), first take n random points Xi = (ai, bi), i = 1, 2, . . . , n uniformly in the
unit square [0, 1]2. Then let G = (V,E) where V = {X1, . . . ,Xn} and E = {(Xi,Xj)

∣∣ ‖Xi−
Xj‖ ≤ r}.

Dealing with G(X ; r) rigorously requires more care than the graphs in the previous
section because of the continuous random variables involved in the definition.

It is discussed in [147] (which details the connection between this finite graph and “con-
tinuum percolation”), and it is the central object of study in [101, 204]. Some useful tools
for analyzing the behavior of geometric random graphs are the bin covering technique of
Muthukrishnan and Pandurangan [200] and the application of minimum bottleneck match-
ing developed in [141].

Of course, it is easy to extend the definition to random points chosen in other metric
spaces, including using a more complicated subset of the plane than the unit square or
sprinkling the points in a subset of R

3 instead of R
2.

A very closely related random structure is the weighted graph where instead of adding
edges between vertices that are sufficiently close together, every edge is included but each
edge ij has a weight that depends on the distance between Xi andXj . This weighted random
graph will the subject of Section 2.2.2 discusses this weighted random graph further. Also,
instead of including edges between points within a critical radius, the edges can be included
randomly with probability given by some function of the interpoint distance (this a the

2.1. Unweighted graphs and the like 13

finite version of “long-range percolation”).
If the randomly sprinkled points in geometric random graph are meant to model the

position of elements in some ad-hoc network, then it is reasonable to consider the possibility
that the position of the elements will change over time. Geometric random graphs with
moving points have been considered by Diaz, Pérez, Serna, and Wormald [100].

Small worlds graphs

The small-world phenomenon, that all vertices in a connected network are connected by
short paths has been observed experimentally in real world networks for years, including
the seminal work of Milgram [193]. Many of the distributions in this chapter exhibit this
property in the sense that whp the diameter grows as a logarithmic function of the number
of vertices (or slower). In fact, it is more difficult to design a distribution which does not
have low diameter (the geometric random graph above is one).

Nonetheless, distributions for graphs specifically designed to model the small-world phe-
nomenon have been proposed. These graphs might be simple models which capture the im-
portant aspects of social networks, a link which has been described in detail by Watts [225].

The following version of the small-worlds graph is from work by Jon Kleinberg [168],
and is slightly different from the original formulation of Watts and Strogatz [226] (which
is also analyzed theoretically in [27]). In the spirit of the variations on the Erdős-Rényi
graphs above, it is not hard to imagine a number of minor changes to this model, each of
which could be more or less convenient depending on the situation.

A small-world graph G is formed by starting with some base graph H, which is typically
a path of length n or an n × n grid graph, and then choosing m long-range random edges
out of each vertex, independently according to the distribution

P[i connects to j] =
dH(i, j)−α∑

k �=i dH(i, k)−α
,

where α is a non-negative constant and dH(i, j) is the distance between i and j in H (here
distance is number of edges on the shortest path, so, for example, if H is a path, then
dH(i, j) = |i− j|.)

When α = 0, this is equivalent forming G by adding a random m-out to the base graph
H, a model very similar to the smoothed random graph which will be described in Section
2.3 and used in as the model for the case study of connectivity algorithms in Chapter 7.
Another extension of this approach appears in the hybrid power law graphs proposed by
Chung and Lu [77].

Power law graphs

In the late 1990s, a selection of empirical measurements of networks in the real-world, such
as those by Albert, Barabási, and Jeong [10], Broder et al [62], and Faloutsos, Faloutsos, and
Faloutsos [108], led researchers to believe that the random graphs generated by Erdős-Rényi
distributions fail to capture fundamental properties of “typical” graphs.

14 Chapter 2. Distributions for average-case analysis of algorithms

Several observers have found that, in the World Wide Web and the Internet, the pro-
portion of vertices of a given degree follows an approximate inverse power law, which is to
say that the proportion of vertices of degree k is approximately Ck−α for some constants
C,α. Since none of the Erdős-Rényi distributions above yield graphs with power law degree
sequences, these observations have driven the development of several alternative models for
random graphs.

There are currently several references on these distributions available [54, 202, 149, 225,
103, 56]. The survey by Bollobás and Riordan [54] particularly emphasizes mathematically
rigorous results.

Random graph with a given degree sequence or given expected degree sequence

One approach to generating random power-law graphs is to study graphs with a given
degree sequence (or given expected degree sequence), where the given sequence follows a
power law. This was proposed as a model for the web graph by Aiello, Chung, and Lu in
[9]. Mihail and Papadimitriou also use this model [192] in their study of large eigenvalues,
as do Chung, Lu, and Vu in [78]. In this setting the configuration model of Bollobás can be
used with a degree distribution that obeys a power law, or, alternatively, a model analogous
to Gn,p but where each vertex has an expected degree di and the each pair ij appears as
an edge independently with probability

P[ij ∈ G] =
didj∑n
k=1 dk

.

(For this to make sense, the expected degree sequence (d1, d2, . . . , dn) must have d2
i ≤∑n

k=1 dk for all i.)
This model for a random graph with a power-law degree distribution is the approach

most similar to the Erdős-Rényi distributions, and it was studied more generally before the
search for power laws began, for example by Molloy and Reed [195].

Preferential attachment

A popular alternative to the given-degree-sequence approach to power law graph generation
is to sample graphs according to some generative procedure which happens to yield a power
law distribution. There is a long history of this sort of generative procedure, which is
outlined in the survey by Mitzenmacher [194]. It was proposed as a model for the web
graph by Barabási and Albert [25], and their description was elaborated by Bollobás and
Riordan in [52]. It was used by Bollobás, Riordan, Spencer, and Tusnády [53] who proved
that the degree sequence does follow a power law distribution.

The distribution is defined conditionally, in the form of a procedure for generating a
graph one edge at a time. Let Gt denote the random graph after the t-th edge has been
added.

• At time step t, add a vertex vt, and add an edge from vt to some other vertex u, where

2.1. Unweighted graphs and the like 15

u is chosen at random according to the distribution:

P
[
u = vi

∣∣ Gt

]
=

{
dt(vi)
2t−1 , if vi �= vt;
1

2t−1 , if vi = vt;

where dt(v) denotes the degree of vertex v at time t. This means that each vertex re-
ceives an additional edge with probability proportional to its current degree (sometime
summarized as “the rich get richer”).

• For some constant m, every m steps contract the most recently added m vertices to
form a supervertex.

This basic model has been extended in a number of directions. A generalization of the
preferential attachment model is described by Drinea, Enachescu, and Mitzenmacher in
[104], and degree sequence results analogous to [53] are proved for that model by Buckley
and Osthus in [63]. Directed graphs generated with a preferential attachment model appear
in [47]. Models which allow deletion of edges and vertices appear in [76, 92, 123].

An important tool in the analysis of the Preferential Attachment graph and its variants
is a coupling designed by Bollobás and Riordan [51] which provides a (relatively) simple
way to compare properties of a preferential attachment graph with an Erdős-Rényi graph.

The copying model

A completely different generative model, based on the idea that new webpages are often
consciously or unconsciously copies of existing pages, is developed by Kleinberg et al and
Kumar et al in [169, 180, 179, 178]. The copying model generates a directed graph.

As in the case of the preferential attachment model, the copying model is defined condi-
tionally, and can be thought of as a dynamically growing digraph, where one node is added
every time step. The copying model has two parameters, the out-degree d and the “copy
factor” α ∈ [0, 1]. If the digraph is Dt at time t, then Dt+1 is obtained by adding node vt+1

and directing d arcs out of vt+1, in the following way:

• Choose a prototype node w uniformly at random from the nodes in Dt.

• For the i-th out-arc of vt+1, with probability α choose the destination of the arc
uniformly at random from the nodes in Dt, and with the remaining probability choose
the destination to be the same as the i-th out-arc of w.

Cooper and Frieze analyze a model combining preferential attachment and the copying
model approaches in [90].

HOTs models

An alternative approach to generating random power law graphs is based on the observation
that trade-offs between optimizing 2 different objectives can result in a power-law distribu-
tion. This was first proposed as a model for random graphs by Carlson and Doyle [66]. The

16 Chapter 2. Distributions for average-case analysis of algorithms

idea describes a very general class of distributions, which, like the preceding models is most
conveniently defined by conditional probabilities, in terms of a procedure for generating the
graph one vertex at a time.

Given graph Gt−1, the new vertex vt attaches to vertices in the existing network so as to
minimize a cost function which is a linear combination of two competing costs, which can
be though of as a startup cost and an operating cost. The HOTs models which have been
rigorously analyzed have added only one edge with each vertex, yielding a random tree.

One concrete example is the following: let each vertex vi be associated with a point
Xi, chosen uniformly at random from the unit square. Then when vertex vt is added, it is
connected to a single neighbor vj which is the vertex which minimizes the sum

αdGt−1(vj , v1) + |Xt −Xj |,

where α is a parameter of the model, dGt−1(·, · · ·) is the hop-count in graph Gt−1, and
|Xt −Xj | is the euclidean distance in the unit square. This model is studied in [107, 34],
and an approach with alternative competing distances appears in [35, 36].

2.2 Problems with weights/distances:

Many problems in combinatorial optimization arise from discrete structures like graphs that
have real valued weights on the edges or vertices. For example, an instance of the traveling
salesman problem can be described by specifying the distance between each pair of cities.

2.2.1 Independent random weights

One natural distribution for problems of this type is to make all the weights independent
random variables, uniformly distributed on the interval [0, 1]. Or, instead of uniform random
variables, it is sometimes more convenient or elegant to consider independent exponentially
distributed random variables.

In some graph problems, having a uniformly random weight on all vertices does not
yield interesting instances, and it is better to start with a sparse random graph and then
assign random weights to the edges which appear in the random graph.

2.2.2 Geometric distances as edge weights

Another common distribution for studying optimization algorithm on weighted graphs is
similar to the geometric random graph distribution in Section 2.1.2, where n points are
placed uniformly at random in the unit square, and the weight of an edge in the graph is
given by the distance between the corresponding points in the square.

As above, any other metric space can be used for such a distribution.

2.3 Smoothed analysis and semi-random instances

Smoothed Analysis was introduced by Spielman and Teng in [213] to help explain why the

2.3. Smoothed analysis and semi-random instances 17

simplex algorithm for linear programming works well in practice but not in (worst-case)
theory. They considered instances formed by taking an arbitrary constraint matrix and
perturbing it by adding independent Gaussian noise with variance ε to each entry. They
showed that, in this case, the shadow-vertex pivot rule succeeds in expected polynomial
time.

The XOR perturbation is a method of smoothing an instance particularly suited for
combinatorial problems. Here a random instance is formed by starting with an arbitrary
graph Ḡ and then perturbing it by “XOR”ing it with a sparse random graph R ∼ Gn,ε/n,
resulting in a random graph G = Ḡ + ⊕R, where an edge ij ∈ G if and only if it is in
exactly one of Ḡ and R.

Other models of smoothed instances have been considered by Banderier, Mehlhorn, and
Beier [23]. One model used is that of randomly flipping low order bits of integer data. This
model is also used in [30] to study the smoothed competitive ratio of a scheduling algorithm.

In the work of Beier and Vöcking [32], the authors analyze an algorithm for optimiz-
ing any integer linear program where the variables range over {0, 1}n provided that one
constraint (or the objective) is smoothed by adding a small amount of noise. They find
that the smoothed problem has a polynomial-time algorithm if and only if the worst-case
problem has a “pseudo-polynomial-time” algorithm, meaning an algorithm which runs in
time polynomial in the size of the input when the input is represented in unary.

The semi-random model was introduced by Santha and Vazirani in [206]. In this model
an adversary adaptively chooses a sequence of bits and each is corrupted independently with
probability δ. They present this as a model for real-world random bits, such as the output
of a Geiger counter or noisy diode, and consider the possibility of using such random bits
in computation on worst-case instances. Blum and Spencer considered the performance of
a graph coloring heuristic on random and semi-random instances in [39]. Subsequent work
has uncovered an interesting difference between the random and semi-random instances in
graph coloring. The work of Alon and Kahale [15] developed a heuristic which succeeds whp
on random instances with constant expected degree, while work by Feige and Kilian [112]
showed no heuristic can succeed on semi-random instances with expected degree (1− ε) lnn
(they also developed a heuristic for semi-random instances with expected degree (1+ε) ln n).

In the original semi-random model of Santha and Vazirani, an instance is formed by an
adaptive adversary, who looks at all the bits generated so far, asks for a particular value
for the next bit, and gets the opposite of what was asked for with probability δ. Several
modifications are proposed in Blum and Spencer [39] and also in Subramanian, Fürer,
and Veni Madhavan [218] and Feige and Krauthgamer [113]. However, all these variations
maintain the adaptive aspect of the adversary’s strategy, which at low density allows too
much power; if the error probability p = (1− ε) lnn/n then there will be roughly nε isolated
vertices in G ∼ Gn,p and the adversary will be able to encode a polynomial sized instance
containing no randomness.

The XOR perturbation is equivalent to a natural weakening of the semi-random model:
making the adversary oblivious.

Chapter 3

Tools

This chapter collects together a number of mathematical techniques that are indispensable
for average-case analysis of algorithms. It is intended to serve primarily as a quick reference
for the precise formulation of a number of useful inequalities. For this reason, instead of
striving for the greatest generality, I have attempted to include the formulations that strike
a balance between generality and ease of application. Where appropriate, I have included
references which contain full proofs.

A greatly extended version of this chapter is currently planned, and will will include
example applications for all the techniques in [125].

3.1 Moment Inequalities

3.1.1 First Moment Method

The First Moment Method is a term often used to refer to the following inequality which
holds when X is any non-negative integer valued random variable:

P[X �= 0] ≤ E[X]. (3.1)

Applications of the first moment method often take X to be the sum of indicator random
variables, so this technique is sometimes called Boole’s Inequality or the union bound.

3.1.2 Second Moment Method

The Second Moment Method often refers to the application of the following inequality, which
holds when X is any real-valued random variable (and does not need X to non-negative
nor integral as the First Moment Method does),

P[X �= 0] ≥ E[X]2

E [X2]
. (3.2)

19

20 Chapter 3. Tools

3.2 Tight Concentration Inequalities

3.2.1 Chernoff’s Bound

Chernoff’s bound refers to an inequality the bounds the probability of deviation from mean
in terms of the mean only and not the number of terms in the sum. However it only applies
to sums of independent random variables.

A versatile but easy-to-apply version of Chernoff’s inequality states that for a sum of
independent 0-1 Bernoulli random variables with parameters p1, . . . , pn and expectation
µ =

∑n
i=1 pi,

P[X ≥ µ+ t] ≤ exp
{
− t2

2µ+ 2t/3

}
, (3.3)

P[X ≤ µ− t] ≤ exp
{
− t2

2µ

}
. (3.4)

Sometimes it is more convenient to use the weaker bound that for ε ≤ 1,

P[|X − µ| ≥ εµ] ≤ 2 exp
{
−ε

2µ

3

}
. (3.5)

The proof of these inequalities appears, for example as [156, Theorems 2.1 and 2.8].

3.2.2 Hoeffding-Bernstein Inequality

The previous concentration bound only applies to a random variable that is the sum of
Bernoulli random variables. The Hoeffding-Bernstein Inequality applies when Xi, 1 ≤ i ≤ n
are independent random variables with each E [Xi] = 0 and no two values of any Xi ever
more than one apart. Let S = X1 + · · · +Xn. Then

P[S > a] < exp
{−2a2

}
. (3.6)

The proof of this inequality appears, for example as [17, Theorem A.1.18].

3.2.3 Azuma-Hoeffding Inequality

When a random variable is a function of independent random variables it is possible to
obtain exponential concentration bounds in a similar spirit to those above. In fact, the
bounds above can be considered a special case, where the random variable of interest is a
function of independent random variables, and the function is to sum the inputs. However,
when the function is more complicated than the sum, in addition to the mean, the number
of inputs to the function also must appear in the inequality.

The following is a version of the Azuma-Hoeffding inequality in a form due to McDi-
armid [190] (see also Bollobás [44]): Let X1, . . . ,Xn be independent random variables, with
Xk taking values in a set Ak for each k. Suppose that a measurable function f :

∏
Ak → R

3.2. Tight Concentration Inequalities 21

satisfies |f(x)−f(x′)| ≤ ck whenever the vectors x and x′ differ only in the k’th coordinate.
Let Z be the random variable Z = f(X1, . . . ,Xn). Then for any t > 0,

P [Z ≥ E[Z] + t] ≤ exp
{
−2t2

/∑
c2k

}
. (3.7)

As for many inequalities of this sort, it follows from symmetry (replacing f by −f) that

P [Z ≤ E[Z] − t] ≤ exp
{
−2t2

/∑
c2k

}
. (3.8)

3.2.4 Talagrand’s Inequality

An alternative inequality which is capable of providing concentration bounds for a random
variable that is a function of independent random variables is Talagrand’s Inequality. The
setting is as follows: let A ⊆ Ωn. Any β ∈ Rn defines a sort of weighted Hamming distance,
so that for any x,y ∈ Ωn, dβ(x,y) =

∑n
i=1 βi1(xi �= yi). This induces a distance between

a set and a point, dβ(A,x) = infy∈A dβ(x,y). The Talagrand convex distance function is
then d(A,x) = supβ:‖β‖2=1 dβ(A,x).

Talagrand’s Inequality states that for any measure space (Ω, E ,P), and value t > 0, for
any A ∈ Ωn such that A and {x : d(A,x) ≥ t} are measurable,

P[x ∈ A]P[d(A,x) ≥ t] ≤ exp
{−t2/4} . (3.9)

In combinatorial applications, the measurability is generally automatic; in particular this
is so when Ω is a finite space and n is finite. Talagrand’s inequality is often applied
by choosing some explicit weighting β = β(x) with ‖β(x)‖ = 1, so that by definition
P
[
dβ(x)(A,x) ≥ t

] ≤ P[d(A,x) ≥ t], and thus P[x ∈ A]P [dβ(A,x) ≥ t] ≤ exp
{−t2/4}. By

choosing A so that either P[A] ≥ 1/2 or P [dβ(A,x) ≥ t] ≥ 1/2, we get a bound on the other.
A proof of Talagrand’s Inequality, as well as example applications and several related

concentration inequalities can be found in [221].

3.2.5 Symmetric Logarithmic Sobolev Inequality

The Symmetric Logarithmic Sobolev Inequality is yet another technique for showing that
a random variable is tightly concentrated around its mean. It is equivalent to Talagrand’s
Inequality, in the sense that each can be used to quickly derive the other. However, they
seem philosophically different in approach. To describe the Symmetric Log-Sob Inequality,
let τ(x) = x(ex−1). Let X1,X

′
1, . . . ,Xn,X

′
n be independent identically distributed random

variables, let Z = g(X1, . . . ,Xn), and let Z ′
i = g(X1, . . . ,Xi−1,X

′
i,Xi+1, . . . ,Xn). Then it

follows that

sE[ZesZ] − E[esZ] log E[esZ] ≤
n∑

i=1

E[esZτ(−s(Z − Z ′
i))1(Z > Z ′

i)]

22 Chapter 3. Tools

and

sE[ZesZ] − E[esZ] log E[esZ] ≤
n∑

i=1

E[esZτ(−s(Z ′
i − Z))1(Z < Z ′

i)].

Often, this imposing inequality can be used in a more digestible form. Using the same
definitions as in the previous theorem, if

E

[n∑
i=1

(Z − Z ′
i)

21(Z > Z ′
i)
∣∣∣∣ X1, . . . ,Xn

]
≤ C

then
P[Z > E[Z] + t] ≤ e−t2/4C ,

and if

E

[n∑
i=1

(Z − Z ′
i)

21(Z < Z ′
i)
∣∣∣∣ X1, . . . ,Xn

]
≤ C

then
P[Z < E[Z] − t] ≤ e−t2/4C .

The proof of this inequality, as well as many example applications appears in [60].

3.3 Principle of deferred decisions

The principle of deferred decisions, which appears in [170], is a powerful method of simpli-
fying probabilistic reasoning, that is often summarized as “Don’t do today what you can
put off till tomorrow.”

It seems that this principle is better described by example than any formal definition.
So as an example consider the probability that vertices v and w are within distance 2 in
G ∼ Gn,p. Employing the principle of deferred decisions, first reveal candidate edge vw. If
it is in G (which is the case with probability p), then v and w are adjacent. If vw is not an
edge of G, then reveal all the candidate edges incident to v (and defer the decisions for the
other edges in the graph). Letting S denote the neighborhood of v (so |S| ∼ Bi(n−2, p)), to
determine if v and w are distance 2 apart reveal all the candidate edges from S to w. The
probability that at least one of these edges appears in G is 1 − (1 − p)|S|. Putting these 3
phases of decision making together, and calculating that E[(1 − p)|S|] =

(
1 − p2

)n−2 shows
that

P[dG(v,w) ≤ 2] = p+ (1 − p)E[1 − (1 − p)S] = p+ (1 − p)(1 − (1 − p2
)n−2).

In [171], the principle of deferred decisions is called “late binding”.

Chapter 4

Sharp thresholds for a boolean
k-CSP

This chapter originally appeared as [118]. It applies some of the techniques from Chapter
3 to study the following constraint satisfaction problem (CSP):

Given: a set of boolean variables V = {x1, . . . , xn};
a set of clauses, C = {C1, . . . , Cm}, where Ci = (si1xi1 , . . . , sikxik), for sij ∈ {−1, 1};
a set of “bad” clause assignments Q ⊆ {−1, 1}k with |Q| = q.

Find: an assignment ψ : V → {−1, 1} such that for all Ci,

(si1ψ(xi1), . . . , sikψ(xik)) �∈ Q

An instance I = (V,C,Q) is called satisfiable if such an assignment exists. If no such
assignment exists, I is called unsatisfiable.

This chapter focuses on instances generated by including every k-tuple of literals inde-
pendently at random with probability p = p(n), while allowing arbitrary sets Q of bad clause
assignments. By considering particular sets of bad clause assignments, CSP specializes to
two well known problems, k-SAT and not-all-equal k-SAT.

• k-SAT is a special case of CSP: take Q = {−1k}, i.e. there is one way for a clause to go
bad, the setting which makes every literal in the clause false. Random k-SAT has been
well studied, and a sharp threshold is known for k = 2 [48, 81, 116, 133, 138, 142, 222]
and k− log n→ ∞ [134]. For other values of k, in particular k = 3, a sharp threshold
function is known to exist [127], but it is unknown what the function is. Upper and
lower bounds are given in [1, 6, 61, 70, 71, 105, 138, 157, 167]. Recent work using a
subtle modification of the second moment method has determined that the function
tends to a constant for k a sufficiently large constant [5].

• not-all-equal k-SAT is a special case of CSP: take Q = {−1k, 1k}. The satisfiabil-
ity threshold for random not-all-equal-SAT is studied for k = 3 in [2] and a sharp
threshold constant is known when k is a sufficiently large constant [4].

23

24 Chapter 4. Sharp thresholds for a boolean k-CSP

Let the clause size k = k(n) a function satisfying k ≥ Dε,q log2 n, whereDε,q is sufficiently
large (for ε ≤ 1

9 ,D ≥ 51
ε ln q

ε is enough). Then for any p and for a family of bad clause
assignments {Qi} with |Qn| = q, define I = In,p to be ({x1, . . . , xn}, Cn,p, Qn), where Cn,p

is generated by including each k-tuple of literals independently at random with probability
p.

Theorem 1 For any natural number q and any ε > 0 there exists Dε,q such that for k ≥
Dε,q log n and any family of bad clause assignments {Qi} with |Qn| = q,

lim
n→∞ P[In,p is satisfiable] =

{
1, if p ≤ (1 − ε) ln 2

qnk−1 ;

0, if p ≥ (1 + ε) ln 2
qnk−1 .

The consideration of “moderately growing clauses” is inspired by the work of Frieze and
Wormald [134]. It appears that threshold results which require great labor for constant
clause size become much easier when clause size is a sufficiently large function of n. In the
following, the minimum necessary clause size Dε,q log n will be larger than log n, so Theorem
1 holds for a smaller range of k than the threshold of [134] (which in turn holds for a smaller
range of k that the threshold of [5]). However, Theorem 1 does not require as delicate a
calculation as [134], and proves thresholds for other interesting specializations in one go.

CSP is equivalent to a problem studied by Creignou and Daudé in [96]. They apply
Friedgut’s theory of sharp threshold functions to CSP and determine that there are es-
sentially 2 types of bad clauses that lead to coarse thresholds. The results of this paper
compliment their results by proving that some of the sharp threshold functions are constant,
and by determining exactly what the constant is.

Xu and Li obtained similar results using similar techniques for a different type of con-
straint satisfaction problem in [229]. They consider instances which have clauses of a fixed
size k, allow variables to take values from a domain with d = nα values, and have a differ-
ent bad set for each clause chosen randomly, to prohibit Θ(dk) candidate assignments. (In
contrast, here clauses have size k = Ω(log n), a boolean domain of size d = 2, and a bad set
prohibiting a small number candidate assignments, which is the same set for each clause,
and chosen non-randomly.)

The remainder of this note will prove Theorem 1. Section 4.1 shows unsatisfiability
above the threshold by the first moment method. Section 4.2 shows satisfiability below the
threshold by the second moment method.

In this chapter log x means log2 x, while lnx refers to the base e logarithm, and logα x
for the base-α logarithm.

4.1 Upper bound via First Moment Method

This section shows that I = In,p is unsatisfiable above the threshold whp. The proof is by
the first moment method.

4.2. Lower bound via Second Moment Method 25

Claim 1 Let p0 = ln 2
qnk−1 . Then for any p ≥ (1 + ε)p0, for any Q with |Q| = q,

lim
n→∞P[In,p is satisfiable] = 0.

Proof For a particular assignment φ, there are qnk clauses which violate some
constraint of Q with respect to φ. So the probability that φ satisfies I is the probability
that none of these clauses occur,

P[φ satisfies I] = (1 − p)qnk
.

Let X denote the expected number of assignments satisfying I, so E[X] = 2n(1 − p)qnk
.

For p ≥ ln 2
qnk−1 (1 + ε),

E[X] ≤ 2n exp{−n(1 + ε) ln 2} = 2−εn.

Therefore
P[X �= 0] ≤ E[X] ≤ 2−εn.

�

4.2 Lower bound via Second Moment Method

This section shows I = In,p is satisfiable below the threshold whp. The proof is by the
second moment method.

Claim 2 Let p0 = ln 2
qnk−1 . Then for any p ≤ (1 − ε)p0, for any Q with |Q| = q,

lim
n→∞P[In,p is satisfiable] = 1.

Proof As above, let X denote the number of assignments satisfying I. Begin by
calculating the second moment of X. Let Qi = {{b, b′} ∈ Q × Q : dist(b, b′) = i}, where
dist(b, b′) is the Hamming distance between b and b′ (in other words, Qi is the set of pairs
of bad assignments which differ in i places). Let qi = |Qi|. Note that q0 = q and qk ≤ q/2.

E
[
X2
]

=
∑
φ

P[φ satisfies I]
∑
φ′

P[φ′ satisfies I
∣∣φ satisfies I]

=
∑
φ

P[φ satisfies I]
n∑

s=0

(
n

s

)
P

[
φ′ satisfies I

∣∣ φ satisfies I
dist(φ,φ′)=n−s

]

=
∑
φ

(1 − p)qnk
n∑

s=0

(
n

s

)
(1 − p)qnk−�k

i=0 qisk−i(n−s)i

= 2n(1 − p)qnk
n∑

s=0

(
n

s

)
(1 − p)qnk−�k

i=0 qisk−i(n−s)i
.

26 Chapter 4. Sharp thresholds for a boolean k-CSP

where the probabilities in the second to last line follow since there are qnk candidate clauses
which are bad for assignment φ, qnk which are bad for assignment φ′, and

∑k
i=0 qis

k−i(n−s)i

which are bad for both φ and φ′.

The ratio E
[
X2
]
/E[X]2 is the expected value of a different random variable:

E
[
X2
]

E[X]2
=

n∑
s=0

(
n

s

)
2−n(1 − p)−

�k
i=0 qisk−i(n−s)i

= E
[
(1 − p)−

�k
i=0 qiS

k−i(n−S)i
]

= E

[(
1 +

p

1 − p

)�k
i=0 qiS

k−i(n−S)i
]
,

where S ∼ Bi(n, 1/2).

Now, let

Y =
(

1 +
p

1 − p

)�k
i=0 qiSk−i(n−S)i

,

and bound E[Y] in 3 parts:

E[Y] ≤
3∑

i=1

E

[
Y

∣∣∣∣ ηi−1 ≤ |n/2 − S| ≤ ηi

]
P [ηi−1 ≤ |n/2 − S| ≤ ηi] ,

where

η0 = 0, η1 = ε
n

2
, η2 =

n

2

(
1 − ε

log n

)
, η3 =

n

2
.

The following calculations rely on the fact that
∑k

i=0 qi = q(q + 1)/2 < q2.

First Term: Provided k ≥ 2 logα n where α = 2
1+ε ,

E

[
Y

∣∣∣∣ η0 ≤ |n/2 − S| ≤ η1

]
P [η0 ≤ |n/2 − S| ≤ η1]

≤
(

1 +
p

1 − p

)q2(1
2
n(1+ε))k

≤ exp

{
n
q ln 2(1 − ε)

1 − p

(
1 + ε

2

)k
}

= 1 + o(1).

Second Term: By the version of Chernoff’s bound from Inequality (3.5),

P [η1 ≤ |n/2 − S| ≤ η2] ≤ 2e−nε2/3.

4.2. Lower bound via Second Moment Method 27

So, since k ≥
(

2
ε ln 3q

ε2

)
log n,

E

[
Y

∣∣∣∣ η1 ≤ |n/2 − S| ≤ η2

]
P [η1 ≤ |n/2 − S| ≤ η2]

≤
(

1 +
p

1 − p

)q2
�
n(1− ε

2 log n
)
�k

e−nε2/3

≤ exp

{
n
q ln 2(1 − ε)

1 − p

(
1 − ε

2 log n

)k

− nε2/3

}

= o(1).

Third Term: Note that qk ≤ q. So, since η2 ≤ |n/2 − S| ≤ η3,

k∑
i=0

qiS
k−i(n− S)i ≤ qnk + q

(
n

log n

)k

+
k−1∑
i=1

qiS
k−i(n− S)i ≤ (q + q2/ log n)nk,

and

E

[
Y

∣∣∣∣ η2 ≤ |n/2 − S| ≤ η3

]
P [η2 ≤ |n/2 − S| ≤ η3]

≤
(

1 +
p

1 − p

)nk(q+q2/ log n)
2
(

n

n/2 + η2

)
2−(n/2+η2)

≤ 2en
ln 2(1−ε)

1−p
(1+q/ log n)

n
n ε

2 log n 2−n(1− ε
2 log n

)

= 21+n(1−ε)(1+o(1))+n ε
2
−n(1− ε

2 log n
)

= 2−
ε
2
n(1−o(1))

= o(1).

Putting the parts together and using the second moment inequality, we have

P[X �= 0] ≥ E[X]2

E[X]2
≥ 1 − o(1).

�

Chapter 5

3-SAT in planted random instances

This chapter originally appeared as [117]. It studies the performance of a heuristic for solving
3-SAT on random instances that a drawn from a distribution with a planted satisfying
assignment.

5.1 Introduction

A 3CNF formula over variables x1, . . . , xn consists of clauses C1, . . . , Cm, where each clause
is the disjunction of 3 literals, Ci = �i1∨�i2∨�i3, and each literal is a variable or the negation
of a variable. A 3CNF formula is satisfiable if there is an assignment of variables to truth
values so that every clause contains at least one true literal. Finding a satisfying assignment
for a given 3CNF formula is NP-hard, so it is unlikely there is an efficient algorithm
(meaning an algorithm with running time bounded by a polynomial function of the input
size) which succeeds on all 3CNF formulas [87, 182]. In the spirit of average-case analysis
of algorithms, it is interesting to investigate the existence of efficient algorithms testing
for and generating satisfying assignments which work with high probability (meaning with
probability tending to 1 as n goes to infinity and abbreviated whp) over some reasonable
distribution of formulas.

Uniformly random 3CNF formulas have been the focus of extensive research. It is known
that there is a sharp threshold in the ratio of clauses to variables; a random 3CNF with
clause-to-variable ratio below the threshold is satisfiable whp and one with ratio above is
not satisfiable whp [127]. This threshold is not known exactly, (and not even known to tend
to a constant) but it is known to be at least 3.4 (see [161]) and no more than 4.5 (see [162]).
Experimental results predict the higher end of this interval [95]. (Much more is known for
k-CNF formulas where k is a large constant or slowly growing function [5, 134, 118]).

It is conjectured that proving the non-existence of satisfying assignments slightly above
the threshold is computationally difficult, which yields nice results in hardness of approx-
imations [111]. One piece of evidence supporting this conjecture is the exponential length
of resolution-type proofs refuting such instances [82, 33]. Spectral techniques are effective
in efficiently proving the unsatisfiability of formulas an n1/2+ε factor above the threshold
[129, 143, 144, 85].

29

30 Chapter 5. 3-SAT in planted random instances

An alternative approach is to investigate exponential-time algorithms which find a sat-
isfying assignment or prove that none exists for all instances. Then the challenge is to make
the base of the exponent as small as possible (see, for example, [209, 151]).

5.1.1 The distribution

In this chapter we will consider random 3CNF formulas with a “planted” satisfying as-
signment. That is, formulas which have a clause-to-variable ratio above the threshold, but
which are generated in a way to ensure that they are satisfiable. To be exact, to form
instance I = In,p1,p2,p3 we choose a truth assignment φ on n variables uniformly at random
and include in I each clause with exactly i literals satisfied by φ independently with prob-
ability pi. By setting p1 = p2 = p3 we obtain the model studied by Motoki and Uehara
in [198], which shows a threshold of p = Θ(log n/n2) for 3CNF formulas to have exactly
1 satisfying assignment. An algorithm for p1 = p2 = p3 was analyzed by Koutsoupias
and Papadimitriou in [173]. They show that a greedy variable assignment rule successfully
discovers a satisfying assignment whp for instances with p1 = p2 = p3 = Ω(log n/n2)).
The authors conjecture that some modification of the greedy algorithm will work when
p1 = p2 = p3 = O(1/n2). The results of this chapter show that their conjecture is correct;
in the case where p1 = p2 = p3, the spectral phase of the algorithm presented below can be
replaced by the greedy assignment rule.

By setting p1 = p2 and p3 = 0, we obtain a natural distribution on 3CNFs with a
planted not-all-equal assignment, a situation where the greedy variable assignment rule
generates a random assignment. By setting p2 = p3 = 0, we obtain 3CNFs with a planted
exactly-one-true assignment (which succumb to the greedy algorithm followed by the non-
spectral steps below). Also, by correctly adjusting the ratios of p1, p2, and p3, we obtain a
variety of (slightly less natural) instance distributions which thwart the greedy algorithm.
Carefully selected values of p1, p2, and p3 are considered in [28], where it is conjectured that
no algorithm running in polynomial time can solve In,p1,p2,p3 whp when pi = ciα/n

2 and

0.077 < c3 < 0.25 c2 = (1 − 4c3)/6

c1 = (1 + 2c3)/6 α >
4.25

7
.

An implication of the results in this chapter is that this conjecture fails when α is a suffi-
ciently large constant.

This chapter originally appeared as an extended abstract [117], and subsequent ex-
tensions have shown that a similar styled analysis is capable of showing that alternative
algorithms succeed in expected polynomial time [177] and on semi-random instances [115].

In this chapter we allow clauses with repeated variables, and formulas with the same
clause with the literals in a different order, so there are 8n3 possible clauses, 7n3 which are
consistent with our planted assignment φ. The results and proofs hold for other similar
models, such as prohibiting clauses with repeated literals or clauses where the same set of
literals appear in a different order.

5.1. Introduction 31

5.1.2 The algorithm

The main result of this chapter is a polynomial time algorithm which returns a satisfying
assignment to In,p1,p2,p3 whp when p1 = d/n2, p2 = η2d/n

2 and p3 = η3d/n
2, for 0 ≤

η2, η3 ≤ 1, and d ≥ dmin, where dmin is a function of η2, η3. These restrictions on η2

and η3 are more for convenience than necessity, and in Section 5.2, we will see the matrix
equation which dictates the allowable range of ηi’s. The unsymmetrical feature of this
parameterization, that there is no η1 is not entirely for convenience, however. If we desire
any η1 > max{η2, η3}, we can renormalize by changing the value of d. Unfortunately, taking
η1 = 0 is more complicated. The proof of correctness of Step 4 of the algorithm as described
below relies on there being some positive fraction of clauses with 1 true literal, and it is not
clear how to remove this requirement.

The algorithm below is an extension of the 3-coloring algorithm of Alon and Kahale
[15]. They describe an algorithm which, in an analogous model of a random 3-colorable
graph, finds a proper 3-coloring in polynomial time whp. A previous extension of their
algorithm by Chen and Frieze [74] adapted the technique to 2-color random 3-uniform
bipartite hypergraphs. We follow the same approach, which is outlined in Figure 5.1

procedure Spectral3Sat(I)

1. Construct a graph G from the 3CNF.

2. Find the most negative eigenvalue of a matrix related to the adjacency matrix of G.

3. Assign a value to each variable based on the signs of the eigenvector corresponding to
the most negative eigenvalue.

4. Iteratively improve the assignment.

5. Perfect the assignment by exhaustive search over a small set containing all the incor-
rect variables.

Figure 5.1: Outline of algorithm for solving random satisfiable instances of 3SAT

Each step in Figure 5.1 requires some elaboration.

Step (1): Given 3CNF I = In,p1,p2,p3, where p1 = d
n2 , p2 = η2

d
n2 , and p3 = η3

d
n2 , the

graph in step (1) G = (V,E) has 2n vertices, corresponding to the literals in I and labeled
{x1, x1, . . . xn, xn}. G has an edge between vertices �i and �j if I includes a clause with both
�i and �j (do not add multiple edges).

Step (2): We consider G′ = (V,E′) formed by deleting all the edges incident to vertices
with degree greater than 180d. Let A be the adjacency matrix of G′. Let λ be the most
negative eigenvalue of A and v be the corresponding eigenvector.

32 Chapter 5. 3-SAT in planted random instances

Step (3): There are two assignments to consider, π+, which is defined by

π+(xi) =

{
T, if vi ≥ 0;
F, otherwise;

and π−, which is defined by
π−(x) = ¬π+(x).

Let π0 be the better of π+ and π− (that is, the assignment which satisfies more clauses).
We will argue in the next section that π0 agrees with φ on at least (1−C/d)n variables for
some absolute constant C.

Step (4): For i = 1, . . . , log n do the following: for each variable x, if x appears in 5εd
clauses unsatisfied by πi−1, then set πi(x) = ¬πi−1(x), where ε is an appropriately chosen
constant (taking ε = 0.1 works); otherwise set πi(x) = πi−1(x).

Step (5): Let π′0 = πlog n denote the final assignment generated in step (4). Let Aπ′
0

4

be the set of variables which do not appear in (3± 4ε)d clauses as the only true literal with
respect to assignment π′0, and let B be the set of variables which do not appear in (µD ± ε)d
clauses, where µDd = (3+6)d+(6+3)η2d+3η3d+O(1/n) is the expected number of clauses
containing variable x. Form partial assignment π′1 by unassigning all variables in Aπ′

0
4 and

B. Now, for i ≥ 1, if there is a variable xi which appears in less than (µD − 2ε)d clauses
consisting of variables that are all assigned by π′i, let π′i+1 be the partial assignment formed
by unassigning xi in π′i. Let π′ be the partial assignment when this process terminates.
Consider the graph Γ with a vertex for each variable that is unassigned in π′ and an edge
between two variables if they appear in a clause together. If any connected component in
Γ is larger than log n fail. Otherwise, find a satisfying assignment for I by performing an
exhaustive search on the variables in each connected component of Γ.

Theorem 2 For any constants 0 ≤ η2, η3 ≤ 1, except (η2, η3) = (0, 1), there exists a
constant dmin such that for any d ≥ dmin, if p1 = d/n2, p2 = η2d/n

2, and p3 = η3d/n
2

then this polynomial-time algorithm produces a satisfying assignment for random instances
drawn from In,p1,p2,p3 whp.

The exception in this theorem is easy to circumvent superficially, since the case where
η2 = 0 is solvable in worst-case polynomial time by Gaussian elimination. However, the
parameterization above obscures the fact that there are instances which appear to be hard
in general when p2 =

√
dn. This is the case sometimes called Gaussian elimination with

noise.

5.1.3 Outline of what follows

We will prove Theorem 2 in the next 2 sections. Section 5.2 shows that whp the eigenvector
corresponding to the most negative eigenvalue is close to a satisfying assignment, by showing
that π0 agrees with φ on at least (1 − C/d)n clauses, where C is an absolute constant.
Section 5.3 shows that whp the iterative reassignment in step (4) correctly assigns a larger

5.2. Spectral Arguments 33

fraction of variables, so large that the connected components left after unassignment are
size O(log n) and the exhaustive search in step (5) can perfect the assignment in polynomial
time.

5.2 Spectral Arguments

The goal of this section is to show the assignment constructed from the eigenvector corre-
sponding to the most negative eigenvalue of A is correct on a 1−C/d fraction of variables,
where C is a constant independent of d. The intuition behind this result is as follows.
Suppose φ(x) = T . Then

• literal x appears in about 3d clauses with 2 false literals, 6η2d clauses with 1 false and
1 true literal, and 3η3d clauses with 2 true literals

• literal x̄ appears in about 6d clauses with 1 false and 1 true literal and 3η2d clauses
with 2 true literals.

We use these estimates to describe roughly the adjacency matrix A. For each row corre-
sponding to a true literal, we have nonzero columns for about 6η2d+ 6η3d true literals and
6d + 6η2d false literals. Similarly, for each row corresponding to a false literal, we have
nonzero columns for about 6d+ 6η2d true literals and 6d false literals. Let vT be the vector
with vT (�) = 1 if � is a true literal, and 0 if � is a false literal, and let vF = 1 − vT . Then
we have

AvT ≈ (6η2d+ 6η3d)vT + (6d+ 6η2d)vF

AvF ≈ (6d+ 6η2d)vT + 6dvF .

So, heuristically, we expect 2 eigenvectors of A to look something like βvT + γvF where
β, γ solve the 2-dimensional system[

η2 + η3 1 + η2

1 + η2 1

] [
β
γ

]
= α

[
β
γ

]
.

When 0 ≤ η2, η3 ≤ 1 and (η2, η3) �= (0, 1), this yields a positive eigenvalue α+ and a
negative eigenvalue α−. To see this, note that the trace of the matrix equals the sum of
the eigenvalues, and then calculate that one of the eigenvalues take the form (1 + η2 + η3 +√

(1 + η2 + η3)2 − 4(η2 + η3 − (1 + η2)2))/2. The trace of the matrix is 1 + η2 + η3 and this
eigenvalue is strictly larger provided η2 +η3− (1+η2)2 is negative. Simplifying terms shows
that is equivalent to having 1 + η2 + η2

2 − η3 > 0, which is the case for all 0 ≤ η2, η3 ≤ 1
besides (η2, η3) = (0, 1).

Let
[
β+

γ+

]
be the eigenvector corresponding to α+ and

[
β−
γ−

]
be the eigenvector corre-

sponding to α−. Then additional calculation shows that if we normalize so β2− + γ2− = 1,

then β− and γ− have opposite signs, and |β−|, |γ−| ≥
√

1
17 .

34 Chapter 5. 3-SAT in planted random instances

Let v+ = β+vT + γ+vF and v− = β−vT + γ−vF denote our heuristic approximation of
the eigenvectors.

We will argue that whp A has large positive and negative eigenvalues roughly equal to
6d times the α± and all the other eigenvalues of A are smaller than C

√
d in absolute value,

so the assignment based on the signs of the most negative eigenvector is close to correct.

To make this precise, let I = In,p1,p2,p3 be a random 3CNF as described above and let
G = (V,E) be the graph on the literals of I with edges connecting every pair of literals
appearing in a common clause. Let G′ = (V,E′) be obtained by deleting all edges of G
adjacent to a vertex of degree greater than 180d and let A be the adjacency matrix of G′.
Denote by λ1 ≥ λ2 ≥ · · · ≥ λ2n the eigenvalues of A and by v1,v2, . . . ,v2n a corresponding
collection of orthonormal eigenvectors.

Lemma 1 There is an absolute constant C such that the following hold whp:

1. λ1 ≥ (6d)α+ − 2−d/C

2. λ2n ≤ (6d)α− + 2−d/C

3. |λi| ≤ C
√
d for i = 2, . . . , 2n − 1

Proof The proof is very similar to Lemma 5 of [74] and Proposition 2.1 of [15], which
use the techniques of Kahn and Szemerédi from [130]. For a self-contained treatment, see
also [114]

Our main tool is Rayleigh’s Principle,

λi = min
L

max
v∈L,v �=0

vTAv
vT v

(5.1)

where L ranges over all dimension 2n − i+ 1 subspaces of R
2n. (See, for example, [217]).

We partition the matrix A into 4 blocks, Ai,j, i, j ∈ {T, F}, where AT,T corresponds to
the literals l with φ(l) = T , and the other Ai,j are defined similarly. The edge-set of G has
corresponding partition into Ei,j for i, j ∈ {T, F}.

Proposition 1 For the edge sets defined above, the following hold whp: |ET,T | = (3η3d+
3η2d± o(1))n, |ET,F | = (6η2d+ 6d± o(1))n, |EF,F | = (3d± o(1))n, and |E \E′| ≤ 2−2d/Cn.

These all follow from standard calculations which are omitted here.

5.2. Spectral Arguments 35

We are now ready to prove Lemma 1. To prove part (1) we apply Rayleigh’s Principle
with v+ = β+vT + γ+vF .

vT
+Av+ = β2

+2|E′
T,T | + 2β+γ+|E′

T,F | + γ2
+2|E′

F,F |
≥ β2

+2(|ET,T | − 2−2d/Cn)

+ 2β+γ+(|ET,F | − 2−2d/Cn)

+ γ2
+2(|EF,F | − 2−2d/Cn)

≥ β2
+(6η2d+ 6η3d± o(1))n
+ β+γ+(12d+ 12η2d± o(1))n

+ γ2
+(6d± o(1))n

− 2(|β+| + |γ+|)22−2d/Cn

≥ [β+ γ+

] [6d(η2 + η3) 6d(1 + η2)
6d(1 + η2) 6d

] [
β+

γ+

]
n

− 3(|β+| + |γ+|)22−2d/Cn

≥ (6d)α+n− 2−d/Cn

Since vT
+v+ = n we conclude that λ1 ≥ (6d)α+ − 2−d/C .

To prove part (2) of the lemma, we apply Rayleigh’s Principle with L = {tv+ : t ∈ R}.
The calculation is very similar to the one above, and is omitted.

Proving (3) takes more work. Fortunately we can use a reduction very similar to Lemma
5(iii) in [74]. Recall that vT is the vector with vT (�) = 1 if literal � is true and 0 otherwise.
Also, recall that vF = 1− vT . We begin by showing

Proposition 2 For any v with vTv = 1, vT vT = 0, and vT vF = 0, we have |vTAv| ≤
C
√
d.

Proof Observe that the entries of AF,F are 1 independently with probability 1 − (1 −
p1)3n ∼ 3d1/n. Unfortunately, all the other Ai,j have dependencies because the edges are
added a triangle at a time. To work around this, for each clause, we randomly color the edges
of the triangle corresponding to the clause, one edge red, one green, and one blue. We add
each to the appropriately colored graph Gr, Gg, or Gb (but add an edge to at most 1 graph).
Note that the edges of a particular Gc appear independently, as each edge is contributed
by a different clause. Let Ac be the adjacency matrix of Gc for c ∈ {r, g, b}. Note that
A = Ar + Ag + Ab. Let Ac

i,j for i, j ∈ {T, F} be the submatricies of Ac corresponding to
the submatricies of A defined above. Then we have

|vTAv| ≤
∑

c∈{r,g,b}
|vTAcv| ≤

∑
c∈{r,g,b}

∑
i,j∈{T,F}

|vT
i A

c
i,jvj|.

The edges of Ac
i,j occur with different probabilities for different combinations of i, j,

but, provided we have made dmin(η2, η3) large enough, all submatricies with non-zero edge

36 Chapter 5. 3-SAT in planted random instances

probabilities have edge probabilities exceeding D/n and we can use an argument identical
to Lemma 2.4 of [15] (except with 5d changed to 180d) to show that any unit vectors v
with vTvT = 0 and vT vF = 0 has |vT

i A
c
i,jvj | ≤ (C/12)

√
d, which implies |vTAv| ≤ C

√
d.
�

We also need

Proposition 3 The following hold whp

‖(A− (6d)α+I)v+‖2 ≤ d‖v+‖2,

‖(A− (6d)α−I)v−‖2 ≤ d‖v−‖2.

Proof We work with v+, as the bound on v− is calculated analogously.
Setting y = (A− (6d)α+I) v+, we see that

yT y = vT
+(A− (6d)α+I)T (A− (6d)α+I)v+

= vT
+A

2v+ − 2(6d)α+vT
+Av+ + ((6d)α+)2vT

+v+.

We know that, whp, vT
+Av+ ≥ (6d)α+n− 2−d/Cn from the proof of Lemma 1 (1). By

a similar calculation, we have vT
+Av+ ≤ (6d)α+n + 2−d/Cn. To complete the proposition,

we calculate that, whp, vT
+A

2v+ = ((6d)α+)2n ± 2−d/Cn. (To see this, write v+ as a
linear combination of the eigenvectors of A, and note that the coefficient of the eigenvector
corresponding to eigenvalue (6d)α+ must have most of the weight in the sum in order for
vT

+Av+ to be close to (6d)α+). Summing up, we see that whp

yT y = ((6d)α+)2n± 2−d/Cn− 2(6d)α+((6d)α+n± 2−d/Cn) + ((6d)α+)2n

= ±3 · 2−d/Cn.

�

We can now complete the lemma. To show λ2 ≤ (C + 2)
√
d, we apply Rayleigh’s

Principle with L = {v : vT v+ = 0}. Then we write v ∈ L as tv− + w, where wTv+ = 0
and wTv− = 0. So

vTAv = t2vT
−Av− + 2twTAv− + wTAw

= t2vT
−Av− + 2twT (A− (6d)α−I)v− + wTAw

≤ t2((6d)α− + 2−d/C)‖v−‖2 + 2t
√
d‖w‖‖v−‖

+ C
√
d‖w‖2

≤ (C + 2)
√
d‖v‖2,

where the final inequality follows from α− < 0, ‖w‖ ≤ ‖v‖, and t‖v−‖ ≤ ‖v‖.
To show λ2n−1 ≥ −C√

d, we let L be any 2 dimensional subspace of R
2n. Since L is 2

dimensional, it must contain a unit vector v′ which is orthogonal to v−. We may express
v′ as c1v + c2v+/

√
n, where v is a norm 1 vector that is orthogonal to v+ and c21 + c22 = 1.

Since v is orthogonal to v+ and v−, Proposition 2 shows that vTAv/(vT v) ≥ −C√
d.

5.2. Spectral Arguments 37

Then, by using c1v + c2v+/
√
n as a vector to bound Rayleigh’s Principle, we have

max
v∈L,v �=0

(c1v + c2v+/
√
n)TA(c1v + c2v+/

√
n)

(c1v + c2v+/
√
n)T (c1v + c2v+/

√
n)

≥ c21(−C
√
d) + c22

(
(6d)α+ − 2d/C

)
≥ −(C

√
d).

�

We conclude the section by proving

Lemma 2 Let λ2n be the most negative eigenvalue of A and let v2n be the corresponding
eigenvector. Let v− = β−vT + γ−vF as above. Then the sign of v2n or −v2n disagrees with
the sign of v− on at most (C/d)n coordinates.

Proof Expand v− as a linear combination of orthonormal eigenvectors of A, so that
we have v− =

∑2n
i=1 civi. Then

((6d)α−I −A)v− =
2n∑
i=1

((6d)α− − λi)civi

and

‖((6d)α−I −A)v−‖2 =
2n∑
i=1

c2i ((6d)α− − λi)2

≥ c21((6d)α− − λ1)2 +
2n−1∑
i=2

c2i ((6d)α− − C
√
d)2

≥ ((3d)α−)2
2n−1∑
i=1

c2i ,

since α− < 0, λ1 > 0, and λi < C
√
d for i = 2, . . . , 2n− 1.

We know from Proposition 3 above that

d‖v−‖2 ≥ ‖((6d)α−I −A)v−‖2,

so
2n−1∑
i=1

c2i ≤ d

((3d)α−)2
‖v−‖2 ≤ 1

(9d)α2−
‖v−‖2 =

1
(9d)α2−

n.

Let ṽ =
∑2n−1

i=1 civi, and we have c2nv2n = v− − ṽ. Each entry of v− is at least
√

1
17 in

absolute value, so c2nv2n(�) may have sign opposite of v−(�) for at most 17
(9d)α2

−
n coordinates.

�

Corollary 1 After step (3) at least (1 − C/d)n variables are set correctly.

38 Chapter 5. 3-SAT in planted random instances

5.3 Non-spectral Arguments

This section completes the main theorem by analyzing steps (4) and (5) of the algorithm.
We choose dmin large enough so the truth assignment π produced in step (3) is correct on
all but δn variables, where δ is a sufficiently small constant (like 0.001).

To simplify the following discussion we make a few definitions; in the following ψ is a
partial truth assignment. Recall that φ is the satisfying assignment we used to generate the
instance I.

• We say variable x supports clause C with respect to assignment ψ if x is the only true
literal in C with respect to ψ or x is the only true literal in C with respect to ψ.

• Let Ak be the set of variables x such that there are (3±kε)d clauses which x supports
with respect to φ. Here ε is a sufficiently small constant (eg. ε = 0.1).

• Let B be the set of variables x such that x appears in (µD±ε)d clauses, where µDd is the
expected number of clauses containing x, which is (3+6)d+(6+3)η2d+3η3d+O(1/n).

We will be concerned with A1 and A4, so we may think of A1 as the variables that
support “about the right number of clauses” and A4 as the variables that support “almost
about the right number of clauses” (with respect to φ).

We now list some useful properties as in [74] which hold for I qs∗:

Useful Property 1 |A1 ∩ B| ≥ n(1 − e−d/C).

Useful Property 2 There is no subset of variables U such that |U | ≤ 2δn and at least
1
9εd|U | clauses contain two variables from U .

These follows from standards calculations which are omitted here.
Now we show step (4) improves the assignment found in step (3).

Lemma 3 After step (4) at least (1 − 2−d/C)n variables are set correctly whp.

Proof Define the set of variables H as follows:

1. Let H1 = A1 ∩ B. Let B be the remaining variables.

2. While there is a variable ai ∈ Hi which is in less than (µD − 2ε)d clauses with only
variables in Hi, define Hi+1 to be Hi \ {ai}.

3. Let am be the last variable removed in step (2) and let H = Hm.

Proposition 4 |H| ≥ (1 − 2−d/C)n qs.

∗We say a sequence of events En holds quite surely (qs) if the probability P[En] = o(n−C) for any constant
C.

5.3. Non-spectral Arguments 39

Proof Useful Property 1 shows that |H1| ≥ (1− e−d/C)n qs. Suppose that m ≥ m0 =
e−d/Cn. Let U = {a1, . . . , am0}∪B. Each ai appears at least (µD − ε)d clauses but at most
(µD − 2ε)d clauses with only variables in H, so for each ai there must be at least εd clauses
containing ai and some other variable of U . But each clause can account for at most 3 of
the εm0d pairs, so the total number of clauses containing two variable from U is at least
1
3ε|U |/2, contradicting Useful Property 2.

Therefore, |H| ≥ (1 − 2e−d/C)n ≥ (1 − 2−d/C)n qs. �

Proposition 5 Let Bi be the incorrectly assigned variables in H at the i-th iteration of
step (4). Then |Bi| ≤ |Bi−1|/2 qs.

Proof We will assume not and use Useful Property 2 to derive a contradiction. We
know |B0| ≤ δn qs because step (3) works. If x ∈ Bi, there are 2 cases to consider.

If x ∈ Bi−1 then πi−1(x) = πi(x) so x appears in at most 5εd clauses unsatisfied by πi−1.
But x ∈ H, so there are at least (3 − ε)d clauses which x supports with respect to φ, so
at least (3 − 6ε)d of these clauses contain some other variable y with πi−1(y) �= φ(y). Also
because x ∈ H, x appears in at most (µD + ε)d clauses, at least (µD − 2ε)d of which include
only variables also in H. So x appears in at most 3εd clauses with variables not in H. This
means of the (3 − 6ε)d clauses containing another variable which is assigned incorrectly by
πi−1, at least (3 − 9ε)d of them contain a variable in Bi−1.

If x �∈ Bi−1 then, since it is in Bi, it must be in 5εd clauses which are unsatisfied with
respect to πi−1. Since all these clauses are satisfied with respect to φ, they must each
contain some variable y which has πi−1(y) �= φ(y). But x is in at most 3εd clauses with
variables outside of H, so x is in at least 2εd clauses with some variable in Bi−1.

In either case, every variable in Bi appears in at least 2εd clauses with some variable
of Bi−1. Setting U = Bi ∪Bi−1, we have at least 1

32εd|Bi| clauses containing two variables
from U . If |Bi| ≥ |Bi−1|/2 then the bound on number of clauses above exceeds 4

9εd|U |,
which contradicts Useful Property 2. �

This shows that whp all literals in H are assigned correctly in log n iterations, which
completes the proof of Lemma 3. �

Lemma 4 After unassignment in step (5) all variables in H remain assigned and no vari-
able which remains assigned is assigned incorrectly whp.

Proof All variables in H remains assigned: all x ∈ H are assigned correctly at the
end of step (4), and there are at most 3εd clauses containing x and variables outside of H,
so there are at least (3 − 4ε)d clauses (the ones in H) which x supports and no more than
(3 + 4ε)d clauses which x supports. In addition, we know H ⊆ A4, so all x ∈ H remain
assigned in π′1. To see that no x is unassigned in later π′i, note that for x ∈ H, x is in at
least (µD − 2ε)d clauses consisting only of other variables in H.

Any variable still assigned after unassignment is assigned correctly: Let U be the set of
variables that are assigned incorrectly after unassignment. Suppose x ∈ U . Then x appears
in at most (µD + ε)d clauses, of which at most 3εd contain an unassigned variable. Also,
x supports at least (3 − 4ε)d clauses, so x supports at least (3 − 7ε)d clauses containing

40 Chapter 5. 3-SAT in planted random instances

no unassigned variables. In the correct assignment, x is opposite its current value and all
the clauses are satisfied, so each of these (3− 7ε)d assigned clauses has some other assigned
variable set incorrectly. Thus x appears in (3 − 7ε)d clauses with some other variable from
U . Since each clause can account for at most 3 such pairs, we have at least 1

3(3 − 7ε)d|U |
clauses containing two variables of U . |U | ≤ 2−d/Cn so this contradicts Useful Property 2.

�

For the final piece of the argument, consider the graph Γ with a vertex for each variable
and an edge between two unassigned variables if they appear in a common clause. We will
show Γ has connected components of size at most log n whp. This is proved similarly to
Proposition 4 of [74]. The argument is based on a calculation of the expected number of
(log n)-sized trees covered by the clauses of I that are disjoint from H.

Lemma 5 No connected component of Γ has size larger than log n whp.

Proof Let T ′ be a fixed tree on log n vertices, and let T be a fixed collection of clauses
such that each edge of T ′ appears in some clause of T . We call T minimal if deleting
any clause results in a set which does not cover T ′. Let V (T) denote the set of variables
appearing in some clause of T and V (T ′) denote the set of variables appearing in T ′. We
wish to show that P[T ⊆ I and V (T ′)∩H = ∅] is small. Let J be the subset of variables of
V (T ′) which appear in at most 6 clauses of T .

Proposition 6 |J | ≥ |V (T ′)|/2
Proof Suppose |J | < |V (T ′)|/2. Then at least |V (T ′)|/2 variables appear in more than
6 clauses of T . So |T | ≥ 1

3 · 6 · |V (T ′)|/2 = |V (T ′)|. But since T is minimal, each clause of
T covers at least 1 unique edge of T ′, so |T | ≤ |V (T ′)| − 1. Contradiction. �

We define the set of variables H ′ by the following iterative procedure (which is similar
to the procedure we used to generate H, but depends on V (T) \ J):

1. Set H ′
1 to be the set of variables x such that x supports at least (3 − ε)d clauses and

at most (3 + ε)d− 6 clauses with respect to φ, x appears in at least (µD − ε)d clauses
and at most (µD + ε)d− 6 clauses, and x is not in V (T) \ J

2. While there exists xi appearing in less than (µD − 2ε)d clauses with only variables
from H ′

i, set H ′
i+1 = H ′

i \ {xi}.

3. Set H ′ to H ′
m, the final result of the previous step.

Proposition 7 Let F be a set of clauses and let H(F ∪ T) be the value of H if I = F ∪ T
and let H ′(F) be the value of H ′ if I = F . Then H ′(F) ⊆ H(F ∪ T).

Proof First, we argue that H ′
1(F) ⊆ H1(F ∪ T). For x �∈ H1(F ∪ T) consider the

following cases:

1. If x appears in more than (µD + ε)d clauses of F ∪ T or supports more than (3 + ε)d
clauses of F ∪ T with respect to φ then it is not included in H1(F ∪ T); we argue x is
also not in H ′

1(F) by examining 2 cases:

5.3. Non-spectral Arguments 41

(a) x ∈ V (T) \ J . Then x is not included in H ′
1(F).

(b) x �∈ V (T)\J . Then x appears in most 6 clauses of T , so it appears in more than
(µD + ε)d−6 clauses of F or x supports more than (3+ ε)d−6 clauses of F with
respect to φ and hence is not included in H ′

1(F).

2. If x appears in less than (µD − ε)d clauses of F ∪ T or supports less than (3 − ε)d
clauses of F ∪ T with respect to φ then, since it appears in no more clauses of F and
supports no more clauses of F with respect to φ, it is not included in H1(F ∪ T) or
H ′

1(F).

We proceed by showing that if H ′
i(F) ⊆ Hi(F ∪ T) then H ′

i+1(F) ⊆ Hi+1(F ∪ T): if xi

appears in less than (µD − 2ε)d clauses of F ∪ T with only variables of Hi(F ∪ T) then it
also appears in less than (µD − 2ε)d clauses of F with only variables of H ′

i(F).

Thus, we conclude that H ′(F) ⊆ H(F ∪ T). �

Proposition 8 P[T ⊆ I and V (T ′) ∩H = ∅] ≤ P[T ⊆ I]P[J ∩H ′ = ∅]

Proof It is sufficient to show that

P[J ∩H = ∅ | T ⊆ I] ≤ P[J ∩H ′ = ∅].

We do this now:

P[J ∩H ′ = ∅] =
∑

F : J∩H′(F)=∅
P[I = F]

≥
∑

F : J∩H(F∪T)=∅
P[I = F],

where the inequality follows from H ′(F) ⊆ H(F ∪ T). Now, we break each set of clauses F

42 Chapter 5. 3-SAT in planted random instances

into F ′ = F \ T and F ′′ = F ∩ T . We rewrite the value above as∑
F : J∩H(F∪T)=∅

P[I = F]

=
∑

F ′ : F ′∩T=∅,
J∩H(F ′∪T)=∅

∑
F ′′ : F ′′⊆T

P
[
I \ T = F ′ ∧ I ∩ T = F ′′]

=

(∑
F ′ : F ′∩T=∅,

J∩H(F ′∪T)=∅

P[I \ T = F ′]

)(∑
F ′′ : F ′′⊆T

P[I ∩ T = F ′′]
)

=
∑

F ′ : F ′∩T=∅,
J∩H(F ′∪T)=∅

P[I \ T = F ′]

=
∑

F ′ : F ′∩T=∅,
J∩H(F ′∪T)=∅

P[I \ T = F ′ | T ⊆ I]

= P[J ∩H = ∅ | T ⊆ I].

�

Proposition 9 P[J ∩H ′ = ∅] ≤ 2n−d/2C

Proof Although H ′ is formed by a complicated iterative procedure, this procedure
does not depend in any way on J , and so the probability that J does not intersect H ′ is
the same as the probability that any set of size j = |J | does not intersect H ′. Conditioned
on |H ′|, this is given by

P
[
J ∩H ′ = ∅ ∣∣ |H ′| = h

]
=
(
n− j

h

)/(
n

h

)
≤ (n − h)j .

It follows from the same arguments as in Proposition 4 that |H ′| > (1 − 2−d/C)n qs.

Therefore the unconditional probability that J ∩ H ′ = ∅ is at most 2−jd/C + n−d/2C .
Since j = |J | ≥ |V (T ′)|/2 = (log n)/2, the desired bound on the probability holds. �

Let k = log n, and let NT ′,s denote the number of ways to pair 2s edges of T ′ to form s
clauses which each cover 2 edges. Since there are 6 ways to permute the order of the variables
in each clause, 8 ways to set the negations, and k− 1− s clauses total, it follows that there
are at most NT ′,s(48n)k−1−2s ways to cover tree T ′ with a minimal set of clauses such that
s clauses cover 2 edges and k − 1 − 2s clauses cover 1 edge. Let T be such a set of clauses.
Then we have P[T ⊆ I] = (d/n2)k−1−s. Above we showed that P[J ∩H ′] ≤ e−k(d/2C). Thus,
the probability that the random instance I contains a set of clauses which cover a k-tree

5.3. Non-spectral Arguments 43

that is disjoint from H is at most

∑
k-trees T ′

k/2∑
s=0

NT ′,s(48n)k−1−2s
(
d/n2

)k−1−s
e−k(d/2C)

≤
∑

k-trees T ′

(k/2∑
s=0

NT ′,s

)
(48d)kn1−ke−k(d/2C)

In order to obtain a useful upper bounds on the sum
(∑

sNT ′,s
)
, we fix a degree sequence

(d1, . . . , dk) for T ′, and consider the following procedure for pairing edges so that triangles
can cover the edge pairs. For each vertex, we specify a permutation of the edges incident to
that vertex. Then we iterate through the vertices, and for each vertex, we iterate through
the edges and pair up each unpaired edge with the edge given by the permutation associated
with the current vertex (and leave the edge unpaired if the permutation sends the edge to
itself). Any pairing of edges which can be covered by clauses can be generated this way by
choosing the permutations to transpose each pair of edges to be covered by a single clause
and to leave fixed all the other edges. Since there are di! different permutations for vertex
i, we have

k/2∑
s=0

NT ′,s ≤
k∏

i=1

(di!) .

Prüfer codes give a bijection between the set [k]k−2 and labeled trees on k vertices. They
have the additional nice property that the degree of vertex i in the tree corresponding to
code c ∈ [k]k−2 is exactly 1 less than the number of times i appears in c. It follows that the
number of k-trees with degree sequence (d1, . . . , dk) equals

(k−2
d1−1,...,dk−1

)
(see, for example,

[185, Section 4.1, p. 33]). There are
(n
k

)
ways to choose the k vertices of the tree. So the

probability above is at most

∑
d1+...+dk=2(k−1)

(
k − 2

d1 − 1, . . . , dk − 1

)(
n

k

)(k∏
i=1

(di!)
)

(48d)kn1−ke−k(d/2C)

≤
∑

d1+...+dk=2(k−1)

k2ek
(k∏

i=1

di

)
(48d)kne−k(d/2C).

For (d1, . . . , dk) with d1 + . . . + dk = 2(k − 1), the product
∏k

i=1 di is maximized when
d1 = . . . = dk and so

∏k
i=1 di < 2k. The number of ways to choose positive integers

(d1, . . . , dk) so that d1 + . . . + dk = 2(k − 1) is less than
(2k−1

k−1

)
, which is less than 22k. So,

provided we have chosen the constant d sufficiently large, we find that the probability that
I contains a set of clauses which covers a (log n)-tree disjoint from H is at most

22 log n(log n)2elog n2log n(48d)log nne− log n(d/2C) = o(1).

Chapter 6

Subset Sum on Medium-Dense
Random Instances

This chapter originally appeared as [124]. It studies the performance of a heuristic for
solving the subset sum problem, which has been proposed as a cryptographic primative
both in theory and in practice.

6.1 Introduction

The subset sum problem (SSP), one of the classical NP-hard problems, is defined as follows:
given n numbers and a target bound B, find a subset of the numbers whose sum equals B.

This chapter considers a case arising commonly in cryptographic applications where
the numbers are represented by m-bit integers, and the sums are computed modulo M ,
where M is another m-bit integer. In other words, the addition is performed in ZM . More
formally, the subset sum problem of dimensions n and m is:

Given: n numbers a1, . . . , an, with ai ∈ ZM , and a target B ∈ ZM , where M is an m-bit
integer

Find: a subset S ⊂ {1, . . . , n}, such that∑
i∈S

ai ≡ B mod M .

For the purposes of average case analysis, consider random instances of the problem, where
both the input numbers and the bound are picked uniformly at random from ZM , where M
is a function of n. Similar random instances (with a different dependence of M on n) were
shown by Chvátal [80] to be hard instances for a class of knapsack algorithms.

The hardness of random SSP instances varies significantly with the choice of parameters,
in particular the magnitude of m (the number of bits in M) as a function of n (this is
described in detail in [152] and bears some relation to the phase transition phenomenon
studied for Integer Partitioning problems in [59, 58]):

45

46 Chapter 6. Subset Sum on Medium-Dense Random Instances

m > n: such instances are “almost 1-1” (each subset has a different sum), and are effi-
ciently solvable by a reduction to a short vector in a lattice when m ≥ c ·n2, for some
constant c [181, 136, 94].

m < n: such instances are “almost onto” (with multiple solutions for most targets), and
are efficiently solvable by various techniques in high-density case, i.e., for m = O(log n)
(by dynamic programming, or, when M = O(n2/ log n) by using methods of analytical
number theory [69, 139, 68]).

Despite various efficient approaches to dense instances, prior to the initial publication of
the results in this chapter [124], all algorithms take at least Ω(M) time, and so none of
them works in polynomial time when m = ω(log n). Independently from the work in [124],
Lyubashevsky gave an alternative approach for random instances of subset sum, which runs
in expected polynomial-time on instances with m = c(log n)2 for any constant c, and also
runs in subexponential time on instances with m = o(n) whp [188].

6.1.1 Related Work

The algorithm below bears some similarity to an approach developed by Blum et al. [38]
in the context of computational learning theory. By employing a recursive approach much
like that below, they provide an algorithm for learning an XOR function in the presence of
noise. Their work began in a similar average-case setting, but was subsequently extended
to work on arbitrary (worst-case) instances.

Beier and Vöcking [31] presented an expected polynomial time algorithm for solving
random knapsack instances. Knapsack and subset sum have some compelling similarities,
but the random instances considered there are quite different from those considered here,
and this leads to the development of quite a different approach, bearing more similarity to
the study of heuristics for real-values knapsack and partitioning problems [187, 186].

6.1.2 Notation and Conventions

A tuple (a1, . . . , an;B,M) denotes an instance of SSP with input numbers ai and target B
to be solved over ZM .

For the clarity of presentation the discrete nature of some terms in summations are
ignored to avoid the use of rounding operations (floors and ceilings). However, this simpli-
fication does not compromise the validity of the results. All asymptotic notation is with
respect to n, and all logarithms are base 2.

6.2 The New Algorithm

We begin with a special case, an algorithm applicable when M is a power of 2. Then we
present another special case, an algorithm applicable when M is odd. In general, we apply
a combination of the two special cases. Given any modulus M we write M = M̄ · M ′,
with M̄ = 2m̄ and M ′ odd. We use the first algorithm to reduce the original problem

6.2. The New Algorithm 47

(a1, . . . , an;B,M) to a problem (a′1, . . . , a′n′ ;B′,M ′), and then use the second algorithm to
solve the reduced problem.

In the algorithms below � is a parameter whose value will later be set to (log n)/2. For
simplicity, the description presented below focuses on the core part of the algorithms, which
can fail on some inputs. Later we show that the failures have sufficiently low probability so
that upon failure we can run a dynamic programming algorithm (which takes exponential
time) and obtain an expected polynomial time algorithm.

6.2.1 Subset Sum Modulo Power of 2

Given an instance (a1, . . . , an;B,M), with M = 2m and B �= 0, we transform it to an
equivalent instance with target zero, i.e., (a1, . . . , an, an+1; 0,M), where an+1 = M − B
and we require that a valid solution contain this additional element an+1. To solve the
target-zero instance we proceed as follows: we find among the input numbers a maximum
matching containing an+1, where two numbers ai, aj can be matched if the sum (ai + aj)
has its � least significant bits equal to zero, (in other words, if (ai + aj) ≡ 0 mod 2�.)
From the matching we generate a “smaller” instance of SSP, which we solve recursively:
given a matching of size s, ((ai1 , aj1), . . . , (ais , ajs)), where wlog. ais = an+1, we generate an
instance ((ai1 + aj1)/2�, . . . , (ais + ajs)/2�; 0, 2m−�), and we require that a valid solution of
this instance must contain the last element. Note that the instance to be solved recursively
is indeed smaller. It has at most (n + 1)/2 input numbers, and both the modulus and the
input numbers are shorter by � bits. When the recursion reaches the bottom, we extract a
solution of the original problem in a straightforward way. Figure 6.1 presents the algorithm
in pseudocode. Note that the algorithm returns a set S of disjoint subsets, where the the
last subset is a solution to the input problem, and all remaining subsets sum up to zero
modulo 2m. These extra subsets are used in the combined algorithm in Sect. 6.2.3.

We remark that the above method can be used to solve instances of SSP with some
other moduli, for example when M is a power of small primes, or when M is “smooth”
(meaning the product of small primes). However, the method does not generalize easily to
arbitrary moduli, and in particular gives no obvious way to handle a large prime modulus.
In the next section we describe a different algorithm, which works with high probability for
arbitrary odd moduli.

6.2.2 Subset Sum With An Odd Modulus

The algorithm for SSP with an odd modulus has on a high level the same strategy as the
algorithm from the previous section, i.e., it successively reduces the size of the numbers by
matching them in pairs. However, it differs in one significant detail. Instead of working on
least significant bits, it zeros out the most significant bits at each step of the recursion.

Given an instance (a1, . . . , an;B,M), with M odd and B �= 0, we begin, as in the
previous case, by transforming it to an equivalent instance with target 0. However, this
time we use a different transformation. To each input number we add the value ∆ :=
(−B/2t) mod M , where t = �log2M/��, so the modified instance is (a′1, . . . , a′n; 0,M),
where a′i = ai + ∆.

48 Chapter 6. Subset Sum on Medium-Dense Random Instances

procedure SSPmod2(a1, . . . , an, B,m, �)
an+1 := −B
S := SSPmod2rec(a1, . . . , an+1,m, �)
/** wlog. S = (S1, . . . , Ss) and (n+ 1) ∈ Ss **/
return (S1, . . . , Ss−1, Ss \ {n+ 1})

procedure SSPmod2rec(a1, . . . , an+1;m, �)
S := ()
V := {1, . . . , n, n+ 1}
E := {(i, j) : (ai + aj) ≡ 0 mod 2�}
E′ := maximum matching in G = (V,E) containing vertex (n+ 1)
/** wlog. E′ = (e1, . . . , es), with es containing (n+ 1) **/
if E′ is non-empty then

if � < m then
∀ek ∈ E′, ek = (ik, jk), let a′k := (aik + ajk

)/2�

S ′ := SSPmod2rec(a′1, . . . , a′s;m− �, �)
if S ′ is not empty then

/** wlog. S ′ = (S′
1, . . . , S

′
t), with each S′

i ⊆ {1 . . . s}, and s ∈ S′
t **/

∀S′
i ∈ S ′ let Si :=

⋃
ek:k∈S′

i,ek=(ik,jk)

{ik, jk}
S := (S1, . . . St)

else
∀ek ∈ E′, ek = (ik, jk), let Sk := {ik, jk}
S := (S1, . . . Ss)

return S
Figure 6.1: Algorithm for solving dense SSP instances modulo a power of 2

Our motivation for making this transformation becomes clear when we reveal our plan
to make sure that any solution returned by our algorithm contains exactly 2t elements.
Since the sum of the solution of the modified instance is zero modulo M , the sum of
the corresponding numbers in the original instance is B, as each number of the solution
contributes an extra ∆ to the sum and

2t · ∆ ≡ −B mod M.

The fact that M is odd is required to ensure that such a ∆ exists.

Now it is convenient to view elements from ZM as numbers from the interval I =
{−(M − 1)/2, . . . , (M − 1)/2}, following the transformation

a→
{
a, if a ≤ (M − 1)/2;
a−M, otherwise.

(6.1)

6.2. The New Algorithm 49

Given a target-zero instance (a′1, . . . , a′n; 0,M) with M odd, we find a solution of cardi-
nality 2t as follows: we find a maximum matching among the input numbers, where two num-
bers a′i, a

′
j can be matched iff there exists an integer k so that when viewed as elements of the

interval I, as in (6.1), a′i ∈ [kM/2�+1, (k+1)M/2�+1] and a′j ∈ [−(k+1)M/2�+1,−kM/2�+1].
Again, from the matching we generate a “smaller” instance of SSP, which we solve recur-
sively. Given a matching of size s,

((a′i1 , a
′
j1), . . . , (a′is , a

′
js

)),

we generate an instance ((a′i1 + a′j1), . . . , (a′is + a′js
); 0,M). By the property of the matched

numbers, the input numbers of the new instance are smaller in the sense that they are closer
to 0 when viewed as elements of interval I. Figure 6.2 presents in pseudocode the algorithm
for odd moduli.

procedure SSPmodOdd(a1, . . . , an;B,M, �)
t := �log2M/��
∆ := (−B/2t) mod M
return SSPmodOddRec(a1 + ∆, . . . , an + ∆;M, �, 1)

procedure SSPmodOddRec(a1, . . . , an;M, �, d)
/** we view ai’s as numbers from I = {−(M − 1)/2, . . . , (M − 1)/2} **/
S := {}
V := {1, . . . , n}
E := {(i, j) : ∃k ∈ Z, ai ∈ [kM/2d�+1, (k + 1)M/2d�+1],

aj ∈ [−(k + 1)M/2d�+1,−kM/2d�+1]}
E′ := maximum matching in G = (V,E)
/** wlog. E′ = (e1, . . . , es) **/
if E′ is non-empty then

if d · � < �log2M� then
∀ek ∈ E′, ek = (ik, jk), let a′k := (aik + ajk

)
S′ := SSPmodOddRec(a′1, . . . , a

′
s;M, �, d+ 1)

if S′ is not empty then
/** S′ ⊆ {1 . . . s} **/

S :=
⋃

ek:k∈S′,ek=(ik,jk)

{ik, jk}
else
S := {i1, j1}, where e1 ∈ E′, e1 = (i1, j1).

return S

Figure 6.2: Algorithm for solving dense SSP instances with an odd modulus

50 Chapter 6. Subset Sum on Medium-Dense Random Instances

6.2.3 Combined Algorithm

As mentioned above, given an instance (a1, . . . , an;B,M), for any (m-bit) modulus M , we
write M = M̄ ·M ′, with M̄ = 2m̄ and M ′ odd, and apply both algorithms described above,
one for M̄ and one for M ′.

First, we solve the instance (a1, . . . , an;B, M̄) using procedure SSPmod2. As a solution,
we obtain a sequence S = (S1, . . . , Ss) of disjoint subsets of {1, . . . , n}, where for each
i = 1..(s − 1) we have

∑
j∈Si

aj ≡ 0 mod M̄ , and
∑

j∈Ss
aj ≡ B mod M̄(i.e., the last

subset is a solution for target B). From this solution we generate an instance for the second
algorithm, (a′1, . . . , a

′
n′ ;B′,M ′), where n′ = s − 1, a′i = (

∑
j∈Si

aj) mod M ′ for i = 1..n′,
and B′ = B −∑j∈Ss

aj . The second algorithm returns a solution S′ ⊆ {1, . . . , n′}, from
which we derive our answer

Ss ∪
(⋃

j∈S′
Sj

)

Figure 6.3 presents the combined algorithm in pseudocode.

procedure DenseSSP(a1, . . . , an;B,M, �)
S := {}
find M ′ and M̄ = 2m̄ such that M ′ is odd and M = 2m̄ ·M ′

S := SSPmod2(a1, . . . , an, B, m̄, �) /** here S = (S1, . . . , Ss), with **/
/**

∑
j∈Si

aj ≡ 0 mod M̄ for i = 1..(s − 1), and **/
/**

∑
j∈Ss

aj ≡ B mod M̄ **/
if S is not empty then

∀i = 1..(s − 1) let a′i := (
∑

j∈Si
aj) mod M ′

B′ := B −∑j∈Ss
aj

S′ := SSPmodOdd(a′1, . . . , a′s−1;B′,M ′, �) /** here S′ ⊆ {1, . . . , n′} **/
if S′ is not empty then
S := Ss ∪

(⋃
j∈S′ Sj

)
return S

Figure 6.3: Algorithm for solving dense SSP instances

6.3 Analysis

6.3.1 Correctness

We need to argue that any non-empty subset returned by the algorithm is a valid solution.
First consider computation modulo M̄ which is a power of 2. At each level of recursion

we match pairs of input numbers so that � least significant bits are zeroed, while respecting
the constraint, that the last input number is matched. Therefore, in recursive call, we have
zeroed the least significant bits of the resulting numbers, so it follows by induction that all

6.3. Analysis 51

the subsets returned by SSPmod2rec sum up to 0 mod M̄ .
Moreover, we need to argue that the last subset returned by SSPmod2rec determines a

solution for the given target B. Indeed, if Ss is the last subset returned by SSPmod2rec, then
(n+1) ∈ Ss and

∑
i∈Ss

ai ≡ 0 mod M̄ . Since an+1 = −B, this implies that
∑

i∈S\{n+1} ai ≡
B mod M̄ , as desired.

To prove the correctness of the computation modulo an odd number M ′, note that the
transformation to a target-zero instance gives the desired result: any solution is created
bottom-up, by first matching two input numbers, than matching two pairs matched pre-
viously, and so on, i.e., at each recursion level the number of the numbers in a solution is
doubled, so the size of the solution subset is equal 2t, where t is the depth of recursion,
which, in turn, equals �log2M

′/��. Therefore, any solution with target zero will have ex-
actly 2t · ∆ ≡ −B mod M ′ of “extra” sum, i.e., the corresponding original numbers sum
up to B mod M ′.

Further, since the algorithm matches the numbers which have opposite signs but “close”
magnitudes, at each level of recursion a portion of � most significant bits is zeroed, while
avoiding the problems of overflows and wrap-arounds when adding the numbers. Hence, by
induction, the subset returned by SSPmodOddRec sums up to 0 mod M ′

The correctness of the combined argument follows from the above arguments and from
the Chinese Remainder Theorem, since M = M̄ ·M ′, where M̄ and M ′ are relatively prime.

6.3.2 Success Probability

We consider the cases with magnitudes m up to (log n)2/16 and we set � = (log n)/2. At a
given level in the recursion, in both cases (power of 2 and odd), the success of the algorithm
at that level depends on the number of numbers in the recursion being “enough”. And, the
number of numbers in the recursion at a given level is equal to the number of edges in the
matching at the previous level. We will argue by induction. Let tk denote the number of
numbers available at the beginning of level k of the recursion, and let sk denote the number
of edges in the matching at level k.

Lemma 6 For sk and tk defined as above, Let Ak denote the event that sk ≥ tk/4. Then

P[Ak | A1, . . . ,Ak−1] ≤ exp
(
−n3/4/32

)
.

Proof If A1, . . . ,Ak−1 occur (meaning, in every previous level of the recursion, we
have managed to keep at least 1/4 of the numbers), then we begin level k with at least
n(1/4)(log n)/8 = n3/4 numbers (since there are at most m/� ≤ (log n)/8 levels of recursion
total).

Lemma 6 is easier to argue when the modulus is a power of 2. Then the subinstances
are formed by zeroing least significant bits, and so the reduced numbers are independent
and uniformly random. When the modulus is an odd, the reduced numbers are independent
but not uniformly random. Fortunately, they are distributed symmetrically, in the sense
that P[a′i = a] = P[a′i = −a]. We argue this by induction: Suppose P[ai = a] = P[ai = −a]

52 Chapter 6. Subset Sum on Medium-Dense Random Instances

for all i. Then, since each edge (i, j) ∈ E yields an a′k = ai + aj , we have

P[a′k = a] =
∑

b

P[ai = b]P[aj = a− b]

=
∑

b

P[ai = −b]P[aj = −(a− b)]

= P[a′k = −a].

This symmetry property is all that we need to show sk is very likely to exceed tk/4.
We can pretend the tk input numbers are generated by a two-step process: first, we pick
the absolute value of the numbers constituting the instance, and then we pick the sign of
each number. Since the distribution is symmetric, in the second step each number in the
instance becomes negative with probability 1/2.

Let Ti denote the number of numbers picked in the first step with absolute value in the
interval [(i − 1)M/Ld, iM/Ld], where L = 2� and i = 1 . . . L. Then the number of negative
numbers in interval i is a random variable Xi ∼ Bi(Ti, 1/2), and we can match all but
Yi := |Xi − (Ti −Xi)| numbers in interval i. Further,

E[Yi] =
Ti∑

k=1

P[Yi ≥ k] =
Ti∑

k=1

P[|Xi − Ti/2| ≥ k/2],

and by Azuma’s inequality, this is at most

Ti∑
k=1

2e−k2/(2Ti) ≤
∫ ∞

x=0
2e−x2√

2Tidx =
√

2πTi.

Let Y denote the total discrepancy of all the bins,

Y =
L∑

i=1

Yi.

By linearity of expectation, we have that we expect to match all but

E[Y] = O(
√
T1 + · · · +

√
TL)

numbers. This sum is maximized when T1 = · · · = TL, and minimized when Ti = t for some
i (and all other Tj’s are zero), hence

O(
√
t) ≤ E[Y] ≤ O(

√
tL) . (6.2)

Changing a single number in the instance can change the discrepancy by at most 2, so
we use Azuma’s inequality in a convenient formulation given by McDiarmid [190] (see also
Bollobás [44]) and the fact that L = 2� =

√
n and t ≥ n3/4.

6.3. Analysis 53

P[s ≤ t/4] = P[Y ≥ t/2]
≤ P[Y ≥ E[Y] + t/4]

≤ e−t/32

≤ exp
(
−n3/4/32

)
.

�

Then, in the case of an odd modulus, the failure probability is bounded by

P[failure] ≤
m/�∑
k=1

P[Ak | A1, . . . ,Ak] ≤ (log n) exp−n3/4/32 = O(e−
√

n).

If the modulus is a power of 2, we must also account for the possibility of failure due to
not matching the special number an+1 at some stage. Let Bk denote the event that the
special number is not matched at stage k. This type of failure only occurs if all tk − 1
other numbers are different from the special number. Since the mod 2 reductions keep the
numbers at stage k uniformly distributed among m− k� possibilities, the probability of Bk

given tk is
(

1 − 1
m−k�

)tk−1
and if A1, . . . ,Ak−1 hold, this is at most exp

(−(log n)−2n3/4
)
.

So again, the probability of failure is O(e−
√

n).

6.3.3 Running Time

The running time of the algorithm above is dominated by the time required to solve all the
subinstances, which is bounded by (n− 1)/(� − 1) · O(2�) = O(n3/2).

In the case of failure, we can solve the instance by dynamic programming in time
O(2(log n)2). Since (when n is sufficiently large) the failure probability is much less than
2−(log n)2 , combining the algorithm above with a dynamic programming backup for failures
yields a complete algorithm that runs in expected polynomial time.

6.3.4 Choice of Parameters

The parameters above are not optimized, but there is a curious feature in the proof of
Lemma 6 that puts a restriction on the range of coefficients c that would work for m =
c(log n)2. Similarly, the range of constants c′ that would work for � = c′ log n is restricted
in a way that does not seem natural. For � = (log n)/2 and m = (log n)2/16, the number of
stages of recursion is small enough that each stage has sufficiently many numbers to succeed
with high probability. But for � = (log n)/2 and m = (log n)2/8, McDiarmid’s version of
Azuma’s inequality will not work in the way we have used it.

This restriction has been removed by the subsequent work of Lyubashevsky [188], which
is an extension of an alternative approach to problems of this type due to Wagner [224].

54 Chapter 6. Subset Sum on Medium-Dense Random Instances

6.4 Conclusions and Open Problems

We presented an expected polynomial time algorithm for solving uniformly random subset
sum problems of medium density over ZM , with m bounded by O((log n)2), where n is the
number of the input numbers. As far as we are aware, this is the first algorithm for dense
instances that works efficiently beyond the magnitude bound of O(log n), thus narrowing
the interval with hard-to-solve SSP instances. A natural open question is whether the bound
on the magnitude can be further extended, e.g. up to (log n)z for some z > 2. Extending
the bound in this manner would yield improved results in quantum algorithms for solving
the shortest vector problem [22, 197].

Finally, recall that DenseSSP is a deterministic algorithm which can fail with non-
zero probability. Since this probability is very low, upon failure we can run a dynamic
programming algorithm and still obtain expected polynomial time in total. A different way
of handling failures might be to run DenseSSP again on randomly permuted input. Note
however that such multiple trials are not fully independent, thus complicating the analysis.
It is an interesting problem to compare this alternative approach with the one we have
analyzed.

Chapter 7

The diameter of randomly
perturbed digraphs

This chapter originally appeared as [121]. It studies the effects of perturbing a graph by
XORing it with a vary sparse random graph distributed according to Gn,ε/n. Changing εn
random edges does not change a graph much, but if the original graph is connected, then
the resulting graph will have logarithmic diameter, if it is also connected.

7.1 Introduction

The diameter of a graph G is the length of the longest shortest path in G. In other words,
if d(u, v) is the length of the shortest path from u to v in G, then the diameter of G is
maxu,v d(u, v). A graph is connected (and a directed graph is strongly connected) if it has
finite diameter. The central observation of this chapter is that if εn random edges are added
to any n-node connected graph with degree not-too-large then the diameter becomes O(lnn)
with high probability (where “with high probability” means with probability tending to 1
as n → ∞ and is abbreviated whp). This is also true for strongly connected directed
graphs and digraphs with not-too-large in-degree and out-degree and for several ways of
generating the random edges. For ease of exposition, we state this as a theorem only for a
strongly connected digraph D̄ with degree O(lnn) that is perturbed by adding a random
digraph R ∼ Dn,ε/n. Here R ∼ D means R is distributed according to distribution D, and
Dn,p is the distribution over of digraphs on vertex set [n] in which each possible arc appears
independently with probability p (so each digraph with m arcs is realized with probability(n(n−1)

m

)
pm(1 − p)n(n−1)−m). Below, we use the notation D = D̄+R to mean that D is the

graph formed by taking the union of the arcs of D̄ and R.

Theorem 3 Let ε be a positive constant with ε ≤ 1 and let ∆ ≤ nε/100. Let D̄ be a strongly
connected n-node digraph with in-degree and out-degree at most ∆. Let D = D̄ + R where
R ∼ Dn,ε/n. Then whp the diameter of D is at most 100ε−1 lnn.

Similar results hold for perturbations formed by adding εn arcs selected at random with or
without replacement, or by adding a random assignment with εn arcs.

55

56 Chapter 7. The diameter of randomly perturbed digraphs

Theorem 3 is related to a class of problems regarding the possible change of diameter
in a graph where edges are added or deleted, for example, the results of Alon, Gryárfás,
and Ruszinkó in [14] on the minimum number of edges that must be added to a graph to
transform it into a graph of diameter at most d. The study of these extremal diameter
alteration questions was initiated by Chung and Garey in [79]. It is also related to the
theorem of Bollobás and Chung on the diameter of a cycle plus a random matching [49].

7.1.1 Application: Smoothed Analysis

A digraph is strongly connected if, for every vertex pair (s, t), there is a directed path from
s to t. Recognizing strongly connected digraphs is a basic computational task, and the set
of strongly connected digraphs is NL-complete [159]. Thus, if NL �⊆ L then there is no
log-space algorithm which recognizes strongly connected digraphs.

Perhaps this conclusion of worst-case complexity theory is too pessimistic. We will
consider the performance of a simple heuristic which runs in randomized log-space. We
will show that the heuristic succeeds on random instances whp. However, the “meaning”
of this result depends on the probability space from which we draw the random instances.
It seems reasonable to assume that most real-world digraphs will contain some amount of
randomness, so it is tempting to believe this result shows that in the real-world strong
connectivity only requires log-space. Unfortunately, this is not valid if we use the “wrong”
model for randomness. For example, the distribution Dn,p (which is generated by taking n
nodes and including each ordered pair as an arc independently with probability p) is pleasant
for analysis, but basic statistics like the degree sequence seem to differ from several observed
instances of real-world graphs [108].

We will use a model of randomness that is more flexible. We will start with an arbitrary
digraph D̄ and perturb it by XORing it with a very sparse random graph R ∼ Dn,ε/n. This
produces a random instance which is “less random” than Dn,p. The study of worst case
instances with small random perturbations is called Smoothed Analysis.

Smoothed Analysis was introduced by Spielman and Teng in [213] (the journal version
is also available [215]) and they discuss a perturbation model for discrete problems in [214].
They consider perturbing graphs by XORing the adjacency matrix with a random adjacency
matrix, where each edge is flipped with some constant probability. Since the probability of
an edge flip is constant, the perturbed instances are all dense graphs (i.e. a constant fraction
of all possible edges appear). Independently, Bohman, Frieze and Martin [41] studied the
issue of Hamiltonicity in a dense graph when random edges are added, and other graph
properties were analyzed in this model by Bohman, Frieze, Krivelevich and Martin [40] and
Krivelevich, Sudakov, and Tetali [176].

We will also use an XOR perturbation, but we will make the probability of corruption
much lower than [214]. Since we will have a linear number of arcs present, it is appropriate
for the perturbation to change about εn arcs, which is the expected number of arcs in Dn,ε/n.

7.1. Introduction 57

Randomness and strong connectivity

Recognizing strongly connected digraphs is closely related to recognizing (s, t)-connectivity
in digraphs, which is the canonical NL-complete problem. It is possible to recognize con-
nectivity in undirected graphs with a randomized log-space algorithm using random walks
[13] (also, a deterministic log-space algorithm was recently discovered [205]). Since the
cover time of an arbitrary connected graph is bounded by O(n3) (see [110, 109] for a sharp
bound), a random walk will visit every vertex in polynomial time whp. This approach will
not work for arbitrary digraphs, however, since there the cover time can be exponential.

The diameter and connectivity of random graphs has been well-studied, see for example
the books of Bollobás [46] and Janson, �Luczak, and Ruciński [156]. Perhaps closest in spirit
to our investigation is the paper of Bollobás and Chung on the diameter of a Hamilton cycle
plus a random matching [49] and the paper of Chung and Garey on the diameter of altered
graphs [79]. Also, the component structure of random digraphs was studied by Karp in
[165] and more recently by Cooper and Frieze [91].

A heuristic for recognizing strong connectivity

Figure 7.1 describes a simple heuristic to decide if a digraph is strongly connected.
In words, the heuristic is as follows. For each ordered pair of vertices (s, t) repeat the

following procedure N1 times: Starting from s, take N2 steps in a random walk on the
digraph. Here a random walk is the sequence of vertices X0,X1, . . . ,Xt, . . . visited by a
particle which moves as follows: If Xt = v then Xt+1 is chosen uniformly at random from
the out-neighbors of Xt. If any of the random walks ever reaches t, then the digraph contains
an (s, t)-path, and we continue to the next pair of vertices.

procedure StrongConnHeuristic(D)
for each ordered pair of vertices (s, t) do

for i = 1, . . . , N1 do
Starting from s, take N2 steps in a random walk on the digraph D.
/** A “random walk” means the sequence of vertices X0,X1, . . . ,XN2 visited **/
/** by a particle which moves as follows: If Xt = v then Xt+1 is chosen **/
/** uniformly at random from the out-neighbors of Xt. **/

if none of the random walks reaches t then
return not strongly connected.

return strongly connected.

Figure 7.1: Algorithm A, a heuristic for recognizing strong connectivity

If N1 and N2 are large enough, then algorithm in Figure 7.1 is correct whp. For example,
if there is a path from s to t, then if the random walk has followed it correctly so far, it has
probability more than 1/n of following it correctly for one more step. Since the distance
from s to t is less than n, taking N2 = n we have that the success probability for a single
walk exceeds n−n. So taking N1 = n2n we will discover the path whp. We have just given

58 Chapter 7. The diameter of randomly perturbed digraphs

a superexponential time algorithm for a problem in NL but the values of N1 and N2 can
be significantly improved for smoothed random instances.

The main theorem of this section is that when N1 and N2 are suitable polynomials in
n, this heuristic, which we will call Algorithm A, is successful on perturbations of bounded
out-degree instances whp. To prove this, we first show it is successful when the initial
instance is a strongly connected digraph and the perturbation only adds arcs. Then we
extend this to show success when the initial instance is not necessarily strongly connected
and the perturbation only adds arcs. After this, it is simple to translate our results to the
original perturbation model where arcs are added and removed, since we can generate the
perturbation in 2 rounds, by first deleting each existing arc with some probability, and then
adding random arcs to the resulting digraph.

Recall that Dn,ε/n is the distribution of digraphs on vertex set [n] in which each possible
arc appears independently with probability ε/n, and we write R ∼ Dn,ε/n to mean R is
selected randomly according to distribution Dn,ε/n. We write G1 ⊕G2 to mean the XOR of
digraphs G1 and G2, (which is to say e ∈ G1 ⊕G2 if and only if e ∈ G1 and e �∈ G2 or vice
versa.)

Theorem 4 Let ε and ∆ be positive constants with ε sufficiently small. For any n-node
digraph D̄ with maximum in-degree and out-degree ∆, let D = D̄ ⊕ R where R ∼ Dn,ε/n.
Then there exist absolute constants A1, B1 such that whp Algorithm A is correct on D when
N1 = nA1ε−1 ln(10∆) and N2 = B1ε

−1 lnn.

We find that A1 = 400 and A2 = 200 suffice in this theorem, but we do not attempt to
optimize these values.

If a strongly connected digraph has bounded out-degree and has diameter O(lnn) then a
random walk of length O(lnn) has a 1/poly(n) chance of going from s to t, and Algorithm A
will succeed whp using values ofN1 and N2 that can be realized in log-space. Unfortunately,
even though our initial instances have bounded out-degree and (as indicated by Theorem 3)
our perturbed instances have logarithmic diameter, the perturbation increases the maximum
degree to Ω(lnn/ ln lnn), so we must work a little harder to show that the random walk has
a non-negligible probability of witnessing the path from s to t. (As an additional reward
for this work, we find that Algorithm A can be derandomized by checking all paths from s
of length O(ε−1 lnn) and still only use log-space.)

The analysis of Algorithm A is further complicated by the possibility of an instance D̄
which is not strongly connected combining with R to produce a smoothed instance which
is strongly connected. We handle this situation by a three-step argument. First, for the
smoothed instance to become strongly connected there cannot be too many small strongly
connected components of D̄. Then, the large components merge to form a strongly con-
nected component with low diameter. Finally, the small components, if they are connected
to the large component, are “close” to it.

Why study instances with bounded degree?

It would be nice to extend our results to hold for perturbed copies of any digraph, instead of
only digraphs with bounded degree. However, such a result is not possible for our heuristic.

7.1. Introduction 59

We show that our assumption that D̄ has bounded degree cannot be weakened too much
by constructing a family of instances with maximum out-degree and maximum in-degree
growing with n for which Algorithm A does not succeed whp.

Theorem 5 Let ε be a sufficiently small positive constant, and let R ∼ Dn,ε/n. Then for
every sufficiently large n, there exists an n-node digraph D̄ with maximum out-degree O(lnn)
and maximum in-degree O(n1/3(ln n)2) such that for D̄ ⊕ R the probability that Algorithm
A fails exceeds 1 − e−ε − o(1).

Strong connectivity versus (s, t)-connectivity

Although strong connectivity is an NL-complete problem, (s, t)-connectivity is “the” NL-
complete problem. In Sipser’s undergraduate text [212], while the completeness of (s, t)-
connectivity is proved in detail, the completeness of strong connectivity is left as an exercise
(Section 7.7 includes a simple solution to this exercise which shows completeness still holds
for strong connectivity in graphs with bounded out-degree.)

In light of this, it is natural to investigate the success of heuristics on smoothed instances
of (s, t)-connectivity. Here we find that there are instances on which Algorithm A fails
whp. What is more, no log-space heuristic exists, provided a conjecture of complexity
theory holds.

Theorem 6 If NL �⊆ almost-L then no log-space heuristic succeeds whp on smoothed
instances of bounded out-degree (s, t)-connectivity.

The proof consists of building a machine which simulates any nondeterministic log-space
machine using the log-space heuristic for (s, t)-connectivity, were such a heuristic to exist.
Before the proof, we will also recall the definition of almost-L and comment on why it
appears instead of BPL.

Smoothed model versus semi-random model

The semi-random model was introduced by Santha and Vazirani in [206]. In this model an
adversary adaptively chooses a sequence of bits and each is corrupted independently with
probability δ. They present this as a model for real-world random bits, such as the output
of a Geiger counter or noisy diode, and consider the possibility of using such random bits
in computation on worst-case instances. Blum and Spencer considered the performance of
a graph coloring heuristic on random and semi-random instances in [39]. Subsequent work
has uncovered an interesting difference between the random and semi-random instances in
graph coloring. The work of Alon and Kahale [15] developed a heuristic which succeeds whp
on random instances with constant expected degree, while work by Feige and Kilian [112]
showed no heuristic can succeed on semi-random instances with expected degree (1− ε) lnn
(they also developed a heuristic for semi-random instances with expected degree (1+ε) ln n).

In the original semi-random model of Santha and Vazirani, an instance is formed by
an adaptive adversary, who looks at all the bits generated so far, asks for a particular
value for the next bit, and gets the opposite of what was asked for with probability δ.

60 Chapter 7. The diameter of randomly perturbed digraphs

Several modifications are proposed in Blum and Spencer [39] and also in Subramanian,
Fürer, and Veni Madhavan [218] and Feige and Krauthgamer [113]. However, all these
variations maintain the adaptive aspect of the adversary’s strategy, which at low density
allows too much power; if the error probability p = (1−ε) ln n/n then there will be roughly nε

isolated vertices in Dn,p and the adversary will be able to encode a polynomial sized instance
containing no randomness. Since we wish to consider extremely sparse perturbations, where
the error probability p = ε/n, we cannot allow an adversary as powerful as in the semi-
random model. The XOR perturbation considered in this chapter is equivalent to a natural
weakening of the semi-random model: making the adversary oblivious.

7.1.2 Application: Property Testing

Property testing provides an alternative weakening of worst-case analysis of decision prob-
lems. It was formalized by Goldreich, Goldwasser, and Ron in [145]. The goal in property
testing is to design an algorithm which decides whether an instance has a property or dif-
fers significantly from all instances which have that property (usually without looking at
more than a vanishing fraction of the input bits). For example, a property tester for strong
connectivity in bounded degree digraphs should accept all strongly connected instances and
reject all instances that are εn arcs away from being strongly connected. Note that Algo-
rithm A (which is designed to work on smoothed random instances) can be converted into
a property tester: given an instance D̄ and a gap parameter ε, we can randomly perturb D̄
ourselves by adding ε

2n random arcs and then run Algorithm A on the perturbed version.
This does not yield anything impressive for testing strong connectivity, since the undirected
connectivity testing results of Goldreich and Ron in [146] can be applied to the directed
case to produce a constant time tester. However, our perturbation approach also yields a
property tester for a more difficult connectivity problem, that of being k-linked.

A digraph is said to be k-linked if for every choice of 2k distinct vertices s1, . . . , sk,
t1, . . . , tk, the graph contains k vertex disjoint paths joining s1 to t1, . . . , sk to tk. Rec-
ognizing whether or not a digraph is k-linked is NP-complete for k ≥ 2. In the bounded
degree property testing version of being k-linked, we are given a constant ε and a digraph
D̄ with maximum in-degree and out-degree ∆ and our goal is to accept if D̄ is k-linked and
reject if D̄ is more than εn arcs away from being k-linked, and we can do anything if D̄ is
not k-linked, but is close to being so.

A heuristic for testing k-linkedness

For this section k is assumed to be fixed, independent of the input. Figure 7.2 is a simple
heuristic for testing k-linkedness. In words, the heuristic goes is this. Given D̄ and ε,
we perturb D̄ by generating a graph R ∼ Γn,ε/2n ourselves and adding that to D. Let
D = D̄ + R denote this perturbed instance. Then, for each choice of 2k distinct vertices,
repeat the following procedure N1 times: For i = 1, . . . , k, starting at si take N2 steps in
a random walk on the graph. If all k random walks ever reach the correct k terminals via
vertex disjoint paths, we continue to the next choice of 2k vertices. Otherwise reject.

7.1. Introduction 61

procedure k-LinkednessHeuristic(D̄, ε)
Generate R ∼ Dn,ε/2n

D := D̄ +R
for each set of 2k distinct vertices do

for i = 1, . . . , N1 do
for j = 1, . . . , k do

Starting from si, take N2 steps in a random walk on the digraph D.
if all k random walks reach the correct k terminals via vertex disjoint paths then

continue to the next choice of 2k vertices
else

if i = N1 then
return not k-linked

return k-linked

Figure 7.2: A heuristic for testing k-linkedness

Theorem 7 Let k be a positive integer, and let ε and ∆ be positive constants with ε suf-
ficiently small. For any k-linked n-node graph D̄ with maximum degree ∆, the algorithm
above accepts in polynomial time whp.

A few comments regarding the difference between this theorem and Theorems 3 and 4:
The fact that k vertex disjoint paths exist whp follows from a calculation analogous to
the proof of Theorem 3, but now we must explore disjoint neighborhoods around all 2k
terminals simultaneously. Also, the analog of the most difficult part of Theorem 4, showing
that Algorithm A is correct in the case where a disconnected D̄ leads to a strongly connected
D, is no longer necessary. In the property testing setting, we are not required to correctly
recognize instances that lead to this situation. It seems as though it might be possible to
carry out this most difficult part and obtain a heuristic for testing k-linkedness that works
on smoothed instances, but the details remain elusive.

Often in property testing, the goal is to minimize the sample complexity (meaning the
number of times the algorithm accesses a bit of the input), and here we diverge from the
norm, since the algorithm above likely looks at every arc of the graph. So it may be more
accurate to call this an “algorithm for a promise problem version of k-linkedness”. Also,
we will not make use of the full power of ε-far-ness, and could succeed even on instances for
which adding εn random arcs has probability less than 1/2 of linking the unlinked.

7.1.3 Outline of what follows

We first prove Theorem 3 in Section 7.2. In Section 7.3 we prove Theorem 4, showing
that Algorithm A is successful whp. Section 7.4 is devoted to the proof of Theorem 5, by
constructing an instance with growing out-degree where Algorithm A fails with constant
probability. In Section 7.5, we prove Theorem 6 by showing how to use a log-space heuristic
for (s, t)-connectivity to build an almost-L simulator for any NL machine. Finally, in

62 Chapter 7. The diameter of randomly perturbed digraphs

Section 7.6 we will prove Theorem 7, which is a reprise of the proof of Theorem 3. Section
7.8 is a brief conclusion.

7.1.4 Some facts and notation

We will use the following Chernoff bounds from [156, Theorem 2.1] on the Binomial random
variable Bi(n, p)

P [Bi(n, p) ≥ np+ t] ≤ exp
{
− t2

2(np+ t/3)

}
(7.1)

P [Bi(n, p) ≤ np− t] ≤ exp
{
− t2

2np

}
. (7.2)

Dn,ε/n is the distribution of digraphs on vertex set [n] in which each possible arc appears
independently with probability ε/n, and we writeR ∼ Dn,ε/n to mean R is selected randomly
according to distribution Dn,ε/n.

We write G1⊕G2 to denote the digraph formed by XOR-ing digraphs G1 and G2, (which
is to say e ∈ G1 ⊕G2 if and only if e ∈ G1 and e �∈ G2 or vice versa.)

We write G1 + G2 to denote the digraph formed by taking the union of the arcs of G1

and G2.

7.2 Proof that diameter of D is O(ε−1 ln n) whp

We now show that if D̄ is strongly connected and has in-degree and out-degree bounded by
∆ = O(lnn) then for R ∼ Dn,ε/n the diameter of D = D̄ +R is O(ε−1 lnn) whp.

We will show that whp D contains short paths of a special form, alternating between
some arcs from D̄ and random arcs from R. This is similar to the approach of Bollobás and
Chung [49].

To proceed, we now fix 2 vertices s and t and look for a short path between them. Let
P be a shortest path from s to t in D̄. If P has length less than 100ε−1 lnn then this vertex
pair is already close, so suppose P has length at least 100ε−1 lnn.

Let S0 = T0 = ∅, and let S′
0 be the first 32ε−1 lnn nodes of P and let T ′

0 be last 32ε−1 lnn
nodes of P .

We call a node useful if it is not within distance d = 5ε−1 of any node which we have
previously placed in an S or T set, where distance is the length of the shortest path in the
undirected graph underlying D̄.

To build Si, we check for each node s′ ∈ Si−1 if R contains an arc from s′ to some useful
node s′′. If it does, we include s′′ in Si and also all nodes reachable from s′′ by taking d
steps in D̄.

Tj is defined analogously, but the paths lead towards t instead of away from s. So, for
each t′ ∈ Ti−1 if R contains an arc from some useful node t′′ to t′, we include t′′ in Tj and
also all nodes from which t′′ is reachable by taking d steps in D̄. To make this definition
completely precise, we include a description of the procedure GenerateSets which produces
Si and Tj in Figure 7.3. We use U to denote the set of useful nodes. Also, the notation

7.2. Proof that diameter of D is O(ε−1 lnn) whp 63

N+
d (S) denotes the set of nodes reachable in D̄ in at most d steps starting from some node

of S, the notation N−
d (S) denotes the set of nodes from which some node of S is reachable

in at most d steps in D̄, and Nd(S) = N+
d (S) ∪N−

d (S). Finally, let � = �log2 n�.

procedure GenerateSets [(s, t)-path P]
S0 := first 32ε−1 lnn nodes of P .
T0 := last 32ε−1 lnn nodes of P .
U := V \Nd(S0 ∪ T0)

i := 0
j := 0

while (|Si| ≤ n2/3 and i ≤ �) or (|Tj | ≤ n2/3 and j ≤ �) do
if |Si| ≤ n2/3 and i ≤ � then
Si+1 := ∅
for all s′ ∈ Si do

if |Si+1| ≤ n2/3 and there exists s′′ ∈ U such that (s′, s′′) ∈ R then
Si+1 := Si+1 ∪N+

d ({s′′})
U := U \Nd(N+

d ({s′′}))
i := i+ 1

if |Tj | ≤ n2/3 and j ≤ � then
Tj+1 := ∅
for all t′ ∈ Tj do

if |Tj+1| ≤ n2/3 and there exists t′′ ∈ U such that (t′′, t′) ∈ R then
Tj+1 := Tj+1 ∪N−

d ({t′′})
U := U \Nd(N−

d ({t′′}))
j := j + 1

Figure 7.3: Procedure to generate Si and Tj

This procedure is convenient for analysis because no arc ofR is examined more than once,
due to the way the useful set U is maintained. Therefore, we can employ the principle of
deferred decisions find a simple expression for the conditional probability that, for example,
(s′, s′′) ∈ R at any step of GenerateSets.

We will now show that when GenerateSets halts

P[|Si| ≤ n2/3 or |Tj | ≤ n2/3] = o(n−2). (7.3)

To see this, we first note that at any step of GenerateSets, |U | ≥ n − 2∆2d(�n2/3 +
32ε−1 lnn) = (1 − o(1))n. This is because at most ∆2d ≤ n1/10 nodes are removed from U
in any step where U is changed, and it is changed at most n2/3 times in each inner loop,
and the inner loops are executed at most � times each. And, by similar considerations, the
initialization of U has size at least n− 2∆2d(32ε−1 lnn).

Now we consider the event Es′ given by “s′ ∈ Si′ and there exists s′′ ∈ U with (s′, s′′) ∈
R.” Since each arc appears in R independently with probability ε′/n, we can apply the

64 Chapter 7. The diameter of randomly perturbed digraphs

principle of deferred decisions. We condition on the entire history of GenerateSets, which
can be described by H = 〈U,S1, T1, . . . , Si′ , Tj′ , S̃i′+1〉, where S̃i′+1 denotes the intermediate
state of the set Si′+1, and for s′ ∈ Si′ , we have that the probability of Es′ depends only on
the size of U , which is always (1 − o(1))n. So

P[Es′ | H] = 1 − (1 − p)|U | = (1 − o(1))ε.

Every time Es′ occurs, at least d vertices are added to Si′+1, so conditioned on |Si′ |,
the random variable |Si′+1|/d stochastically dominates Zi′+1 ∼ Bi(|Si′ |, (1 − o(1))ε). Thus,
letting Bi′+1 denote the event “|Si′+1| ≤ 2|Si′ |” we have

P
[Bi′+1

∣∣ Si′
] ≤ P

[
Zi′+1 ≤ E[Zi′+1] − 3

5
ε|Si′ |

∣∣∣∣ Si′

]
≤ e−

9
50

ε|Si′ |,

where the final inequality is an application of the Chernoff bound (7.2).
Note that in order for GenerateSets to halt with |Si′ | ≤ n2/3 it must be that some Bi′

occurs for i′ ≤ i. Since |S0| = 32ε−1 lnn, we have that

P[|Si| ≤ n2/3] ≤ P

[i⋃
i′=1

Bi′

]
≤

i∑
i′=1

P
[Bi′

∣∣ |Si′−1| ≥ 32ε−1 lnn
] ≤ � · e−5 ln n = o(n−2).

A similar argument shows that when GenerateSets halts we also have P[|Tj | ≤ n2/3] =
o(n−2).

Now, to finish the short path from s to t, we generate the random arcs of R between Si

and Tj

P

[
R ∩ Si × Tj = ∅ ∣∣ |Si| ≥ n2/3 ∧ |Tj | ≥ n2/3

]
≤ (1 − p)n4/3 ≤ e−εn1/3

= o(n−2).

Putting all the pieces together, we have an (s, t)-path consisting of a path of length at most
32ε−1 lnn, followed by at most 2� paths of length d + 1 from D̄ joined by edges from R,
and finishing with a path of length at most 32ε−1 lnn, for total length which numerical
calculation shows is less than 100ε−1 lnn.

Since there are only n(n− 1) choices for (s, t), the theorem follows by the union bound.
�

7.3 Proof that log-space algorithm recognizes strong connec-

tivity whp

7.3.1 When D̄ is strongly connected

By Theorem 3 we know that the diameter of D is O(ln n) whp. Unfortunately we cannot
yet conclude that Algorithm A is successful whp. We must still argue that the probability
of a random walk traversing the short path is not too small. In the a graph with out-degree
less than some constant, having a diameter of O(lnn) would imply an efficient algorithm.

7.3. Proof that log-space algorithm recognizes strong connectivity whp 65

Our random perturbation has likely created some vertices with out-degree Ω(lnn/ ln lnn),
so we will have to work a little more. We use the notation deg+

D(v) to denote the out-degree
of a vertex v in digraph D.

Lemma 7 Let D = D̄ + R, where D̄ is an arbitrary digraph with maximum out-degree ∆
and R ∼ Dn,ε/n. Then whp D contains no path P of length � ≤ �1 = 100ε−1 lnn with∏

x∈P deg+
D(x) ≥ n100ε−1 ln(10∆).

Proof We prove the claim by the first moment method. First, we bound the number
of paths with � vertices that use �− a arcs of D̄. There are n places to start such a path,
and there are

(�
a

)
different ways to decide when to take an arc not in D̄. For each arc in

D̄, since the out-degree is bounded, there are at most ∆ choices, and there are at most na

choices for where the non-D̄ arcs can go. So there are at most

n∆�−a

(
�

a

)
na

potential paths of length � that use a arcs from R. The probability such a potential path
appears as a path in D is

(
ε
n

)a.
Now we bound the probability that the sum of the logarithms of the out-degrees of the

vertices along a path P of length � exceeds � ln(∆+1)+ t. To do so, we first bound a similar
quantity for the graph R′ = R \ P . Note that

P

[∑
v∈P

ln{1 + deg+
R′(v)} ≥ t

]
≤ e−t

E

[∏
v∈P

(1 + deg+
R′(v))

]

= e−t
∏
v∈P

E[1 + deg+
R′(v)] ≤ (1 + ε)|P |e−t.

Then, since P is a path, it contains at most one arc incident with v, so

ln{deg+
D(v)} ≤ ln{deg+

D̄
(v)+deg+

R(v)} ≤ ln{∆+1+deg+
R′(v)} ≤ ln{1+∆}+ln{1+deg+

R′(v)},

and we have

P

[∑
v∈P

ln{deg+
D(v)} ≥ � ln(1 + ∆) + t

]
≤ (1 + ε)�e−t.

So the expected number of paths of length � with a arcs from R and product of degrees
exceeding � ln(∆ + 1) + t is at most

n∆�−a

(
�

a

)
na
(ε
n

)a
(1 + ε)�e−t ≤ n((1 + ε)∆)�e−t

(
�

a

)
.

Let �1 = 100ε−1 lnn and let

t = 2 ln n+ ln �1 + �1 ln(2(1 + ε)∆) ≤ 100ε−1 ln(10∆) lnn.

66 Chapter 7. The diameter of randomly perturbed digraphs

Then an upper bound on the probability that D contains such a path of length at most �1
is

�1∑
�=1

�∑
a=0

ne−t((1 + ε)∆)�

(
�

a

)
=

�1∑
�=1

ne−t((1 + ε)∆)�2�

= ne−t
�1∑

�=1

(2(1 + ε)∆)� ≤ ne−t�1(2(1 + ε)∆)�1} = o(1).

So whp there is no path P of length at most 100ε−1 lnn which has∏
x∈P

deg+
D(x) ≥ n100ε−1 ln(10∆).

�

The correctness of Algorithm A in the case when D̄ is strongly connected now follows
from that fact that the probability a random walk follows a path P from s to t is precisely(∏

x∈P deg+
D(x)

)−1. �

7.3.2 When D̄ not strongly connected

The previous section shows that Algorithm A is correct whp for strongly connected digraphs
D̄. To prove that Algorithm A is correct whp when D̄ is not strongly connected, we must
do some more work.

Outline of approach
Consider the strong components of D̄. If there are many components of size less than
1
4ε

−1 lnn, then we show that whp one of them will be incident to no arcs of R and so D will
not be strongly connected and Algorithm A will be correct. In the case where D̄ consists
mostly of larger strong components, we expose the random arcs R in two rounds. We argue
that whp the strong components of D̄ merge into a unique giant strong component Sg

containing at least n− n16/17 vertices after the first round. Then we invoke Lemma 3 from
the previous section to show that the random arcs from the second round give the giant
component a low diameter. Then we deal with the vertices that belong to small strong
components after the first round of random arcs have been added. These vertices might
be connected to Sg in both directions and they might not, and there is not necessarily a
sharp threshold for strong connectivity. However, we show that for some constant A1 whp
no vertex which is not in Sg is connected in either direction to Sg only by paths of length
more than A1ε

−1 lnn i.e. such a vertex is close to the giant component in some direction, or
cannot be reached at all in this direction. Finally, by Lemma 7 we know that all the paths of
length at most A1ε

−1 lnn have a non-negligible probability of being traversed by Algorithm
A (take the bound in Lemma 7 and raise it to the power A1/100). So we conclude that whp
the graph is not strongly connected, in which case Algorithm A is correct, or the graph is
strongly connected in such a way that Algorithm A is still correct.

The calculations required for this plan follow.

7.3. Proof that log-space algorithm recognizes strong connectivity whp 67

Lemma 8 If D̄ has more than n1/2 lnn strong components containing less than 1
4ε

−1 lnn
vertices, then whp one of these components is not incident to any arcs of R.

Proof We use the second moment method (see, for example, [156, Page 54]). For each
small strong component C of D̄, let XC be an indicator random variable for the event that
C is not incident to any arc of R. Then E[XC] = (1 − ε/n)2c(n−c) ≥ n−1/2(1 − o(1)), where
c = |C| ≤ 1

4ε
−1 lnn, and

E[XC1XC2] = (1 − ε/n)2c1(n−c1−c2)+2c2(n−c1−c2)+2c1c2

= (1 − ε/n)2c1(n−c1)(1 − ε/n)2c2(n−c2)(1 + O((lnn)2/n))
= E[XC1]E[XC2](1 + o(1)),

where c1 = |C1| and c2 = |C2|. Let Z =
∑

C XC be the number of strong components
that are incident to no arc of R. Then, since there are at least n1/2 lnn terms in this sum,
E[Z] ≥ 1

2 lnn. We also have

E[Z2]
E[Z]2

=

∑
C

E[X2
C] +

∑
C1 �=C2

E[XC1XC2]

(∑
C

E[XC]
)2

=

∑
C

E[XC]
(∑

C
E[XC]

)2 + (1 + o(1))

∑
C1 �=C2

E[XC1]E[XC2]

(∑
C

E[XC]
)2 ≤ 2

lnn
+ 1 + o(1).

Now, by the second moment method, (see, for example, [156, Inequality 3.3, Page 54]) we
have P[Z �= 0] ≥ E[Z]2/E[Z2] = 1 − o(1). �

It follows from this lemma that Algorithm A works in the case where the number of
small strong components of D̄ is large.

We now consider the case where D̄ has at most n1/2 lnn strong components of size less
than σ = 1

4ε
−1 lnn. As in the previous section, we consider adding the random arcs of R in

two rounds, by introducing R′ and R′′. We take R′ ∼ Dn,p′ with p′ = ε
2n and R′′ ∼ Dn,p′′

with p′′ = ε
2n−ε = (1 + o(1)) ε

2n . Then the probability that an arc appears in R′ + R′′ is
exactly ε

n , and R′ +R′′ is identically distributed with R.
Let the strong components in D̄ with size exceeding σ be C1, C2, . . . , Ca and let their

sizes be n1, n2, . . . , na. For K ⊆ [a] let CK =
⋃

i∈K Ci, let nK =
∑

i∈K ni, and let A+
K

denote the number of arcs of R′ that go from CK to CK and let A−
K denote the number of

arcs of R′ that go from CK to CK . Then

P(A+
K = 0 or A−

K = 0) ≤ 2
(

1 − ε

2n

)nK(n−n1/2 log n−nK)
.

To obtain an upper bound on the number of choices for K with a given value of nK , first
note that since each large strong component is of size at least σ we have that a, the number

68 Chapter 7. The diameter of randomly perturbed digraphs

of large strong components is at most n/σ. Also as a consequence of the strong components
being large, for a given value of nK we have |K| ≤ nK/σ. So the number of choices for K
with a given value of nK is at most

∑nK/σ
�=1

(a
�

)
and for nK ≤ n/2 this is at most nK/σ

(n/σ
nK/σ

)
.

Thus

P(∃K ⊆ [a] : n16/17 ≤ nK ≤ n/2 and A+
K = 0 or A−

K = 0)

≤
n/2∑

nK=n16/17

nK/σ

(
n/σ

nK/σ

)
2
(

1 − ε

2n

)nK(n(1−o(1))−nK)

≤
n/2∑

nK=n16/17

2nK/σ
(

(ne/nK)1/σe−ε/4(1−o(1))
)nK

≤
n/2∑

nK=n16/17

e−(1−o(1))εnK/68 = o(1).

It follows that whp

D̄ +R′ contains a giant strong component Sg with |Sg| ≥ n− (1 + o(1))n16/17. (7.4)

We apply the results of the previous section to Sg. We have a strongly connected digraph Sg

and we add R′′ ∼ Dn,p′′ (recall that p′′ = ε/(2n− ε)), producing a digraph Dg with diameter
at most 201ε−1 lnn for which all shortest paths P satisfy

∏
x∈P deg+

Dg
(x) ≤ n201ε−1 ln(10∆).

The only detail remaining is how to deal with the at most n16/17 + σn1/2 lnn vertices
of D̄ +R′ that are not in Sg. Let x be such a vertex. We will show that whp if there is a
path from x to any vertex in Sg then it is a short path. An identical argument shows the
same property holds for paths from Sg to x.

We consider two cases. Let Vx denote the set of vertices reachable by following 5ε−1 lnn
arcs of D̄+R′, starting from x. If |Vx| ≥ 5ε−1 lnn we say x is medium and if |Vx| < 5ε−1 lnn
we say x is small. If x is a medium vertex, then the probability R′′ does not add an arc
from a vertex in Vx to the Sg is at most (1 − p′′)5ε−1 lnn(n−n16/17) ≤ n−2. Thus whp all
medium x are close to Sg in D. Let Sm denote the set of medium vertices.

Consider now a shortest path in D from a small vertex x to a vertex z in Sg ∪ Sm.
Removing all of the arcs of R′′ from this path decomposes it into subpaths P1, P2, . . . , Pr.
Let xi and yi denote the starting and ending vertices of subpath Pi (it is possible that
xi = yi if a subpath has length 0). We will show that whp r is small by considering the
probability that the subpaths has a sequence x1, y1, . . . , xr, yr with r ≥ 18.

For any D̄ + R′ for which (7.4) holds, the number of choices for our sequence is at
most (n16/17 × 5ε−1 lnn)rn and the probability that the R′′-arcs exist is (p′′)r. Thus the
probability there exists a small vertex x which requires r ≥ 18 is at most∑

r≥18

n((1 + o(1))n16/17 × 5ε−1 lnn× p′′)r = o(1).

7.4. An example with growing degrees 69

So whp, if D is strongly connected then its diameter is at most 201ε−1 lnn+2×18(5ε−1 lnn+
1) which, for n sufficiently large is at most 400ε−1 lnn. (The worst case here comes from a
path of length at most 18(5ε−1 lnn+ 1) from s to Sg, followed by a path of length at most
201ε−1 lnn to some other vertex of Sg and then by a path of length at most 18(5ε−1 lnn+1)
from there to t.)

Applying Lemma 7 we see that whp these paths are traversed by Algorithm A with
probability n−400ε−1 ln(10∆) and so Algorithm A is correct whp. �

7.4 An example with growing degrees

We now consider the possibility of applying Algorithm A to the case where D̄ has maximum
in-degree and out-degree ∆ that grows with n. The following example shows that in this
case Algorithm A does not necessarily succeed when using logarithmic space.

Let d = n1/3 lnn. To form an instance, start with the directed cycle C = (v1, v2 . . . , vn).
Then, for each vi with i ≥ n/d, we let i0 = �i/d�, and we add arcs (vi, vj) to D̄, for each
j ∈ {i0, i0 + 1, . . . , i0 + lnn − 1}. We call these arcs the “backwards arcs”. Note that each
vi with i ≥ n/d has lnn backwards arcs going out, and every vj with j < n/d has d lnn
backwards arcs coming in. Let V1 = {v1, . . . , vn/d+ln n}, and note that all backwards arcs
lead to V1.

When we perturb this D̄ to obtain D, the probability that we do not delete any arc of
cycle C is (1− ε/n)n = e−ε − o(1), and so D is strongly connected with probability at least
e−ε − o(1).

We now derive bounds showing 2 properties that hold whp and will allow us to reason
about the probability of Algorithm A succeeding on D.

Lemma 9 Let L = (3ε)−1 lnn and V1 be as above. Then the following holds whp

(a) For � ≤ L, there is no path from V1 to {vn−L, . . . , vn} of length � which does not use
any of the backwards arcs.

(b) For � > L, there are at most e2ε� paths of length � from V1 to vn which do not use any
of the backwards arcs.

Proof Let P be a path from vi to vn of length at most �. Removing all of the arcs
of R from this path decomposes it into subpaths P1, . . . , Pm, where each Pi is a path of
D̄ (or possibly a degenerate path containing no arcs). Let the lengths of subpath Pi be
denoted by �i ≥ 0 and let λ = �1 + . . . + �m. Since the length of P is at most �, we have
m ≤ �, and for a given m, we have λ ≤ �−m. Also, P1 starts at vi and Pm ends at vn so
it must start at vn−�m. There are less than n possibilities for where the subpaths Pk begin
for k = 2, . . . ,m− 1. So, since there are m− 1 arcs of R in P , each of which appears with

70 Chapter 7. The diameter of randomly perturbed digraphs

probability ε/n, the expected number of path from vi to vn with length at most � is at most

E[# paths from vi to vn with length ≤ �] ≤
�∑

m=0

�−m∑
λ=0

∑
�1+···+�m=λ

nm−2
(ε
n

)m−1

= n−1
�∑

m=0

εm−1
�−m∑
λ=0

(
λ+m− 1
m− 1

)

= n−1
�∑

m=0

εm−1

(
�

m

)

≤ (εn)−1
�∑

m=0

(ε�)m

m!

≤ (εn)−1eε�.

(a) Since there are (1 + o(1))n/d vertices vi in V1, the probability that D contains a path
of length at most L from some vertex of V1 to vn is at most

(1 + o(1))(n/d)(εn)−1eεL = (1 + o(1))d−1ε−1n1/3 = o(1).

(b) Since there are (1 + o(1))n/d vertices vi in V1, the expected number of paths of length
at most � from some vertex of V1 to vn is at most (1 + o(1))(dε)−1eε� and then for � ≥ L,
the Markov inequality and the union bound show that

P(∃� ≥ L : number paths ≥ e2ε�) ≤ (1 + o(1))(dε)−1
∑
�≥L

e−ε� = o(1).

�

Now consider a random walk W from v1 to vn. Let the parts of W between the use of
backwards arcs of D̄ be called attempts and let W ′ denote the last attempt of W (denoted
successful), all other attempts will be termed failures. Note that W ′ must start in V1.

At some point Algorithm A checks for (v1, vn)-connectivity by executing T steps of
a random walk from v1 and declaring connectivity if vn is reached. Also, this is to be
repeated N times. Now we must have T = nO(1), N = nO(1) in order that we can do
the counting in log-space. The probability that any walk reaches vn can be bounded by
T
∑n

�=L(lnn−1)−�e2ε� ≤ (lnn)−L/2. The factor T accounts for the ≤ T points at which the
successful attempt begins, e2ε� bounds the number of possible paths making up this attempt
and (lnn − 2)−� bounds the probability we follow this path. This is because every vertex
after on the successful attempt has out-degree at least lnn−2 whp. (Note that we may have
deleted some of the backwards arcs when we XORed with R, but the probability that there
exists some vertex for which 2 backwards arcs are deleted is at most n

(
ln n
2

) (
ε
n

)2 = o(1).)

Thus the probability that we will declare v1 connected to vn is at most N(ln n)−L/2 =
o(1) and the algorithm fails with probability at least e−ε − o(1).

(This constructions works with any slowly growing function as the out-degree, instead

7.5. Proof of “impossibility” of log-space recognizer for (s, t)-connectivity 71

of lnn. But to reduce the in-degree, it seems that some additional work is necessary.)

7.5 Proof of “impossibility” of log-space recognizer for (s, t)-

connectivity

Suppose a heuristic exists which uses log-space and is successful whp on smooth instances of
(s, t)-connectivity. Then, using a log-space transducer, we convert a worst-case instance of
(s, t)-connectivity on n nodes into a smoothed instance of (s, t)-connectivity. Unfortunately,
this reduction is not sufficient to show the existence of a heuristic implies NL ⊆ BPL, since
a nondeterministic log-space simulator does not have the space to store the output of the
log-space transducer. The traditional technique for simulating a log-space machine on the
output of a log-space transducer is to, each time a bit of the input is requested, restart the
transducer and simulate it until it produces the bit in question. This is an inefficient use of
time, but in exchange for taking longer we use only logarithmically bounded space.

In our case, since the reduction is randomized, we somehow need the log-space transducer
to produce the same random instance each time. This seems to require “multiple access
randomness” (also known as the “wrong” definition of BPL and denoted BP�L). Nisan
provides some evidence that multiple access randomness is more powerful than read-once
randomness in [203]. He also shows that BP�L = almost-L ⊆ L/poly (where almost-L is
the set of languages L for which µ(L ∈ LA) = 1, where µ is the standard measure for the
set of oracles. For more details on almost classes, see the survey of Vollmer and Wagner
[223].)

Given an instance D0 of (s, t)-connectivity on n nodes, we construct an instance D̄ on
n3 nodes by adding n3−n isolated vertices. Call the original n vertices A and the additional
vertices B. We smooth the instance by XORing it with R ∼ Dn3,ε/n3 to form D = D̄ ⊕ R.
(This is where our log-space machine uses multiple access randomness— since there is not
room to write out this whole graph, we must generate the i-th bit from scratch every time
the heuristic asks for it. The values of D differ from D̄ with some small probability and
they should differ the same way every time the heuristic asks for the i-th bit.)

The probability R contains an arc between any pair of vertices of A is bounded by
n2(ε/n3) = o(1). So if D0 is (s, t)-connected, then D is (s, t)-connected whp. Now, since
the vertices of B are isolated in D̄, they form a sparse random graph in D, so whp no
component has size exceeding O(lnn) (see, for example, [156, Theorem 5.4]). Thus, the
probability that D contains a component of B with arcs to and from vertices of A is less
than O((n3 lnn)n2(ε/n3)2) = o(1). (Explanation: There are n3 − n < n3 choices for one
endpoint in B, and O(ln n) choices for the other, since it must be in the same component.
There are n choices for each endpoint in A, and the probability that each random arc
appears is ε/n3.)

Since whp there are no arcs added to A and no components of B that serve as a shortcut
between vertices of A, if D0 is not (s, t)-connected, then D is not (s, t)-connected whp. This
is sufficient to conclude that if a heuristic exists then NL ⊆ almost-L, since given an D0

we could form D and use the heuristic to solve it whp which would give the correct answer
to the original problem about D0 whp.

72 Chapter 7. The diameter of randomly perturbed digraphs

7.6 Testing k-linkedness

We will show that if D̄ is k-linked then whp D contains disjoint paths of length at most
100kε−1 lnn which witness this.

Fix s1, . . . , sk, t1, . . . , tk, and let P1, P2, . . . , Pk be vertex disjoint paths in D̄ such that
Pr goes from sr to tr.

We order the paths from longest to shortest and define r� so that for r ≤ r� each Pr has
length at least 100kε−1 lnn. If r� = 0 then there is nothing to prove, so suppose r� ≥ 1.

We use the same type of argument as in the proof of Theorem 3 to show the existence
of short paths between sr and tr, but we work with all r ≤ r� simultaneously to ensure that
the paths we find are vertex disjoint. To this end, we define a sequence of collections of
subsets of vertices Si,r and Ti,r for i ≥ 0 and 1 ≤ r ≤ r�, (we also define Si,r = Pi for i ≥ 0
and r > �). Let S0,r be the first 32kε−1 lnn vertices of Pr and T0,r be the last 32kε−1 lnn
vertices of Pr, for 1 ≤ r ≤ �.

We will call a node useful if it is not within distance d = 5ε−1 of any node which we
have previously placed in any S or T set, where “distance” is the length of the shortest
path in the undirected graph corresponding to D̄.

To define Si,r, we check, for each node s′ in Si−1,r, if R contains an arc from s′ to some
useful node s′′. If it does, we add s′′ and all nodes reachable from s′′ by d steps in D̄ to
Si,r. Note that if s′′ is useful, this will add at least d nodes to Si,r.

Tj,r is defined analogously, but the paths lead towards tr instead of away from sr. For
a node t′ in Tj−1,r, we look for useful nodes t′′ where an arc of R is directed from t′′ to t′,
and add all nodes from which t′ is reachable by d steps in D̄.

To make this definition completely precise, we include a description of the procedure
GenerateSets2 for forming Si,r and Tj,r in Figure 7.4. We use U to denote the set of useful
nodes. Also, the notation N+

d (S) denotes the set of nodes reachable in D̄ in at most d steps
starting from some node of S, the notation N−

d (S) denotes the set of nodes from which
some node of S is reachable in at most d steps in D̄, and Nd(S) = N+

d (S)∪N−
d (S). Finally,

let � = �log2 n�.
The proof is largely the same at Theorem 4, but must argue that when GenerateSets2

halts, P[Sir,r ≤ n2/3 ∨ Tjr,r ≤ n2/3] = o(n−2).
As with GenerateSets, the procedure GenerateSets2 is convenient for analysis because

no arc of R is examined more than once, due to the way the useful set U is maintained.
Therefore, we can employ the principle of deferred decisions find a simple expression for
the conditional probability that, for example, (s′, s′′) ∈ R at any step of the procedure.

We first note that at any step of GenerateSets2, |U | ≥ n−2k∆2d(�n2/3 + 32ε−1 lnn) =
(1− o(1))n. This is because at most ∆2d nodes are removed from U in any step where U is
changed, and it is changed at most n2/3 times in each inner loop, and the 2 inner loops are
executed at most �k times each. And, by similar considerations, the initialization of U has
size at least n− 2k∆2d(32ε−1 lnn).

Now we consider the event Es′ given by “s′ ∈ Si′,r and there exists s′′ ∈ U with (s′, s′′) ∈
R.” Since each arc appears in R independently with probability ε′/n, we can apply the
principle of deferred decisions. We condition on the entire history of the procedure, and

7.6. Testing k-linkedness 73

procedure GenerateSets 2(Disjoint paths P1, P2, . . . , Pk)
U := V

for r = 1, . . . , r� do
S0,r := first 32ε−1 lnn nodes of Pr.
T0,r := last 32ε−1 lnn nodes of Pr.
U := U \Nd(S0,r ∪ T0,r)

ir := 0
jr := 0

for r = r� + 1, . . . , k do
U := U \ {nodes of Pr}

while ∃r : (|Si,r| ≤ n2/3 and ir ≤ �) or (|Tj,r| ≤ n2/3 and jr ≤ �) do
if |Sir | ≤ n2/3 and ir ≤ � then
Si+1,r := ∅
for all s′ ∈ Si,r do

if |Si+1,r| ≤ n2/3 and there exists s′′ ∈ U such that (s′, s′′) ∈ R then
Si+1,r := Si+1,r ∪N+

d ({s′′})
U := U \Nd(N+

d ({s′′}))
ir := ir + 1

if |Tj,r| ≤ n2/3 and jr ≤ � then
Tj+1,r := ∅
for all t′ ∈ Tj,r do

if |Tj+1,r| ≤ n2/3 and there exists t′′ ∈ U such that (t′′, t′) ∈ R then
Tj+1,r := Tj+1,r ∪N−

d ({t′′})
U := U \Nd(N−

d ({t′′}))
jr := jr + 1

Figure 7.4: Procedure to generate Si,r and Tj,r for r = 1, . . . , r�

for s′ ∈ Si′,r, we have that the probability of Es′ depends only on the size of U , which is
always (1 − o(1))n. So

P[Es′ | H] = 1 − (1 − p)|U | = (1 − o(1))ε.

Every time Es′ occurs, at least d vertices are added to Si′+1,r, so conditioned on |Si′,r|, the
random variable |Si′+1,r|/d stochastically dominates Zi′+1 ∼ Bi(|Si′,r|, (1 − o(1))ε). Thus,
letting Bi′+1 denote the event “|Si′+1,r| ≤ 2|Si′,r|” we have

P
[Bi′+1

∣∣ Si′,r
] ≤ P

[
Zi′+1 ≤ E[Zi′+1] − 3

5
ε|Si′,r|

∣∣∣∣ Si′,r

]
≤ e−

9
50

ε|Si′,r|,

where the final inequality is an application of the Chernoff bound (7.2).
Note that in order for the procedure to halt with |Sir ,r| ≤ n2/3 it must be that some Bi′

74 Chapter 7. The diameter of randomly perturbed digraphs

occurs for i′ ≤ i. Since |S0,r| = 32ε−1 lnn, we have that

P[|Sir,r| ≤ n2/3] ≤ P

[ir⋃
i′=1

Bi′

]
≤

ir∑
i′=1

P
[Bi′

∣∣ |Si′−1,r| ≥ 32kε−1 lnn
] ≤ � · e−5k lnn = o(n−2k).

A similar argument shows that when the procedure halts we also have P[|Tjr,r| ≤ n2/3] =
o(n−2k).

Now, to finish the short path from s to t, we generate the random arcs of R between
Sir and Tjr

P

[
R ∩ (Sir × Tjr) = ∅ ∣∣ |Sir ,r| ≥ n2/3 ∧ |Tjr,r| ≥ n2/3

]
≤ (1 − p)n4/3 ≤ e−εn1/3

= o(n−2k).

Putting all the pieces together, we have k disjoint paths, each consisting of a path of length
at most 32ε−1 lnn, followed by at most 2� paths of length d+1 from D̄ joined by edges from
R, and finishing with a path of length at most 32ε−1 lnn, for total length which numerical
calculation shows is less than 100kε−1 lnn.

Since there are less than n2k choices for the terminal pairs, the union bound shows that
all choices of 2k nodes have short vertex disjoint paths linking them whp.

To conclude, we apply Lemma 7, which shows that these short paths will be discovered
whp in polynomial time.

�

7.7 NL-completeness

The standard proof of the NL-completeness of (s, t)-connectivity makes nodes correspond
to machine configurations, and includes out-edges for each pair of machine configurations
which can follow directly one after the other. Since Turing machines have a finite set of
symbols, there is a finite set of configurations which can follow a given configuration. So the
reduction produces a graph with bounded in-degree and out-degree, and (s, t)-connectivity
of bounded out-degree graphs is NL-complete.

Now, given a bounded degree instance of (s, t)-connectivity, we reduce it to an instance
of strong connectivity by, for each node i �= s, t, adding an arc from i to s and an arc
from t to i. This does not add any path from s to t, so not-connected instances stay not-
connected. If the original instance contained an (s, t)-path, the new instance is strongly
connected, since there is an arc from any vertex to s, a path from s to t, and an arc from t
to any vertex.

Unfortunately, this does not have bounded degree, since we increased the out-degree of
t and in-degree of s both to n−2. To avoid this, we add 2 complete binary trees with depth
�log(n − 2)�, one with all edges are directed away from the root (call this the out-tree)
and the other with all edges directed towards the root (call this the in-tree). Then we
connect t to the root of the out-tree, and as many leaves as necessary of the out-tree to 2
vertices of the original graph. This has the same effect as adding the arcs directly from t
to everything, but increases the out-degree of t by 1 and adds O(n) vertices with in-degree

7.8. Conclusion 75

1 and out-degree 2. Similarly, we connect the root of the in-tree to s and each vertex of the
original graph to a leaf of the in-tree, at most 2 vertices to each leaf. This has the same
effect as adding the arcs directly from everything to s, but increases the in-degree of s by
1 and adds O(n) vertices with in-degree 2 and out-degree 1. This transformation can be
implemented by a log-space transducer, since it only requires a little bit-shifting to produce
the binary tree.

7.8 Conclusion

Spielman and Teng introduced smoothed analysis to help explain the success of the simplex
algorithm. We have used smoothed analysis to examine the complexity of strong connec-
tivity and (s, t)-connectivity. In the analysis of NP-hard optimization problems, one can
judge the degree of difficulty based on approximability. Here we provide another measure
of difficulty, based on the existence of heuristics for smoothed instances. We find that,
according to this measure, strong connectivity seems easier than (s, t)-connectivity. This
claim is somewhat surprising, since we determine if a graph is strongly connected by re-
peatedly checking if pairs of vertices are (s, t)-connected. However, strong connectivity is a
more global property, so much so that in an instance like that of Section 7.5, even though
there exists some pair which Algorithm A incorrectly concludes is not connected, there will
almost always be another pair which Algorithm A correctly concludes is not connected, so
the net result will be correct.

There are several directions for future research. First, it is easy to come up with a
measure of difficulty; it is not easy to come up with a good measure. This chapter represents
a piece of “experimental data”. Are there other problems which appear solvable or insolvable
by heuristics on smoothed instances? Does this property seem to relate to the difficulty
of these problems in practice? This is especially interesting in the case of NP-complete
problems. (Questions of this nature are investigated by Beier and Vöcking in [31].)

Second, it would be nice if Theorem 6 was about BPL instead of almost-L. It is not
clear how to achieve this, however. This complication seems related to the limitations of log-
space computation. An analogous result holds (by the same proof, even) for the possibility
of heuristics for recognizing if a digraph contains edge disjoint paths connecting 2 terminal
pairs. In that case, the worst-case problem is NP-complete, and since the reduction has
room to store the perturbed copy, we can show that if NP �⊆ BPP then no heuristic is
successful on smoothed instances. A similar question addresses the growing out-degree case,
as in Section 3. We know Algorithm A does not work, but does some other heuristic? It
would be nice to have a result of a form similar to Theorem 6 suggesting no heuristic works
on graphs with unbounded out-degree.

Finally, it would be natural to extend these results to computing k-strong-connectivity
and being k-linked to work for smoothed instances. Here we face some unresolved technical
difficulties.

Chapter 8

2-stage spanning tree

This chapter originally appeared as [119] as an extended abstract, and a complete version
appeared as [120]. It studies the performance of a class of heuristics for a 2-stage stochastic
version of the minimum spanning tree problem and the minimum spanning arborescence
problem, when the edge weights are all selected independently and uniformly from the
interval [0, 1].

8.1 Introduction

Stochastic Programming refers to the general class of optimization problems where uncer-
tainty is modeled by a probability distribution on the input variables. Two stage optimiza-
tion with recourse is a widely used framework for stochastic optimization (see, e.g., the
recent text by Birge and Louveaux [37]). This chaper considers a particular example of this
approach in the context of a basic combinatorial optimization problem.

The 2-stage spanning tree problem is defined as follows: We wish to find a low cost
spanning tree of the complete graph Kn. On Monday, say, we are given edge costs, cM : E →
R. We also know that on Tuesday we will be given alternative costs for each edge, cT : E →
R. We do not know what the costs cT will be, but they are random and we know their joint
distribution π(ω), ω ∈ Ω, the set of possibilities. On Monday we must choose a set of edges
XM and pay for them at Monday’s prices. On Tuesday, Monday’s prices will no longer
be available. Some edges will be cheaper and some will be more expensive. We must now
choose a set of edges XT , at Tuesday’s prices to complete a spanning tree. Our total cost
will be cM (XM) + cT (XT), and our goal is to choose the set of edges XM which minimizes
the expected total cost of the tree we create. Formally, we wish to compute

OPT = min
XM

cM (XM) + E

[
min
XT

{cT (XT) : XM ∪XT is a spanning tree}
]
.

Anupam Gupta has pointed out that in the worst case, we can encode set cover as such
a problem and so it probably cannot be efficiently approximated beyond a ratio of O(log n).
A version of his proof is included in Section 8.5.

77

78 Chapter 8. 2-stage spanning tree

The inapproximability result requires a worst-case set of costs cM and a worst-case
distribution for cT . This chapter will carry out a probabilistic analysis for instances where
cM (e) and cT (e), e ∈ E(Kn) are selected independently and uniformly from the interval
[0, 1].

It is well-known that if only Monday’s costs are available then we can find a minimum
spanning tree in polynomial time and that the expected cost Z1 of the optimum solution is
asymptotically equal to ζ(3) ∼ 1.20205 . . . , Frieze [135]. Here ζ(3) =

∑∞
n=1 n

−3. Further-
more, if we could accurately predict the future and could find a minimum spanning tree
using costs c2(e) = min{cM (e), cT (e)} then [135] shows that we could pick edges so that
our optimal cost Z2 is asymptotically ζ(3)/2 ∼ .601028

procedure ThresholdHeu(α; cM)
G := (V,E) where e ∈ E if and only if cM (e) ≤ α
return minimum spanning forest of G with respect to costs cM

Figure 8.1: Algorithm Aα: A threshold heuristic for 2-stage MST

We first examine the performance of a simple threshold heuristic, described formally in
Figure 8.1. In words, Aα is the algorithm that finds the minimum spanning forest of Kn

that only uses edges of cost less than α on Monday and then completes the tree as cheaply
as possible with new edges paid for at Tuesday’s prices. Let Aα be the (random) value of
the cost of the solution returned by Aα.

Theorem 8 The best choice for α is 1/n in the sense that

E
[
A1/n

]
= ζ(3) − 1

2
+ o(1) ≤ E [Aα] + o(1)

for any choice of α.
Furthermore, for all α, the value Aα is concentrated around its mean.

The proof of Theorem 8 also gives a lower bound on the value of stochastic solution (VSS),
which is defined as the difference between the expected result of using the expected value
solution (EEV) and the value of the optimal 2-stage solution OPT . To find the EEV, we
observe that when the distribution of each Tuesday edge costs is replaced by its expected
value, then the optimal solution whp ignores the Tuesday edges (which now have cost 0.5)
and buys the whole tree on Monday. Thus, the EEV is asymptotically equal to the cost
of buying the whole tree on Monday, which is asymptotically ζ(3). So we have V SS =
OPT − EEV ≥ 1

2 − o(1).
Note that ζ(3)−1/2

ζ(3)/2 ∼ 1.168 . . . and so whp A1/n is within 17% of optimal.
Recently, Dhamdhere, Ravi, and Singh showed that Aζ(3)/n is a constant factor approx-

imation algorithm for instances where Monday’s costs are arbitrary and Tuesday’s costs are
selected independently and uniformly between 0 and 1 [99].

A threshold algorithm is the best we can do if we do not take account of the structure
of the costs for Monday’s edges. Can we improve on this if we do? The answer is yes. We
show that we can reduce the expected cost by at least a (very) small amount.

8.2. Undirected case 79

Theorem 9 There is a polynomial time algorithm A� for selecting XM whose (random)
cost A� satisfies

E [A�] ≤ ζ(3) − 1
2
− 10−256.

We see therefore that the algorithm A1/n is not optimal. Is it possible to asymptotically
achieve ζ(3)/2? Let OPT denote the minimum expected cost achievable by any 2-stage
algorithm.

Theorem 10
OPT ≥ ζ(3)/2 + 10−5

Theorem 10 is equivalent to a lower bound on the expected value of perfect information
(EVPI), which is defined between the difference between the value of the optimal 2-stage
solution OPT and the expected value of the optimal solution when Tuesday’s costs are
known (the wait-and-see value (WS)). Theorem 10 shows that EVPI = OPT−WS ≥ 10−5.

Finding the the optimal choice of XM and determining what can be done in polynomial
time remain challenging open problems.

We continue with a directed version of this problem. Here we are given Monday and
Tuesday costs for all the arcs of the complete digraph Dn. (The vertices of Dn are {1, . . . , n},
and each ordered pair (i, j), 1 ≤ i �= j ≤ n, forms an arc in Dn). We now wish to find
a low cost spanning arborescence rooted at vertex 1 i.e. a tree with arcs directed away
from vertex 1. We first consider the threshold algorithm �Aα which finds a minimum cost
rooted forest using arcs from Monday of cost less than α and then completes it to a rooted
arborescence after Tuesday’s costs are revealed. Here α = 1/n is also the best choice: Let
�Aα be the cost of the output from �Aα.

Theorem 11
E

[
�A1/n

]
= 1 − e−1 + o(1) ≤ E

[
�Aα

]
+ o(1)

for any choice of α.
Furthermore, for all α, the value �Aα is concentrated around its mean.

This turns out to be asymptotically optimal. Let
−→
OPT denote the minimum expected cost

achievable by any 2-stage algorithm.

Theorem 12 −→
OPT≥ 1 − e−1 − o(1).

We prove Theorem 8 in Sections 8.2.1, 8.2.2, Theorem 9 in Section 8.2.3, Theorem 10 in
Section 8.2.4, Theorem 11 in Section 8.3 and Theorem 12 in Section 8.3.2.

8.2 Undirected case

8.2.1 Threshold heuristic

Proof of Theorem 8 Fix some 0 < α ≤ 1 and let T be the spanning tree produced by
the threshold heuristic Aα, and let Tm and Tt be the edges bought on Monday and Tuesday

80 Chapter 8. 2-stage spanning tree

respectively. Then

c(T) =
∑

e∈Tm

cm(e) +
∑
e∈Tt

ct(e)

=
∑

e∈Tm

∫ 1

p=0
1{cm(e)≥p}dp+

∑
e∈Tt

∫ 1

p=0
1{ct(e)≥p}dp

=
∫ 1

p=0

∑
e∈Tm

1{cm(e)≥p}dp+
∫ 1

p=0

∑
e∈Tt

1{ct(e)≥p}dp

For any graph G, let κ(G) denote the number of connected components in G.

Now, let Gp be the graph containing only edges with Monday cost less than p. Since
Tm is the minimum spanning forest on edges with Monday cost less than α, for p ≤ α we
have by the greedy algorithm of Kruskal:∑

e∈Tm

1{cm(e)≥p} = κ(Gp) − κ(Gα).

Let Hp be the graph containing edges with Monday cost less than α or Tuesday cost
less than p. Then, since Tt is a minimum spanning tree on the graph formed by contracting
each component of Tm to a single vertex, we have∑

e∈Tt

1{ct(e)≥p} = κ(Hp) − 1.

Linearity of expectations gives

E [c(T)] =
∫ α

p=0
E [κ(Gp) − κ(Gα)] dp +

∫ 1

p=0
E [κ(Hp) − 1] dp

=
∫ α

p=0
E [κ(Gp)] dp− αE [κ(Gα)] +

∫ 1

p=0
E [κ(Hp)] dp − 1. (8.1)

We point out here that this implies∫ 1

p=0
E [κ(Gp)] dp = 1 + ζ(3) + o(1), (8.2)

since putting α = 1 into (8.1) we have E [c(T)] is the expected value of the minimum
spanning tree using Monday costs. As already mentioned, this is ζ(3) + o(1). But we have
κ(Gα) = κ(Hp) = 1 for all p ≤ 1.

Now, Gp is identically distributed with the Erdős-Rényi random graph Gn,p (in which
each pair of n vertices appears as an edge independently with probability p) and Hp is
identically distributed with the Erdős-Rényi random graph Gn,p′ for p′ = α + p − αp. So

8.2. Undirected case 81

we have ∫ 1

p=0
E [κ(Hp)] dp = (1 − α)−1

∫ 1

p′=α
E
[
κ(Gp′)

]
dp′.

We may assume α ≤ 2 log n/n. If α > 2 log n/n then whp Gα is connected (see,
for example, Bollobás [46, Thm. 7.3, p. 164]) which means that whp all the edges are
purchased on Monday, and thus the expected cost E[A]α will be ζ(3) + o(1).

The integral
∫ 1
p′=α E

[
κ(Gp′)

]
dp′ is bounded by

∫ 1
p′=0 E

[
κ(Gp′)

]
dp′ = 1 + ζ(3) + o(1), so

we have (recalling that α = o(1))

∫ α

p=0
E [κ(Gp)] dp +

∫ 1

p=0
E [κ(Hp)] dp =

∫ 1

p=0
E [κ(Gp)] dp− α

1 − α

∫ 1

p=α
E[κ(Gp)]dp

=
∫ 1

p=0
E [κ(Gp)] dp+ o(1).

So, altogether we have
E [c(T)] = ζ(3) + o(1) − αE [κ(Gα)] .

Set β so that α = β/n and put κT equal to the number of tree components. There are
at most n2/3 components of size at least n1/3 and so we see that

αE [κT (Gα)] =
β

n

n1/3∑
k=1

(
n

k

)
kk−2

(
β

n

)k−1(
1 − β

n

)k(n−k)+(k2−3k+2)/2

+ o(1) (8.3)

=
∞∑

k=1

kk−2

k!

(
βe−β

)k
+ o(1). (8.4)

Note that the sum in (8.4) is convergent, even for β = 1.
Let κN denote the number of non-tree components. Then we have

αE [κN (Gα)] ≤ β

n

n1/3∑
k=1

(
n

k

)
kk

(
β

n

)k (
1 − β

n

)k(n−k)

+ o(1) ≤ β

n

n1/3∑
k=1

(βe1−β)k + o(1) = o(1),

and so

αE [κ(Gα)] =
∞∑

k=1

kk−2

k!

(
βe−β

)k
+ o(1). (8.5)

Now βe−β has a unique maximum at β = 1, which shows that the threshold α = 1/n is
asymptotically best for the threshold heuristic.

Finally, we note that for β = 1,

αE [κ(Gα)] =
∞∑

k=1

kk−2

k!
e−k + o(1) =

1
2

+ o(1), (8.6)

and so the threshold heuristic attains a value of ζ(3) − 1
2 + o(1).

82 Chapter 8. 2-stage spanning tree

(The last equation in (8.6) can be justified as follows: Consider the exponential gen-
erating function U(x) =

∑∞
k=1

kk−2

k! x
k for the number of labeled trees with k vertices and

the exponential generating function T (x) =
∑∞

k=1
kk−1

k! x
k for the number of labeled rooted

trees with k vertices. These satisfy U(x) = T (x) − T (x)2

2 (equation (3.3) of [155]). Now
T (e−1) = 1 can be seen from the fact that nT (e−1) is asymptotically equal to the number
of vertices on trees in the random graph Gn,1/n. The sum in (8.6) is U(e−1).)

8.2.2 Concentration

The goal of this section is to prove that for any constant λ > 0, there exists δ = δ(λ) > 0
such that for sufficiently large n,

P[|Aα − E [Aα] | ≥ λ] ≤ e−δn.

We need only show this for λ sufficiently small, and it is convenient to define ε so that
ε + 4(1 − ε)−1(2ε + H(ε)) = λ, where H(x) = −x lnx − (1 − x) ln(1 − x) is the entropy
function.

In our analysis we consider separately the contribution of long and short edges. Let
C = 2ε−1, and let Z denote the total cost of the edges used by Aα with edge cost at most
C/n. Let N = 2

(
n
2

)
and note that Z is a function of N i.i.d. random variables X1, . . . ,XN

(one for each edge for each day). Also, each Xi is uniformly distributed on [0, 1].

We will show Z is concentrated using a variant of the Symmetric Logarithmic Sobolev
Inequality from [60]. Let Z ′

i denote the same quantity as Z, but with the variable Xi

replaced by an independent copy X ′
i. Then a simplified form of the Symmetric Logarithmic

Sobolev Inequality [60, Corollary 3] says that if

E

[N∑
i=1

(Z − Z ′
i)

21Z>Z′
i

∣∣∣∣ X1, . . . ,XN

]
≤ c

then for all t > 0,
P[Z > E[Z] + t] ≤ e−t2/4c,

and if

E

[N∑
i=1

(Z ′
i − Z)21Z′

i>Z

∣∣∣∣ X1, . . . ,XN

]
≤ c

then for all t > 0,
P[Z < E[Z] − t] ≤ e−t2/4c.

Changing the value of one edge can change the value of Z by at most C/n, so (Z−Z ′
i)

2 <
(C/n)2. Let I denote the indices of the edges which contribute to Z. If i /∈ I then Z ′

i < Z

8.2. Undirected case 83

implies X ′
i ≤ C/n. So

N∑
i=1

(Z − Z ′
i)

21Z>Z′
i
≤
∑
i∈I

(C/n)2 +
∑
i/∈I

(C/n)21X′
i<C/n.

Since there are less than n terms in the first sum and less than n2 terms in the second sum,
we have

E

[N∑
i=1

(Z − Z ′
i)

21Z>Z′
i

∣∣∣∣ X1, . . . ,XN

]
≤ C2/n + C3/n ≤ 2C3/n.

If i /∈ I then we also have that Z ′
i > Z implies X ′

i ≤ C/n. So we also have

E

[N∑
i=1

(Z ′
i − Z)21Z′

i>Z

∣∣∣∣ X1, . . . ,XN

]
≤ C2/n + C3/n ≤ 2C3/n.

Therefore,
P [|Z − E[Z]| ≥ ε] ≤ 2e−ε2n/8C3

= 2e−ε5n/64.

Let Z ′ denote the total cost of the edges used by Aα with edge cost at least C/n. We
will show that Z ′ ≥ λ− ε with exponentially small probability.

Let G be the graph containing edges with Monday or Tuesday cost less than C/n. Then
G is identically distributed with Gn,p for p = 2C/n − (C/n)2. Let S denote the set of
vertices that are not in the giant (more precisely, largest) component of G. We will obtain
a exponential bound on the probability that |S| ≥ εn. To do so, we let B1 denote the event
“there exists a set T such that εn ≤ |T | ≤ n/2 and no edge of G crosses the cut between
T and T̄ .” Note that in order for |S| ≥ εn, it is necessary that event B1 holds: if |S̄| ≥ εn,
then (since |S| also exceeds εn) either T = S or T = S̄ shows that B1 occurs; if |S̄| ≤ εn,
then all connected components of the graph have size at most εn and we can choose T to
be the union of an appropriate collection of connected components.

Since C = 2ε−1, we have

P[|S| ≥ εn] ≤ P[B1] ≤
n/2∑

k=εn

(
n

k

)(
1 − C

n

)2k(n−k)

≤
n/2∑

k=εn

en−2Ck(1−k/n) ≤ ne−n. (8.7)

Z ′ can be bounded by the sum of (i) the edges of length > C/n in the minimum
spanning tree using Monday costs and (ii) the sum of the edges of length > C/n in a
minimum spanning tree of the graph obtained by shrinking the components of the Tuesday
forest. (ii) is stochastically less than by (i). The sum in (i) can be bounded by the sum
over the vertices s ∈ S of the length of the cheapest edge from s to the giant component
(more precisely largest component) of the graph spanned by the edges of length < C/n.

We finish by calculating an upper bound on the probability that any subset of size εn
has the sum of the minimum cost edges exceeding (λ − ε)/2. Let V1 denote the minimum
of n′ := (1 − ε)n independent random variables each uniformly distributed in [0, 1]. Then

84 Chapter 8. 2-stage spanning tree

E[V1] = 1
n′+1 , and

E
[
etV1

]
=
∫ 1

x=0
etxn′(1 − x)n′−1dx = 1 +

∑
k≥1

tk

n′(n′ + 1) · · · (n′ + k − 1)
≤
(

1 +
2t
n′

)
.

(The second equality follows from integration by parts, inequality holds for t ≤ n′/2).
Then, for any set T with |T | = k,

P

[∑
v∈T

V1(v) ≥ λ

]
= P

[
e

n′
2

�
v∈T V1(v) ≥ eλn′/2

]
≤ e−λn′/2

E

[
en

′V1/2
]k ≤ e−λn′/2+k.

Let B2 denote the event “there exists a set T with |T | ≤ εn and
∑

v∈T V1(v) ≥ (λ− ε)/2 =
2(1 − ε)−1(2ε +H(ε))”. Then we have

P[B2] ≤
∑

1≤k≤εn

(
n

k

)
e−εn−H(ε)n ≤ εne−εn. (8.8)

We combine (8.7) and (8.8) to show that the probability Z ′ exceeds λ− ε is small.

P
[
Z ′ ≥ λ− ε

] ≤ P[|S| ≥ εn] + 2P[B2] ≤ ne−n + 2εne−εn.

Finally,

P[|Aα − E [Aα] | ≥ λ] ≤ P[|Z − E[Z]| ≥ ε] + P[Z ′ ≥ λ− ε]

≤ 2e−ε5n/64 + ne−n + 2εne−εn.

8.2.3 Beyond the threshold heuristic

We can achieve a slightly better expected value than the threshold heuristic A1/n by being
more careful about edges with cost near the threshold.

Let � be a positive integer and let ε > 0 be a small positive constant and let F be the
minimum spanning forest on the edges with Monday cost less than (1 − ε)/n. Let an edge
e = {u, v} be bad if it has Monday cost cM (e) ∈ [(1 − ε)/n, 1/n], and for x = u, v there are:

(A) Exactly � vertices w for which cM (x,w) < (1 − 2ε)/n. Denote this set of vertices by
Cx.

(B) No vertices w for which cM (x,w) ∈ [(1 − 2ε)/n, 1/n].

(C) No vertices w ∈ Cx and y �∈ {x} ∪ Cx for which cM (y,w) < 1/n.

If e is bad then e will be part of an isolated tree of G1/n containing 2�+ 1 edges and e will
be chosen by A1/n.

Let T1 be the tree constructed by A1/n and let T2 be obtained by taking the minimum
spanning forest which uses edges e with cM (e) < 1/n which are not bad, and then completing

8.2. Undirected case 85

this forest to a tree as cheaply as possible with edges at Tuesday’s costs. We will show that

E [T1 − T2] ≥ 10−256 (8.9)

and so completing the proof of Theorem 9.

We must estimate the expected savings if we leave out the bad edges and only the bad
edges from the threshold solution. In this case, {x} ∪Cx, x = u, v are trees of the forest of
the edges chosen on Monday.

We consider the contribution from the removal of a single bad edge e = {u, v}. We
expose the costs of the edges carefully to avoid unpleasant conditioning. First we expose
the Monday cost of e. The probability cM (e) is in the correct range is ε/n. If cM (e) is
in this range, we expose the Monday costs of the other edges incident to u and v. The
probability that the costs of the other edges are in the correct range is

((
n− 1
�

)(
1 − 2ε
n

)�(
1 − 1

n

)n−2−�
)2

≥ (1 − 2ε)2�

e2(�!)2
(1 − o(1)).

Now, we expose the Monday costs of the neighbors of Cu ∪ Cv. The probability that (C)
holds is (1 − 1/n)2�(n−2−2�) = e−2�(1 + o(1)).

Thus the expectation of the number of bad edges b is given by

E[b] = (1 + o(1))
ε(1 − 2ε)2�e−2�−2

2(�!)2
n. (8.10)

We now expose all the Monday and Tuesday costs between the n− 2 − 2� vertices that are
not part of Cu and Cv. Let H be the graph containing all edges just exposed with Monday
or Tuesday cost at most (1 − 2ε)/n. Note that H is identically distributed with Gn′,p for
n′ = n − 2 − 2� and p = (1 + o(1))(2 − 4ε)/n. If ε < 1/4 then H has a giant component
KH qs ∗. We expose the remaining edge costs and let Xu (resp. Xv) be the minimum cost
of a Tuesday edge from Cu (Cv) to KH , assuming that it exists. The size of KH is at least
βn(1 − o(1)) qs, where β is the root of β + e−2(1−2ε)β = 1 in the interval (0, 1). We take
ε = 0.1 and then β > 0.7. So, for � = 100 we have E[Xu] = E[Xv] = 1+o(1)

�βn ≤ 0.02n−1. For
each bad edge e = {u, v} we then have expected cost savings of at least

1 − ε

n
− max

{
1 − 2ε
n

,Xu +Xv

}
≥ 0.1

n
. (8.11)

We can prove (8.11) as follows: Let e = {u, v} be bad. e /∈ T2 and there is a path from u to
v which goes to a vertex of Cu, goes to H via an edge of length Xu, traverses H and then
goes via an edge of length Xv to a vertex of Cv and then to v. If A,B are the components

∗Recall that a sequence of events En occurs quite surely (qs) if P(En) = 1 − O(n−K) for any K > 0.

86 Chapter 8. 2-stage spanning tree

of T1 − e then at least one edge f /∈ T1 of P will join A to B. We observe that

min{cM (f), cT (f)} ≤ max
{

1 − 2ε
n

,Xu,Xv

}
≤ max

{
1 − 2ε
n

,Xu +Xv

}
.

So, if we replace e by f in T1 we will, by (8.11), save at least 0.1
n . If we repeat this for all

bad edges, then we will have a tree containing all of the Monday purchased edges and it
will, in expectation, be at least 0.1E[b]

n cheaper. We obtain (8.9) by using this together with
(8.10) with � = 100.

8.2.4 A lower bound on OPT

If we could see all the Monday and Tuesday costs before selecting any edge then we could
find a spanning tree with cost ∼ ζ(3)/2. Since we have to make some decisions before we
see the Tuesday costs, it seems likely that our solution should, in expectation, cost at least
ζ(3)/2 + ε, for some small ε. This is the content of Theorem 10.

Let C be a positive constant, (which we will eventually take to be 3, to obtain a concrete
bound). Consider the edges we buy on Monday with cost exceeding C

n . Let

ε = βCe
−(2C+3)/2

where βC is the solution to β + e−(C−1)β = 1 in the interval (0, 1).
We will see that if we buy more than εn of these edges, then we will regret our purchase

on Tuesday. We also argue that if we buy less than εn, then we will regret it too.
Case 1: SupposeXM contains at least εn edges with cM (e) ≥ C

n , and let {e1, e2, . . . , em}
be these edges (where m ≥ εn). Let H be the graph consisting of all the edges e′ with
cT (e′) < C−1

n . Then (for any C > 2), H contains a giant component KH with size βCn(1−
o(1) whp. For i = 1, . . . ,m, if ei has both end vertices in KH , then we can find a cheaper
spanning tree Ti by removing ei from Ti−1 and adding an edge from H on Tuesday. This
will decrease the cost of the solution by at least 1/n. Since each edge ei has both vertices in
KH with probability ∼ (βCn

2

)
/
(
n
2

) ∼ β2
C , the 2-stage solution exceeds the optimal solution

by at least β2
Cε− o(1) in expectation.

Case 2: Suppose XM contains less than εn edges with cM (e) ≥ C
n . For a vertex v,

let Ev be the event “the cheapest Monday edge incident to v has cost between C
n and C+1

n

and the other endpoint is in KH”. Then P
[Ev

∣∣ |KH |] = |KH | 1n
(
1 − C+1

n

)n−2, and so
P[Ev] ∼ βCe

−(C+1).
Let E ′

v be the event “there is no edge incident to v with Tuesday cost less than C+2
n ”.

Then P[E ′
v] =

(
1 − C+2

n

)n−1 ∼ e−(C+2). If Ev and E ′
v occur then not buying the edge from

v to KH with cost less than (C + 1)/n on Monday results in paying at least 1
n more than

optimal to connect v on Tuesday. But we only take εn edges on Monday with cM (e) ≥ C
n ,

so we expect to pay this penalty on at least nβCe
−(2C+3) − εn vertices, and so our 2-stage

solution exceeds optimal by at least βCe
−(2C+3)/4 in expectation, after accounting for the

fact that one edge has 2 endpoints.

8.3. Spanning arborescence problem 87

Taking C = 3, numerical computation shows that the 2-stage solution exceeds optimal
by at least 10−5.

8.3 Spanning arborescence problem

The directed version of this problem is to build a cheap spanning out-arborescence rooted at
a fixed vertex r. Given a random cost for each directed edge on Monday and a distribution
for the random cost for each directed edge on Tuesday, find directed edges to buy on Monday
to minimize the expected total cost when you buy the missing edges on Tuesday. In other
words, compute

OPT = min
XM

cM (XM)

+ E

[
min
XT

{cT (XT) : XM ∪XT is a spanning arborescence rooted at r}
]
.

In this case there is a lower bound that matches the threshold heuristic.

8.3.1 Threshold heuristic

This comprises two phases:
Phase 1: For each vertex, if the cheapest in-edge on Monday has cost at most α we will

buy it, and otherwise we will wait till Tuesday and buy the cheapest in-edge available. This
does not define an arborescence, it defines a functional digraph, with all in-degrees equal to
1. This consists of a collection of vertex disjoint cycles C1, C2, . . . , Cm, and for each vertex
v in C1 ∪ C2 ∪ · · · ∪ Cm there is an arborescence directed from v.

Phase 2: We delete the arc directed into r. We then delete one (arbitrary) arc from
each cycle that remains. At this point we have m′ vertex disjoint directed rooted trees
T1, T2, . . . , Tm′ , say, where m ≤ m′ ≤ m+ 1. Assume that r is the root of T1. Now we make
a spanning arborescence as follows:
For i = m′,m′ − 1, . . . , 2 we do the following:
Find the cheapest arc, at Tuesday’s prices, into Ti from a vertex in T1 ∩ T2 ∩ . . . ∩ Ti−1.
If this arc came from Tj then this creates a rooted tree T ′

j from the vertices of Tj, Ti.
T ′

j replaces Tj and Ti disappears.
Note that since the arc removed in Phase 2 is chosen arbitrarily, this procedure can be

implemented in the 2-Stage framework: on Monday, we leave some edge out of any cycle
that Phase 1 wants to buy. This does not require any knowledge of the Tuesday costs.

Analysis of Phase 1
We find that the expected cost of the arcs chosen is given by

n

(∫ α

x=0
(n− 1)x(1 − x)n−2dx+ (1 − α)n−1

∫ 1

x=0
(n− 1)x(1 − x)n−2dx

)

= n

(
1
n
− (1 − α)n−1

n
(1 + αn− α) +

(1 − α)n−1

n

)
= 1 − (n− 1)α(1 − α)n−1 .

88 Chapter 8. 2-stage spanning tree

This is minimized at α = 1/n giving a value which is asymptotically equal to 1 − e−1.

Analysis of Phase 2
It remains to show that the cost added in this phase is o(1) whp. First of all, it is known
(see, e.g., [46], Ch. 14.5), that for some K > 0, m ≤ K log n with probability at least
1 − O(n−2). An easy calculation shows that with probability 1 − o(n−2) over Tuesdays’
prices, for every ordered partition (V1, V2) of V the cheapest Tuesday’s arc from V1 to V2

has cost at most 4 log n
n . Indeed, the probability that this is not so can be bounded from

above by

n−1∑
k=1

(
n

k

)(
1 − 4 log n

n

)k(n−k)

≤ 2
n/2∑
k=1

(
n

k

)(
1 − 4 log n

n

)k(n−k)

≤ 2
n/2∑
k=1

(en
k

)k
e−

4 log n
n

· kn
2

= o(n−2) .

Assuming the above conditions hold the arcs added at Phase 2 increase the total weight
of the obtained solution by at most O(log2 n

n).

Concentration
The proof is analogous to the proof in section 8.2.2. Given a λ > 0, we pick the appropriate
constant C, and use Azuma’s inequality to show the total cost of the arcs with cost less
than C/n is concentrated around its mean. Then we show that the probability the total
cost of the remaining arcs is anything significant is exponentially small, by showing that
(with probability exponentially close to 1) there are not too many vertices left unconnected,
and for any small set of vertices, there is a set of edges connecting them to the remaining
vertices which doesn’t cost anything significant.

8.3.2 Matching lower bound on
−→

OPT

In any feasible solution each vertex v besides the root r has to have a unique edge directed
to it. So we can obtain a lower bound on what is achievable by looking at each vertex
individually. For any realization of cM , taking expectations over cT we have

min
XM

{
cM (XM) + E

[
min
XT

cT (XT) : XM ∪XT is an arborescence
]}

≥
∑
v �=r

min
{

min
w �=v

{cM (w, v)},E
[
min
w �=v

{cT (w, v)}
]}

=
∑
v �=r

min
{

min
w �=v

{cM (w, v)}, 1/n
}
.

8.4. Open questions 89

And so taking expectations over cM , we obtain, where Xi are independent, uniformly dis-
tributed between 0 and 1,

−→
OPT ≥ (n− 1)E [min{1/n,X1,X2, . . . ,Xn−1}]

= (n− 1)

(∫ 1/n

x=0
(n− 1)x(1 − x)n−2dx+

(
1 − 1

n

)n−1 ∫ 1

x=1/n

1
n
dx

)

∼ 1 − e−1.

8.4 Open questions

As far as this piece of work is concerned, the main open question is how to close the gap
between the results of Theorems 9 and 10.

Another natural question might be to consider a 2-stage version of the random assign-
ment problem. See Aldous [11], [12], Linusson and Wästlund [184] and Nair, Prabhakar and
Sharma [201] for recent work on the standard one-stage analysis. In principal, one could
try to carry out a similar 2-stage probabilistic analysis for any combinatorial optimization
problem.

8.5 Hardness of approximation in worst case

We describe a gap preserving reduction from set cover. Let S1, S2, . . . , Sm ⊆ [n] be a set
cover instance. We construct an MST instance with n + m + 1 vertices by defining the
function cM and the random function cT . Denote the vertices by {r, v1, . . . , vm, 1, . . . , n}.
Set the Monday edge cost of {r, vi} to 1 and set all the other Monday edge costs to ∞.

cM ({u, v}) =

{
1, if {u, v} = {r, vi};
∞, otherwise.

Make the Tuesday edge costs uniformly distributed over n functions, where the j-th function
sets to ∞ the cost of edges in the cut separating Tj = {j} ∪ {vi : Si � j} from the rest of
the graph, and sets the other edges costs to 0.

c
(j)
T ({u, v}) =

{
∞, if {u, v} ∈ (Tj , Tj);
0, otherwise.

If Si1 ∪ Si2 ∪ · · · ∪ Sik = [n] then by buying Monday edges {r, vij} where j = 1, . . . , k,
we can complete the spanning tree on Tuesday with 0-cost edges for any future.

On the other hand, consider any set XM of Monday edges such that the expected total
cost of the spanning tree is finite. Then each {u, v} ∈ XM must have the form {r, vij}.
Consider set of sets corresponding to these edges, {Si1 , . . . , Sik}. For any � ∈ [n], we must
have � ∈ Sij for some ij ; otherwise with probability 1/n, we realize future �, and have to
buy an infinite cost edge across cut (T�, T�).

Chapter 9

Facility Location

This chapter originally appeared as [122]. It studies the performance of some approximation
algorithms designed for the metric facility location problem when these algorithms are
applied instances generated by a geometric random distribution.

9.1 Introduction

Many optimization problems are NP-hard. This is an unfortunate fact of life. As discussed
in Chapter 1, there are a variety of approaches to dealing with this fact. One popular
approach is to find approximation algorithms with provably good worst-case performance
guarantees. Another approach (the primary focus of this thesis) is to design heuristics which
work well “on average”. In this chapter we will combine the approaches, by analyzing an
approximation algorithm in a probabilistic setting. The aim is to investigate the notion
that such algorithms will “typically” do better than their worst-case guarantees.

In the uncapacitated facility location problem (UFLP) we are given a set of facilities F
and a set of cities C. For every facility i ∈ F there is a cost fi for opening that facility, and
for every facility-city pair (i, j) ∈ F × C there is a cost ci,j for connecting facility i to city
j. There are no bounds on the number of cities that can be connected to a facility. Thus,
if we open the set of facilities F ⊆ F then each city j will connect to the open facility with
cheapest connection cost, and the total cost will be

c(F) =
∑
i∈F

fi +
∑
j∈C

min
i∈F

ci,j .

The goal is to find a set of facilities F that will minimize the total cost c(F).
Unfortunately, the problem is NP-hard, as it contains set-cover as a special case. It

has been the focus of a great deal of attention from many perspectives. In the 1980’s, the
Operations Research community focused on branch and bound algorithms for solving it,
which led to some considerable success, see for example [174]. From that period, there is
also some worst-case analysis of the performance of greedy heuristics [93] and a probabilistic
analysis of the related k-median problem [8]. More recently, the Theoretical Computer Sci-

91

92 Chapter 9. Facility Location

ence community has placed a significant emphasis on finding approximation algorithms for
NP-hard problems and one of its most notable successes has been in finding constant factor
approximations for this problem when the connection costs obey the triangle inequality.
The first algorithm to obtain a constant factor approximation was based on LP rounding
[211] and subsequent approaches based on LP rounding improved the constant to 1 + 2/e
[75] and then to 1.58 [219]. Alternative approaches to approximating the solution are based
on local search techniques [172], primal-dual schema [154] and combinations of these [72].
At the present time the best approximation guarantee that is obtainable in polynomial time
is 1.52, due to Mahdian, Ye and Zhang [189]. This is a greedy augmentation algorithm, and
in this chapter, we will focus our attention on it and on 2 related greedy algorithms [153].

It is likely that approximation algorithms will find solutions closer to optimal than
their guarantees guarantee. How much closer? One way to provide some answer to this
question is via an experimental study, which is exactly the approach of [26, 150] and is
also considered in Section 7 of [153]. Another way, which we will follow in this chapter,
is to consider theoretically the result of applying the algorithms to an appropriate random
instance. Since the constant factor approximation algorithms are only supposed to work on
metric instances, we rule out one common random model, in which all distances are chosen
independently and uniformly from [0, 1]. Another random model we do not study comes
from choosing all distances from a discrete distribution that takes only the values 1 and 2.
The random model we use will be geometric in nature, formed by placing points uniformly
at random in the unit square. For additional reference on combinatorial optimization over
instances derived from random points, see [204, 216, 230]. Although it is possible to design
algorithms to take advantage of the special structure of these instances, that is not the
focus of the current investigation. Instead of first choosing a distribution over instances and
then designing an algorithm to work whp over this distribution, we begin by choosing the
algorithms to study and then choose an interesting (but tractable) distribution of instances
on which to run them.

9.1.1 Random model

We will study random instances formed by choosing n points X = {X1,X2, . . . ,Xn} uni-
formly at random in the unit square [0, 1]2. We assume that each point represents a city and
also the possible location of a facility. For simplicity we will use the �∞ distance between
each facility-city pair as the connection cost (the techniques presented below would also
work for the �1 norm, but for the �2 norm, additional effort would be needed to replace the
results from Section 9.2).

Let m be a positive integer satisfying m = o((n/ log n)1/2). Then let α = m−1 and
define ω = m−1(n/ log n)1/2, so that ω → ∞ with n.

We will give every facility the same opening cost,

f =
1
6
α3n.

We have selected these values for later convenience in notation, and summarize it in the
following table. It is really the facility cost f that controls the structure of the optimal

9.1. Introduction 93

solution. As f tends to ∞, the optimal solution will open 1 facility in the center of the
square and connect everything to it. As f tends to 0, the optimal solution will open a facility
at every city. Section 9.2 will show that the transition between these extreme behaviors is
described by f as parameterized above. For f = 1

6m
−3n, the optimal solution will open

about m2 facilities.

ω → ∞ m = ω−1

√
n

log n
α = ω

√
log n
n

f =
1
6
ω3 (log n)3/2

√
n

We denote the �∞ distance between two points Xi and Xj by d(Xi,Xj). All logarithms
are base e.

We initially expected to prove that the algorithm of [189], which has worst-case ap-
proximation ratio 1.52, was asymptotically optimal i.e. that whp, as n → ∞, the ratio
of the cost of the solution found by the approximation algorithm and the optimum tends
to 1. Instead we give a proof of the following: Let OPT denote the value of a minimum
cost solution. The algorithm of [189] is similar in spirit to the 2 algorithms given in [153],
which have worst-case approximation ratios of at most 1.861 and 1.61. We denote these
approximation algorithms by H1,H2,H3, and recall their descriptions in detail in Section
9.2. We let Zi denote the value of the solution found by Hi.

Theorem 13 There exists a positive constant ε > 0 such that for i = 1, 2, 3, whp

Zi

OPT
≥ 1 + ε.

On the other hand it is not difficult to describe a “trivial heuristic” which is asymptotically
optimal and so it is disappointing that these sophisticated approximation algorithms are in
fact beaten by triviality whp.

9.1.2 Outline

In the next section we describe the greedy approximation algorithms and the trivial heuris-
tic in detail, and give a non-rigorous explanation of “what goes wrong” to prevent the
approximation algorithms from finding an asymptotically optimal solution.

Since our non-rigorous explanation will rely heavily on the asymptotic optimality of the
trivial heuristic, we prove that the heuristic is asymptotically optimal in Section 9.3. The
proof has 2 parts. First we obtain an upper bound that holds whp on the value of the
solution found by the heuristic. Since the heuristic is so simple, this only requires us to
consider basic probabilistic arguments. Some of these recur frequently enough to merit little
lemmas, which are stated and proved in Section 9.3.1. Then we obtain an asymptotically
matching lower bound that holds whp on the value any solution. We do this by constructing
a solution to the dual of the LP-relaxation which is feasible whp.

94 Chapter 9. Facility Location

The remainder of the chapter proves Theorem 13. To do so, in Section 9.4.1, we state
and prove some lemmas which show that the structure of any near optimal solution must
take a certain form; it must choose facilities to open so that, for most open facilities, the
region of the plane which is closer to that facility than any other is approximately a square
of a certain size and is approximately centered on the facility. Lemma 14 from Section 9.4.1
is a quantitative version of this. Roughly, it says that if there are εn facilities opened which
violate these conditions then the solution will be a 1 + δ factor away from optimal.

To complete the proof of Theorem 13, in Section 9.4.2 we show that the approximation
algorithms from Section 9.2 open too many facilities which do not meet the requirements
for a close to optimal solution.

9.2 Approximation Algorithms

The approximation algorithms we consider are all similar. We first recall Algorithm 1 of
[153] (which is most convenient for us in its restated form).

Approximation Algorithm 1

(a) The algorithm starts at time 0. Initially, each city is defined to be unconnected. The
set of unconnected cities is denoted by U . All facilities are considered to be unopened
and δi = 0 for i ∈ C, the set of cities.

(b) While U �= ∅, increase the time and simultaneously for every city j ∈ U increase the
parameter δi at the same rate, until one of the following events occurs:

1. For some unconnected city i, and some open facility j, δi = d(i, j). In this case,
connect city i to facility j and remove j from U .

2. For some unopened facility j,
∑

i∈U max{0, δi − d(i, j)} = fj. In this case open
this facility and for every unconnected city with δi ≥ d(i, j), connect i to j and
remove it from U .

Now we recall Algorithm 2 of [153], which is very similar to Algorithm 1, but allows
connected cities to contribute funds towards opening additional facilities.

Approximation Algorithm 2

(a) The algorithm starts at time 0. Initially, each city is defined to be unconnected. The
set of unconnected cities is denoted by U . All facilities are considered to be unopened
and δi = 0 for i ∈ C, the set of cities. We denote by π the mapping from connected
cities to open facilities.

(b) While U �= ∅, increase the time and simultaneously for every city j ∈ U increase the
parameter δi at the same rate, until one of the following events occurs:

1. For some unconnected city i, and some open facility j, δi = d(i, j). In this case,
connect city i to facility j and remove j from U .

9.2. Approximation Algorithms 95

2. For some unopened facility j, we have∑
i∈U

max{0, δi − d(i, j)} +
∑
i�∈U

max{0, ci,j − ci,π(i)} = fj.

In this case open this facility and for every unconnected city with δi ≥ d(i, j),
connect i to j and remove it from U , and for every connected city with ci,j < ci,π(i)

change the facility to which i connects from π(i) to j.

Now, we recall Algorithm 3, which appears in [189] and currently has the best proven
bound on worst-case approximation ratio.

Approximation Algorithm 3

(a) In the first phase, the algorithm scales up the opening costs of all facilities by a constant
δ = 1.504, and uses Algorithm 2 to find a solution to the problem with these new
costs.

(b) In the second phase, the algorithm considers the unmodified costs and performs a
greedy augmentation to the solution found in phase 1. Let C denote the total con-
nection cost in the phase 1 solution. For each unopened facility j, let Cj denote the
total connection cost when j is also opened. If the maximum over unopened facilities
of the ratio (C − Cj − fj)/fj is positive, then open the facility that maximizes this
ratio.

Finally, we describe the plane partitioning heuristic, which is not guaranteed to produce
a solution within any constant factor. Figure 9.1 provides a visual reference.

Trivial Heuristic

(a) We partition the square into an m × m grid Γ of subsquares Sp,q, 1 ≤ p, q ≤ m of
side length α, and then open the facility Fp,q closest to the center of each subsquare,

assuming that there is one within distance α/ω =
(

log n
n

)1/2
of its center.

(b) If any subsquare Sp,q has no facility within distance α/ω of its center, then open each
Xi in Sp,q as a facility.

The Trivial Heuristic pays little attention to the structure of the instance, but, as we will
prove in Section 9.3, it produces a solution which is asymptotically optimal whp. In fact,
in some sense, it is because it does not pay attention to the instance that it out-performs the
approximation algorithms. All of the greedy algorithms are distracted by local deviations
in city density, and (at least at first) they will open facilities at what amount to random
points in the plane. This results in non-uniform coverage and requires some unlucky cities
to suffer excessive connection costs.

96 Chapter 9. Facility Location

 .
 .

.

.

.

α

α

α/ω

α/ω

S_1.2

S_1,m S_m,m

S_m,1

S_3,3 F_3,3

. . .

.

Figure 9.1: A schematic representation of the asymptotically optimal solution.

9.3 An asymptotically optimal solution

In this section, we prove that the solution found by the Trivial Heuristic is asymptotically
optimal. To do so, we obtain an upper bound on the cost of this solution and a matching
lower bound on the dual of the LP-relaxation.

Let HEU denote the total cost of the solution found by the Trivial Heuristic.
An intuition which explains the near optimality of this solution is that the cities and

facilities are roughly uniformly distributed in the square, so the advantage of using the
special structure of the instance is negligible.

To make this intuition rigorous, in the following 2 subsections, we obtain an upper
bound on HEU which holds whp, and a lower bound on OPT which also holds whp and
asymptotically matches the upper bound on HEU . But first we state and prove 2 lemmas
that will aid in our analysis.

9.3.1 Some simple lemmas

The following 2 lemmas will help us in analyzing the heuristic and the dual lower bound.

Lemma 10 Let A1, . . . , Ak be subsets of [0, 1]2 each of area a, let X be a set of n random
points distributed uniformly and independently in [0, 1]2, and let λ be a positive real with

9.3. An asymptotically optimal solution 97

λ ≤ 1/3. Then

P[∃i : Ai ∩ X = ∅] ≤ k · e−an (9.1)

P[∃i : |Ai ∩ X| �∈ (1 ± λ)an] ≤ k · 2e−λ2an/3 (9.2)

Proof (9.1) follows because the probability that a single point avoids Ai is 1 − a
and 1 − x ≤ e−x and the union bound.

(9.2) follows from Chernoff’s bound and the union bound. �

Lemma 11 Let t be a positive real, let F1, . . . , Fk be points in [t, 1 − t]2, let X be a set of
n random points distributed uniformly and independently in [0, 1]2, and let λ be a positive
real with λ ≤ 1/6. For i = 1, . . . , k, let Zi =

∑
X∈X

d(X,Fi)≤t

d(X,Fi). Then

E[Zi] =
n(2t)3

3
(9.3)

P

[
∃i : Zi �∈ (1 ± λ)

n(2t)3

3

]
≤ k · 4e−λ2(2t)2n/12. (9.4)

Proof We begin by considering the contribution of a particular point X to Zi.
Conditioning on d(X,Fi) ≤ t, the expected distance is

E[d(X,Fi) | d(X,Fi) ≤ t] = t−2

∫ t

u=0
u · 2u du =

2t
3
.

We define Ni to be the number of points within distance t of Fi,

Ni = |{X ∈ X : d(X,Fi) ≤ t}|.

It follows from the linearity of expectations that

E[Zi | Ni] = Ni
2t
3
.

And, since E[Ni] = (2t)2n, we have established (9.3),

E[Zi] =
(
(2t)2n

) 2t
3
.

Conditioning on Ni, Zi is a sum of Ni independent random variables in the range [0, t].
So Hoeffding’s inequality gives

P

[
Zi �∈ (1 ± λ)Ni

2t
3

∣∣∣∣ Ni

]
≤ 2e−2(λNi2t/3)2/(Nit

2)

= 2e−8λ2Ni/9.

98 Chapter 9. Facility Location

Now, we apply Lemma 10 with Ai = {X : d(X,Fi) ≤ t} and (9.2) shows that the
probability that some Ni does not contain (1 ± λ)(2t)2n points is at most k · 2e−λ2(2t)2n/3.
Combining this with the conditional upper bound on the large deviation probability of Zi

and the union bound gives

P

[
∃i : Zi �∈ (1 ± λ)

(
(1 ± λ)(2t)2n

) 2t
3

]
≤ k · 2e−λ2(2t)2n/3 + k · 2e−8λ2(1−λ)(2t)2n/9.

Since λ ≤ 1/3, this simplifies to

P
[∃i : Zi �∈ (1 ± λ)(2t)3n/3

] ≤ 4ke−λ2(2t)2n/3.

�

9.3.2 An upper bound on HEU

To achieve this goal, we define several events and random variables and bound probabilities
related to them.

Let F̂p,q be the point in the center of subsquare Sp,q.

We begin by showing that in each subsquare, there is likely to be a facility within distance
α/ω of F̂p,q that we will open. To do this, we apply Lemma 10 with k = m2 and Apm+q equal
to the square within distance α/ω of F̂p,q. Then, since area(Apm+q) = (2α/ω)2 = 4 log n

n ,
(9.1) shows that

P[∃p, q : Apm+q ∩ X = ∅] ≤ m2 · e−4 log n = o(n−3). (9.5)

Now we bound the transportation costs. We define a mapping π so that for each Xi

with Xi ∈ Sp,q and Fp,q = Xj we have π(i) = j to indicate that facility j services city i. In
the unlikely event that Apm+q is empty, we open all the facilities in Sp,q and set π(i) = i
for each of them, which results in transportation cost 0.

Note that, since Fp,q is within α/ω of F̂p,q, we have∑
Xi∈X

d(Xi,Xπ(i)) ≤
∑

Xi∈X
d(Xi, Fp,q) + nα/ω. (9.6)

We apply Lemma 11 with t = α/2, k = m2, Fpm+q = F̂p,q, and λ = ω−1. Then (9.3)
and (9.6) together imply that

E

[∑
Xi∈X

d(Xi,Xπ(i))
]
≤ m2nα

3

3
+ nα/ω

9.3. An asymptotically optimal solution 99

and (9.4) and (9.6) imply that

P

[∑
Xi∈X

d(Xi,Xπ(i)) ≥ m2 · (1 + 4ω−1)
nα3

3
+
nα

ω

]

≤ m2 · 4e−16ω−2α2n/12

= 4m2e−4 log n/3.

Since there are m2 facilities opened with probability at least 1 − n−3, and there are at
most n facilities opened in even the most pathological point set, we may the bound expected
total cost of the solution by

E[HEU] =
nα

3
+ nα/ω +m2f + nfn−3 =

1
2
αn(1 + o(1)).

Finally, we observe that the probability that HEU exceeds this bound tends to 0; the
transportation cost is at most nα

3 (1+O(ω−1)) with probability 1− o(1) and the probability
that more than m2 facilities open is o(1). So we conclude that

HEU ≤ nα

2
(1 + o(1)) whp. (9.7)

9.3.3 Lower bound on OPT

To show this solution is asymptotically optimal, we will construct a solution to the dual of
the strong LP relaxation:

(LP-RELAX)

min
n∑

j=1
fyj +

n∑
i=1

n∑
j=1

d(Xi,Xj)xi,j

subj. to
n∑

j=1
xi,j = 1 1 ≤ i ≤ n

0 ≤ xi,j ≤ yj 1 ≤ i, j ≤ n.

(DUAL)

max
n∑

i=1
ui

subj. to
n∑

i=1
vi,j ≤ f 1 ≤ j ≤ n

−vi,j + ui ≤ d(Xi,Xj) 1 ≤ i, j ≤ n
vi,j ≥ 0 1 ≤ i, j ≤ n.

100 Chapter 9. Facility Location

We get a good solution to DUAL as follows:

ui =

{
α
2 (1 − 3ω−1) Xi ∈ [α, 1 − α]2.
0 otherwise.

vi,j = max {ui − d(Xi,Xj), 0} .

The fact that this solution is feasible whp follows from Lemma 10 and Lemma 11. We take
t = α

2 (1 − 3ω−1), k = n, Fi = Xi, and λ = 4ω−1. Then (9.4) shows that

P
[∃i : Zi ≤ (1 − 4ω−1)n(α(1 − 3ω−1))3/3

]
≤ n · 4e−16ω−2(α(1−3ω−1))2n/12

= 4ne−16(1−3ω−1)2 log n/12

= o(1).

Taking Ai to be the α
(
1 − 3ω−1

)× α
(
1 − 3ω−1

)
square centered at Xi, (9.2) shows that

P[∃i : |Ai ∩ X| ≥ (1 + 4ω−1)(1 − 3ω−1)2α2n]

≤ n · 2e−16ω−2(1−3ω−1)2
α2n/3

= 2ne−16(1−3ω−1)2
log n/3

= o(1).

So whp for all j we have

n∑
i=1

vi,j =
∑

Xi∈X
max

{α
2
(
1 − 3ω−1

)− d(Xi,Xj), 0
}

<
nα3

6
= f.

Since the objective value of this solution asymptotically matches that of (9.7), we con-
clude that our “heuristic” is asymptotically optimal.

9.4 Proof of Main Theorem

To prove Theorem 13, in Section 9.4.1 we state and prove some lemmas which show that the
structure of any near optimal solution must take a certain form. In particular, the solution
must choose facilities to open so that, for most open facilities, the region of the plane which
is closer to that facility than any other (the Voronoi cell) is approximately a square of a
certain size and is approximately centered on the facility. Lemma 14 from Section 9.4.1
gives a quantitative version of this fact: it says roughly that if there are εn facilities opened
which violate the conditions then the solution will be a 1 + δ factor away from optimal.

To complete the proof of Theorem 13, in Section 9.4.2 we show that the approximation

9.4. Proof of Main Theorem 101

algorithms from Section 9.2 open too many facilities which do not meet the requirements
given in Lemma 14 for a close to optimal solution whp.

9.4.1 Properties of close-to-optimal solutions

Refining Γ to super-grid Γ1

Now let m1 = �ω1/2�m and let Γ1 be the m1 ×m1 super-grid of Γ where each subsquare
has side α1 = m−1

1 . If we fix a subsquare S of Γ1 then the number of points νS of X which
fall in S is distributed as Bi(n, α2

1). Thus E(νS) = α2
1n = ω log n(1 + o(1)). It follows from

Lemma 10, part (2) that

P

[
∃S ∈ Γ1 : νS �∈ (1 ± ω−1/3)α2

1n
]

≤ m2
1 · 2e−ω−2/3α2

1n/3

< n · 2e−ω1/3 log n/3

We use the term quite surely (qs) to describe a sequence of events which occurs with
probability exceeding 1 −O(n−k) for any constant k. In this notation, we may say that

|νS − α2
1n| ≤ ω2/3 log n, ∀S ∈ Γ1, qs. (9.8)

An assignment which respects super-grid Γ1

For a set of facilities F and an assignment of cities to facilities φ : X → F we let

κ(F , φ) = f |F| +
∑
X∈X

d(X,φ(X)).

The assignment which maps points to their closest facility in F will be denoted φ�
F so that

c(F) = κ(F , φ�
F).

Consider a particular facility set F = {F1, F2, . . . , Fk} ⊆ X . For each Fi let Vi be the
Voronoi cell associated with Fi, which is to say Vi is the set of points in [0, 1]2 which are at
least as close (in �∞ norm) to Fi as to any other member of F .

We say an assignment φ respects Γ1 if all the cities in a common subsquare of Γ1 are
assigned to the same facility by φ.

The next lemma says that there is an assignment which respects Γ1 and is not much
worse than φ�

F .

Lemma 12 There exists an assignment φ̃F that respects Γ1 and has

|κ(F , φ̃F)| − κ(F , φ�
F)| ≤ 2α1n.

Proof The proof of the lemma is a shifting argument. For any assignment φ, if there
exists some S ∈ Γ1 and i ∈ [k] such that Vi∩S∩X �= ∅ and S\Vi �= ∅ then we make a slightly

102 Chapter 9. Facility Location

different assignment φ̃ which assigns all cities in S to the same facility. Let i be the smallest
index in [k] such that cities in S are assigned to Fi. Then we re-assign all Xj ∈ S \ Vi to
facility Fi. We claim that this adds at most 2α1 in transportation cost for each city. Indeed,
suppose that Xj ∈ S ∩ Vi′ for i′ �= i. Then d(Xj , Fi) ≤ d(Xj ,X) + d(X,Fi). If X ∈ Vi ∩ S,
then we also have that d(X,Fi) ≤ d(X,Xj) + d(Xj , Fi′), since X is in Vi and not Vj . So
d(Xj , Fi) ≤ d(Xj , Fi′) + 2d(X,Xj). Since X and Xj are both in S, d(X,Xj) ≤ α1.

By starting with φ�
F and repeating this shifting we eventually arrive with an assignment

φ̃F (since assignments to cities in each cell are adjusted at most once). This assignment
respects Γ1 by construction, and (again because each city is reassigned at most once) we
have

κ(F , φ̃F) ≤ κ(F , φ�
F) + 2α1n. (9.9)

�

The likely cost per facility under φ̃F

For Fi ∈ F , let the Ṽi be the union of the subsquares in Γ1 which contain cities which are
mapped to Fi by φ̃F (we think of Ṽi as the “quantized Voronoi cell” of Fi). Let ηi denote
the number of subsquares in Ṽi. Let Xi = X ∩ Ṽi and let

ci =
∑

X∈Xi

d(X,Fi).

Note that, because of the way φ̃F was constructed, for any Γ1-subsquare S, if S ⊆ Vi

then S ⊆ Ṽi.
We say that Ṽi is an ε-quasi-square if there exists a square S centered at Fi such that

max{area(S \ Ṽi), area(Ṽi \ S)} ≤ ε area(Ṽi).

Lemma 13 Assume that (9.8) holds. Assume that ε� α1. Then whp the following hold
for all i

(i) ci ≥ 1
3n(1 − ω−1/3) area(Ṽi)3/2.

(ii) If Ṽi is not an ε-quasi-square then ci ≥ 1+ε2/4
3 n(1 − ω−1/3) area(Ṽi)3/2.

Proof In light of (9.8), this lemma reduces to a pair of geometric facts about collections
of squares. However, it is convenient for us to prove the facts via linear programming.

We begin by establishing part (i) of the lemma. Fix i. For every j define Uj = {S ∈
Γ1 : S ⊆ Ṽi and jα1 ≤ d(S,Fi) < (j + 1)α1}. We have |Uj | ≤ 8j + 4. Let k be such that
Uj = ∅ for every j > k. Such k exists because Ṽi is compact. By counting the number of
Γ1-squares in Ṽi we get

k∑
j=0

|Uj | = ηi = area(Ṽi)/α2
1.

9.4. Proof of Main Theorem 103

Now,

ci =
∑

X∈Xi

d(X,Fi)

=
∑

S∈Γ1:S⊆Ṽi

∑
X∈S

d(X,Fi)

≥
∑
S⊆Ṽi

νSd(Fi, S)

≥ (α2
1n− ω2/3 log n)

∑
S⊆Ṽi

d(Fi, S)

= (α2
1n− ω2/3 log n)

k∑
j=0

∑
S∈Uj

d(Fi, S)

≥ (α2
1n− ω2/3 log n)α1

k∑
j=0

j|Uj |

As we want a lower bound for ci we consider the primal-dual pair

(P.i)

min
k∑

j=0
jxj

subj to xj ≤ 8j + 4 j = 0, 1, . . . , k
k∑

j=0
xj = ηi

xj ≥ 0 j = 0, 1, . . . , k

(D.i)

max ηiz −
k∑

j=0
(8j + 4)yj

subj. to z − yj ≤ j j = 0, 1, . . . , k
yj ≥ 0 j = 0, 1, . . . , k

A feasible solution for D.i is to take z = η
1/2
i /2 and yj = max(η1/2

i /2−j, 0), j = 0, . . . , k
with dual value ≥ η

3/2
i /3, and then

∑k
j=0 j|Uj | ≥ η

3/2
i /3 = area(Vi)3/2/3α3

1.

(The expression
∑�

j=0(8j+4)(A− j) = 4A(�+1)2−(8
3�

3 + 6�2 + 4
3�
)

will no doubt help
the reader to verify the above claim.)

Now we show that part (ii) of the lemma holds. We introduce extra constraints in the
linear program above in order to enforce the condition that Ṽi is not an ε-quasi-square.
For this, assume that Ṽi is not an ε-quasi-square, let � = �η1/2

i /2� and let S be the square
of side 2�α1 centered a Fi. Then area(Ṽi) ≥ area(S) ≥ (1 − ε) area(Ṽi) and therefore
area(S ∩ Ṽi) < (1− ε) area(Ṽi), otherwise area(Ṽi \S) = area(Ṽi)− area(Ṽi ∩S) ≤ ε area(Ṽi)

104 Chapter 9. Facility Location

and area(S \ Ṽi) = area(S)−area(S∩ Ṽi) ≤ ε area(Ṽi). Then
∑�

j=0 |Uj| = area(S∩ Ṽ1)/α2
1 ≤

(1 − ε) area(Ṽi)/α2
1 = (1 − ε)ηi, so we consider the primal-dual pair

(P.ii)

min
k∑

j=0
jxj

subj to xj ≤ 8j + 4 j = 0, 1, . . . , k
k∑

j=0
xj = ηi

�∑
j=0

xj ≤ (1 − ε)ηi

xj ≥ 0 j = 0, 1, . . . , k

(D.ii)

max ηiz − (1 − ε)ηiz1 −
k∑

j=0
(8j + 4)yj

subj to z − z1 − yj ≤ j j = 0, 1, . . . , �
z − yj ≤ j j = �+ 1, . . . , k

z1 ≥ 0
yj ≥ 0 j = 0, 1, . . . , k

A feasible solution for D.ii is z = (1 + ε)η1/2
i /2, z1 = εη

1/2
i /2, yj = (1 − ε/2)η1/2

i /2 − j,
j = 0, . . . , � and yj = max((1 + ε/2)η1/2

i /2 − j, 0), j = � + 1, . . . , k with dual value ≥
(1 + ε2/4)η3/2

i /3, and then
∑k

j=0 j|Uj | ≥ (1 + ε2/4)η3/2
i /3 ≥ (1 + ε2/4) area(Vi)3/2/3α3

1. �

The structure of any near optimal solution

We continue by proving a property of any near optimal solution to the UFLP.

Lemma 14 Assume that (9.8) holds. Let ε be a sufficiently small constant, and let F ⊆ X
with κ(F , φ�

F) ≤ (1 + ε)αn/2. Then for ε1 = 5ε1/2,

(a) |F| ∈ [(1 − ε1)m2, (1 + ε1)m2].

(b) Suppose that θ1 = 2ε1/3 and θ2 = 4ε1/3 and ε0 = 3ε1/3. Then at least (1 − 2θ2)m2

of the points Fi ∈ F are such that Ṽi is an ε0-quasi-square of area in the range
[(1 − θ1)α2, (1 + θ1)α2].

Proof Let F = {F1, F2, . . . , Fk} and let ai = |Ṽi| for 1 ≤ i ≤ k. Let J = {j :
Ṽj is not a ε0-quasi-square}. Applying Lemma 13 and equation (9.9) we see that

κ(F , φ�
F) ≥ kf +

1 − ω−1/3

3
n

⎛
⎝ k∑

i=1

a
3/2
i +

ε20
12

∑
j∈J

a
3/2
j

⎞
⎠− 2α1n. (9.10)

9.4. Proof of Main Theorem 105

Now let aj = 1+xj

k , where −1 ≤ xj and
∑k

j=1 xj = 0.

By examining the power series for (1+x)3/2 when |x| ≤ 1 and using elementary calculus
for x > 1 we see that

(1 + x)3/2 ≥ 1 +
3
2
x+ min

{
1,

1
4
x2

}
x ≥ −1. (9.11)

It follows from (9.10) that

κ(F , φ�
F) ≥

kf +

(
1 − ω−1/3

3
n

)
×
⎛
⎝k−1/2 + k−3/2

k∑
i=1

min
{

1,
1
4
x2

i

}
+
ε20
12

∑
j∈J

a
3/2
j

⎞
⎠− 2α1n (9.12)

Now, let k = (1 + θ)α−2 for some θ ≥ −1 and assume wlog that |θ| � ω−1/6. Notice
that from (9.10) that we can assume θ < 3, otherwise kf ≥ 4

6αn. If θ ∈ [−1, 3] then
1

(1+θ)1/2 ≥ 1 − 1
2θ + 1

16θ
2, and we get

kf +
1 − ω−1/3

3
nk−1/2 − 2α1n ≥
(1 + θ)

6
αn+

(1 − ω−1/3)
3

αn

(
1 − 1

2
θ +

1
16
θ2

)
− 2α1n ≥

αn

2

(
1 +

θ2

25

)
. (9.13)

And using (9.12) we get

κ(F , φ�
F) ≥ αn

2

(
1 +

θ2

25

)
+
n

4

⎛
⎝k−3/2

k∑
i=1

min
{

1,
1
4
x2

i

}
+
ε20
12

∑
j∈J

a
3/2
j

⎞
⎠ . (9.14)

Part (a) follows from (9.14): (1 + ε)αn/2 ≥ κ(F , φ�
F) ≥ αn

2

(
1 + θ2

25

)
and so |θ| ≤ ε1/2/5.

Using (9.14) again we get

κ(F , φ�
F) ≥ 1

2
αn+

n

4k3/2

k∑
j=1

min
{

1,
1
4
x2

j

}
,

106 Chapter 9. Facility Location

So if B = {j : |xj| ≥ θ1} and |B| ≥ βk for θ1, β ≤ 1, we have κ(F , φ�
F) ≥ 1

2αn+ θ2
1β

16(1+ε1)1/2αn.

Setting θ1 = 2ε1/3 we get β ≤ θ2 = 4ε1/3. Returning once again to (9.14) we write

κ(F , φ�
F) ≥ 1

2
αn +

ε20
48
n
∑
j∈J

a
3/2
j

≥ 1
2
αn +

3ε2/3

16
n(|J | − θ2k)

(
1 − θ1
k

)3/2

.

Thus, if |J | ≥ 2θ2m2 then

κ(F , φ�
F) ≥ 1

2
αn +

3ε2/3

16
nθ2(2m2 − k)

(
1 − θ1
k

)3/2

≥ 1
2
αn +

12
16
εn(1 − ε1)m2

(
1 − 2ε1/3

(1 + ε1)m2

)3/2

≥ 1
2
αn +

11
16
εαn.

�

9.4.2 Properties of Solutions Found by Greedy Approximation Algo-
rithms

The goal of this section is to use the characterization of close-to-optimal solutions obtained
in Section 9.4.1 to show that the greedy approximation algorithms described in Section
9.2 find solutions which are not asymptotically optimal. This is achieved by considering
the behavior of the algorithm on a 14α× 7α rectangular subregion of the unit square, and
showing that, with constant probability, this region contains a facility for which the Vornoi
region is not ε-quasi-square.

The intuition which motivates this approach is this: the candidate facilities which open
in the subregion will do so at random locations, thus there is no reason to expect these
random locations to result in nice Vornoi cells. Making this intuitive explaination rigorous
requires some work because of the complicated dependencies between which facilities are
opened. For example, all the approximation algorithms track a level of “funding” available
for opening a candidate facility (in Approximation Algorithm 1, the funds for city j are∑

i∈U max{0, δi − d(i, j)}, and in Approximation Algorithm 2 and 3, the funds are at least
this much.) The funds available to a facility at time t is a difficult random variable to deal
with, and we must work around this difficulty.

Let pf(X, t) denote the potential funds at point X at time t, given by

pf(X, t) =
∑
i∈C

max{0, t− d(Xi,X)}.

This is the level of funding available to open a facility at X if no other facilities have already

9.4. Proof of Main Theorem 107

opened within distance 2t of X.
Let T (X) = min{min{t : pf(X, t) = f}, α} be the earliest opening time of point X

(which is truncated at time α, because we want T (X) to only depend on the position of
nearby points).

We note that E(pf(X,α)) = f and pf(X,α) is the sum of n independent bounded
random variables and so the Central Limit Theorem implies that

P(pf(X,α) ≥ f) =
1
2
− o(1). (9.15)

Consider concentric squares, S1, S2, . . . , where Si is an iα × iα square (see Figure 9.2
for visual reference). Some facility X� in S5 has the minimum value of T (X) among all
facilities in S5, and which one it is only depends on the configuration of points in S7.

Note that if X� is in S1, (and T (X�) < α) then (in all 3 of the greedy approximation
algorithms) X� actually opens at time T (X�), because no cities within distance α of S1

are connected (because no facilities within 2α of S1 are open; in other words, no facilities
besides X� are open in S5.) Since nothing within α of X� is connected,∑

i∈U

max{0, δi − d(Xi,X
�)} =

∑
i∈C

max{0, T (X�) − d(Xi,X
�)}.

We will partition S7 into subsquares of size α/4, and obtain a constant lower bound
on the probability X� appears in one of these subsquares that is contained in S1. For
(p, q) ∈ [4]2, let Qp,q, denote such a subsquare (with side length α/4 that is contained in
S1). Figure 9.2 provides a visual reference.

α/4

Q3,1

Q4,3

α

5α

7α

S1

S5

S7

2α
X�

Figure 9.2: Concentric squares S1, S5, and S7.

Lemma 15 Let X� be the facility in S5 which minimizes T (X) over X ∈ X ∩ S5. There

108 Chapter 9. Facility Location

exists an absolute constant γ0 such that for any (p, q) ∈ [4]2,

P[X� ∈ Qp,q and pf(X�, α) ≥ f] ≥ γ0.

Proof We write A�
p,q = {X� ∈ Qp,q} and B� = {pf(X�, α) ≥ f}. We then consider

the analogous question for X ′ = X ∩ S7, where the edges of S7 have been identified to
“wrap-around”, making the distance function

dW ((x1, y1), (x2, y2)) = max{min{|x1 − x2|, 7α − |x1 − x2|},min{|y1 − y2|, 7α − |y1 − y2|}}.

(This makes the space a torus topologically.) In this case, some α/4 ×α/4 subsquare of S7

contains the facility X� which minimizes T (X) and, by symmetry, each subsquare is equally
likely to contain it. So the probability that X� is in Qp,q is the same as the probability that
it is in any of the (7 · 4)2 subsquares, which is exactly 1/(7 · 4)2. Using P

′ for this model
and double �’s to distinguish the S7 case from the S5 case, we have

P
′(B��) =

∑
(a,b)∈[7·4]2

P
′(B� ∧ A��

a,b) = (7 · 4)2P
′(B�� ∧A��

p,q),

giving

P
′(B�� ∧A��

p,q) ≥ 1
3(7 · 4)2

.

Now, we remove the wrap-around on S7 but continue to ignore all the points of X that
lie outside S7 (i.e. consider the potential funds for point set X ′ = X ∩ S7 under the �∞
distance). This change can only affect T (X) for a point X which lies within distance α
of the boundary of S7, and for such an X, the change can only makes T (X) larger than
it was in the case with wrap-around. So every X which yielded B�� and X�� in Qp,q with
the wrap-around distance will have B� and the same X� in this case. So the probability
that B� occurs and Qp,q contains the point which opens first when X ′ = X ∩ S7 is at least
(7 · 4)−2/3.

Finally, we return to the original set X , and note that considering the contributions
of points outside of S7 to the potential funds does not affect T (X) for any X in S5. So
the probability that Qp,q contains the point which opens first in S5 with respect to X is at
least the probability that Qp,q contains the point which opens first in S7 with respect to
X ′ = X ∩ S7. The previous paragraph showed that this is at least (7 · 4)−2/3. �

Now consider 2 side-by-side copies of S7, as shown in Figure 9.3. Let B1 be the event
that, in the left copy of S7, the facility XL which minimizes T (X) in SL

5 is in QL
q,1 for some q.

Let B2 be the event that, in the right copy of S7, the facility XR which minimizes T (X) in SR
5

is in QR
q′,3 for some q′. Because QL

q,1 and QR
q′,3 are sufficiently far apart, P[B1 | B2] = P[B1],

and so P[B1B2] ≥ γ2
0 .

Suppose now that B1 and B2 occur. Let Σ be the (1 + ε)α× 8α strip containing SL
1 and

SR
1 (so that SL

1 , S
R
1 are located symmetrically at distance εα/2 from the horizontal borders

of Σ, as depicted in Figure 9.3.) Here ε is some sufficiently small positive constant. Let I
be the index set of those open facilities whose quantized Voronoi cells Ṽi meet the strip Σ.

9.4. Proof of Main Theorem 109

Σ

XL

XR

SRight
7SLeft

7

Figure 9.3: Two side-by-side copies of S7

Lemma 16 Whp there must be some facility i ∈ I for which Ṽi is not ε3-quasi-square with
area in (1 ± ε3)α2.

Proof Assume for the sake of contradiction that this is not the case. Each such Voronoi
region Ṽi can therefore be associated with a square Wi of side in the range (1 ± ε3)α.
Furthermore, any two such squares have a common area of at most ε3α2. Whp there is
no open facility j at distance 2α or more from Σ for which the quantized Voronoi region
Ṽj intersects Σ (every point in X ∩ Σ is connected to a closer open facility). Thus |I| ≤
8(5+ε)
1−ε/2 < 50. It follows that all but an area of at most 50ε3α2 of Σ is covered by the Wi,
for i ∈ I. Now let Σ1 denote a strip of length 8α and thickness εα/4 running across the
middle of Σ. Any sub-strip of Σ1 which is of length εα is of area ε2α2/4 and so will contain
members of X which are covered by some Wi, i ∈ I.

If the center of this Wi is outside Σ then Wi has side at least (1+ε/4)α, which contradicts
our assumption. So let J be the set of facilities j with center in Σ for which there is a member
of Σ1 contained in Wj. If any of these facilities is not ε3-quasi-square then we are done, so
we may assume that they all are. There is an open facility in SL

q,1 and in SR
q′,3, and these

facilities cover squares of side at least α. Thus the other members of J appear in a substrip
with length between 7.25α and 7.75α. If there are 6 or fewer open facilities in this the strip
bounding the 2 copies, then some pair of facilities are at least 1.04α apart. Therefore, one
of them, call it Fi has a Wi with side at least (1.04 − 100ε3)α, contradiction. On the other
hand, if there are 7 or more facilities in the strip, then some pair are at most .96α apart,
and so some Fi has a Wi with side at most (.96 + 2ε3

.48)α, contradiction. �

Since the event B1B2 occurs independently in sufficiently separated disjoint regions of

110 Chapter 9. Facility Location

the square (modulo there being enough points in the cell), whp we will have Ω(m2) facilities
for which Ṽi is not an ε3-quasi-square with area (1 ± ε3)α. So Lemma 14 finishes the proof
of the theorem. �

Bibliography

[1] Achlioptas, D. Setting 2 variables at a time yields a new lower bound for ran-
dom 3-SAT (extended abstract). In Proceedings of the Thiry-Second Annual ACM
Symposium on Theory of Computing (New York, 2000), ACM, pp. 28–37 (electronic).

[2] Achlioptas, D., Chtcherba, A. D., Istrate, G., and Moore, C. The phase
transition in 1-in-k SAT and NAE 3-SAT. In Proceedings of the 12th Annual ACM-
SIAM Symposium on Discrete Algorithms (2001), pp. 721–722.

[3] Achlioptas, D., Kim, J. H., Krivelevich, M., and Tetali, P. Two-coloring
random hypergraphs. Random Structures Algorithms 20, 2 (2002), 249–259.

[4] Achlioptas, D., and Moore, C. On the 2-colorability of random hypergraphs.
In Randomization and approximation techniques in computer science, vol. 2483 of
Lecture Notes in Comput. Sci. Springer, Berlin, 2002, pp. 78–90.

[5] Achlioptas, D., and Peres, Y. The threshold for random k-SAT is 2k log 2−O(k).
J. Amer. Math. Soc. 17, 4 (2004), 947–973 (electronic).

[6] Achlioptas, D., and Sorkin, G. B. Optimal myopic algorithms for random 3-
SAT. In 41st Annual Symposium on Foundations of Computer Science (2000), IEEE
Comput. Soc. Press, Los Alamitos, CA, pp. 590–600.

[7] Adamic, L. A., Lukose, R. M., and Huberman, B. A. Local search in unstruc-
tured networks. In Handbook of graphs and networks. Wiley-VCH, Weinheim, 2003,
pp. 295–317.

[8] Ahn, S., Cooper, C., Cornuéjols, G., and Frieze, A. M. Probabilistic analysis
of a relaxation for the k-median problem. Math. Oper. Res. 13, 1 (1988), 1–31.

[9] Aiello, W., Chung, F., and Lu, L. A random graph model for massive graphs. In
Proceedings of the Thiry-Second Annual ACM Symposium on Theory of Computing
(New York, 2000), ACM, pp. 171–180 (electronic).

[10] Albert, R., Jeong, H., and Barabási, A.-L. Diameter of the world wide web.
Nature 401 (1999), 103–131.

[11] Aldous, D. J. Asymptotics in the random assignment problem. Probab. Theory
Related Fields 93, 4 (1992), 507–534.

111

112

[12] Aldous, D. J. The ζ(2) limit in the random assignment problem. Random Structures
Algorithms 18, 4 (2001), 381–418.

[13] Aleliunas, R., Karp, R. M., Lipton, R. J., Lovász, L., and Rackoff, C.

Random walks, universal traversal sequences, and the complexity of maze problems.
In 20th Annual Symposium on Foundations of Computer Science (San Juan, Puerto
Rico, 1979). IEEE, New York, 1979, pp. 218–223.

[14] Alon, N., Gyárfás, A., and Ruszinkó, M. Decreasing the diameter of bounded
degree graphs. J. Graph Theory 35, 3 (2000), 161–172.

[15] Alon, N., and Kahale, N. A spectral technique for coloring random 3-colorable
graphs. SIAM J. Comput. 26, 6 (1997), 1733–1748.

[16] Alon, N., Krivelevich, M., and Sudakov, B. Finding a large hidden clique in
a random graph. Random Structures Algorithms 13, 3-4 (1998), 457–466.

[17] Alon, N., and Spencer, J. H. The probabilistic method, second ed. Wiley-
Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience
[John Wiley & Sons], New York, 2000. With an appendix on the life and work of
Paul Erdős.

[18] Amit, A., Linial, N., and Matoušek, J. Random lifts of graphs: independence
and chromatic number. Random Structures Algorithms 20, 1 (2002), 1–22.

[19] Amit, A., Linial, N., Matoušek, J., and Rozenman, E. Random lifts of graphs.
In Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms
(Washington, DC, 2001) (Philadelphia, PA, 2001), SIAM, pp. 883–894.

[20] Angluin, D., and Valiant, L. G. Fast probabilistic algorithms for hamiltonian cir-
cuits and matchings. In STOC ’77: Proceedings of the ninth annual ACM symposium
on Theory of computing (New York, NY, USA, 1977), ACM Press, pp. 30–41.

[21] Austin, T. L., Fagen, R. E., Penney, W. F., and Riordan, J. The number of
components in random linear graphs. Ann. Math. Statist 30 (1959), 747–754.

[22] Bacon, D., Childs, A. M., and van Dam, W. From optimal measurement to ef-
ficient quantum algorithms for the hidden subgroup problem over semidirect product
groups. In FOCS ’05: Proceedings of the 46th Annual IEEE Symposium on Founda-
tions of Computer Science (Washington, DC, USA, 2005), IEEE Computer Society,
pp. 469–478.

[23] Banderier, C., Beier, R., and Mehlhorn, K. Smoothed analysis of three com-
binatorial problems. In Mathematical foundations of computer science 2003, vol. 2747
of Lecture Notes in Comput. Sci. Springer, Berlin, 2003, pp. 198–207.

[24] Barabási, A.-L. Linked: The New Science of Networks. Cambridge, MA: Perseus
Publishing, 2002.

BIBLIOGRAPHY 113

[25] Barabási, A.-L., and Albert, R. Emergence of scaling in random networks.
Science 286, 5439 (1999), 509–512.

[26] Barahona, F., and Chudak, F. A. Solving large scale uncapacitated facil-
ity location problems. In Approximation and complexity in numerical optimization
(Gainesville, FL, 1999), vol. 42 of Nonconvex Optim. Appl. Kluwer Acad. Publ., Dor-
drecht, 2000, pp. 48–62.

[27] Barbour, A. D., and Reinert, G. Small worlds. Random Structures Algorithms
19, 1 (2001), 54–74.

[28] Barthel, W., Hartmann, A. K., Leone, M., Ricci-Tersenghi, F., Weigt,

M., and Zecchina, R. Hiding solutions in random satisfiability problems: A statis-
tical mechanics approach. Phys. Rev. Lett. 88 (2002), 188701.

[29] Bast, H., Mehlhorn, K., Schäfer, G., and Tamaki, H. Matching algorithms
are fast in sparse random graphs. In STACS 2004, vol. 2996 of Lecture Notes in
Comput. Sci. Springer, Berlin, 2004, pp. 81–92.

[30] Becchetti, L., Leonardi, S., Marchetti-Spaccamela, A., Schäfer, G., and

Vredeveld, T. Average case and smoothed competitive analysis of the multi-level
feedback algorithm. In Proceedings of the 44th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS 2003) (Washington, DC, USA, 2003), IEEE
Computer Society, p. 462.

[31] Beier, R., and Vöcking, B. Random knapsack in expected polynomial time. J.
Comput. System Sci. 69, 3 (2004), 306–329.

[32] Beier, R., and Vöcking, B. Typical properties of winners and losers in discrete
optimization. In Proceedings of the 36th Annual ACM Symposium on Theory of Com-
puting (New York, 2004), ACM, pp. 343–352 (electronic).

[33] Ben-Sasson, E., and Wigderson, A. Short proofs are narrow — resolution made
simple. J. ACM 48, 2 (2001), 149–169.

[34] Berger, N., Bollobás, B., Borgs, C., Chayes, J., and Riordan, O. Degree
distribution of the FKP network model. In Automata, languages and programming,
vol. 2719 of Lecture Notes in Comput. Sci. Springer, Berlin, 2003, pp. 725–738.

[35] Berger, N., Borgs, C., Chayes, J. T., D’Souza, R. M., and Kleinberg, R. D.

Competition-induced preferential attachment. In Automata, languages and program-
ming, vol. 3142 of Lecture Notes in Comput. Sci. Springer, Berlin, 2004, pp. 208–221.

[36] Berger, N., Borgs, C., Chayes, J. T., D’Souza, R. M., and Kleinberg,

R. D. Degree distribution of competition-induced preferential attachment graphs.
Combin. Probab. Comput. 14, 5-6 (2005), 697–721.

114

[37] Birge, J. R., and Louveaux, F. Introduction to stochastic programming. Springer
Series in Operations Research. Springer-Verlag, New York, 1997.

[38] Blum, A., Kalai, A., and Wasserman, H. Noise-tolerant learning, the parity
problem, and the statistical query model. J. ACM 50, 4 (2003), 506–519 (electronic).

[39] Blum, A., and Spencer, J. Coloring random and semi-random k-colorable graphs.
J. Algorithms 19, 2 (1995), 204–234.

[40] Bohman, T., Frieze, A., Krivelevich, M., and Martin, R. Adding random
edges to dense graphs. Random Structures Algorithms 24, 2 (2004), 105–117.

[41] Bohman, T., Frieze, A., and Martin, R. How many random edges make a dense
graph Hamiltonian? Random Structures Algorithms 22, 1 (2003), 33–42.

[42] Bohman, T., and Frieze, A. M. The random 2-out is Hamlitonian. Manuscript
in preparation.

[43] Bollobás, B. A probabilistic proof of an asymptotic formula for the number of
labelled regular graphs. European J. Combin. 1, 4 (1980), 311–316.

[44] Bollobás, B. Martingales, isoperimetric inequalities and random graphs. In Com-
binatorics, A. Hajnal, L. Lovász, and V. T. Sós, Eds., no. 52 in Colloq. Math. Soc.
János Bolyai. North Holland, 1988, pp. 113–139.

[45] Bollobás, B. Modern graph theory, vol. 184 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 1998.

[46] Bollobás, B. Random graphs, vol. 73 of Cambridge Studies in Advanced Mathemat-
ics. Cambridge University Press, Cambridge, 2001.

[47] Bollobás, B., Borgs, C., Chayes, J., and Riordan, O. Directed scale-free
graphs. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (Baltimore, MD, 2003) (New York, 2003), ACM, pp. 132–139.

[48] Bollobás, B., Borgs, C., Chayes, J. T., Kim, J. H., and Wilson, D. B. The
scaling window of the 2-SAT transition. Random Structures Algorithms 18, 3 (2001),
201–256.

[49] Bollobás, B., and Chung, F. R. K. The diameter of a cycle plus a random
matching. SIAM J. Discrete Math. 1, 3 (1988), 328–333.

[50] Bollobás, B., and Frieze, A. M. On matchings and Hamiltonian cycles in random
graphs. In Random graphs ’83 (Poznań, 1983), vol. 118 of North-Holland Math. Stud.
North-Holland, Amsterdam, 1985, pp. 23–46.

[51] Bollobás, B., and Riordan, O. Coupling scale-free and classical random graphs.
Internet Math. 1, 2 (2004), 215–225.

BIBLIOGRAPHY 115

[52] Bollobás, B., and Riordan, O. The diameter of a scale-free random graph.
Combinatorica 24, 1 (2004), 5–34.

[53] Bollobás, B., Riordan, O., Spencer, J., and Tusnády, G. The degree sequence
of a scale-free random graph process. Random Structures Algorithms 18, 3 (2001),
279–290.

[54] Bollobás, B., and Riordan, O. M. Mathematical results on scale-free random
graphs. In Handbook of graphs and networks. Wiley-VCH, Weinheim, 2003, pp. 1–34.

[55] Bollobás, B., and Scott, A. D. Max Cut for random graphs with a planted
partition. Combin. Probab. Comput. 13, 4-5 (2004), 451–474.

[56] Bonato, A. A survey of models of the web graph. In Combinatorial and Algorithmic
Aspects of Networking, First Workshop on Combinatorial and Algorithmic Aspects of
Networking, CAAN 2004, Banff, Alberta, Canada, August 5-7, 2004, Revised Selected
Papers (2004), pp. 159–172.

[57] Boppana, R. B. Eigenvalues and graph bisection: an average-case analysis. In
Proceedings of the 28th Annual IEEE Symposium on Foundations of Computer Science
(1987), pp. 280–285.

[58] Borgs, C., Chayes, J., and Pittel, B. Sharp threshold and scaling window for
the integer partitioning problem. In Proceedings of the Thirty-Third Annual ACM
Symposium on Theory of Computing (New York, 2001), ACM, pp. 330–336 (elec-
tronic).

[59] Borgs, C., Chayes, J. T., Mertens, S., and Pittel, B. Constrained integer
partitions. In LATIN 2004: Theoretical informatics, vol. 2976 of Lecture Notes in
Comput. Sci. Springer, Berlin, 2004, pp. 59–68.

[60] Boucheron, S., Lugosi, G., and Massart, P. Concentration inequalities using
the entropy method. Ann. Probab. 31, 3 (2003), 1583–1614.

[61] Broder, A., Frieze, A., and Upfal, E. On the satisfiability and maximum
satisfiability of random 3-cnf formulas. In Proceedings of the 4th Annual ACM-SIAM
Symposium on Discrete Algorithms (1993), pp. 322–330.

[62] Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S.,

Stata, R., Tomkins, A., and Wiener, J. Graph structure in the Web. Comput.
Networks 33, 1-6 (2000), 309–320.

[63] Buckley, P. G., and Osthus, D. Popularity based random graph models leading
to a scale-free degree sequence. Discrete Math. 282, 1-3 (2004), 53–68.

[64] Burgin, K., Chebolu, P., Cooper, C., and Frieze, A. M. Hamiltoniam cycles
in random lifts of graphs. manuscript submitted for publication, 2006.

116

[65] Cannings, C., and Penman, D. B. Models of random graphs and their applications.
In Stochastic processes: modelling and simulation, vol. 21 of Handbook of Statist.
North-Holland, Amsterdam, 2003, pp. 51–91.

[66] Carlson, J. M., and Doyle, J. C. Highly optimized tolerance: Robustness and
design in complex systems. Physics Review Letters 84, 11 (2000), 2529–2532.

[67] Carson, T., and Impagliazzo, R. Hill-climbing finds random planted bisections.
In Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms
(Washington, DC, 2001) (Philadelphia, PA, 2001), SIAM, pp. 903–909.

[68] Chaimovich, M. New algorithm for dense subset-sum problem. Astérisque, 258
(1999), xvi, 363–373. Structure theory of set addition.

[69] Chaimovich, M., Freiman, G., and Galil, Z. Solving dense subset-sum problems
by using analytical number theory. J. Complexity 5, 3 (1989), 271–282.

[70] Chao, M., and Franco, J. Probabilistic analysis of 2 heuristics for the 3-
satisfiability problem. SIAM Journal of Computing 15 (1986), 1106–1118.

[71] Chao, M., and Franco, J. Probabilistic analysis of a generalization of the unit-
clause literal selection heuristic for the k satisfiability problem. Information Science
(1990), 289–314.

[72] Charikar, M., and Guha, S. Improved combinatorial algorithms for facility loca-
tion problems. SIAM J. Comput. 34, 4 (2005), 803–824 (electronic).

[73] Cheeseman, P., Kanefsky, B., and Taylor, W. M. Where the Really Hard
Problems Are. In Proceedings of the Twelfth International Joint Conference on Arti-
ficial Intelligence, IJCAI-91, Sidney, Australia (1991), pp. 331–337.

[74] Chen, H., and Frieze, A. M. Coloring bipartite hypergraphs. In Proc. 5th IPCO
(1996), pp. 345–358.

[75] Chudak, F. A., and Shmoys, D. B. Improved approximation algorithms for the
uncapacitated facility location problem. SIAM J. Comput. 33, 1 (2003), 1–25 (elec-
tronic).

[76] Chung, F., and Lu, L. Coupling online and offline analyses for random power law
graphs. Internet Math. 1, 4 (2004), 409–461.

[77] Chung, F., and Lu, L. The small world phenomenon in hybrid power law graphs. In
Complex networks, vol. 650 of Lecture Notes in Phys. Springer, Berlin, 2004, pp. 89–
104.

[78] Chung, F., Lu, L., and Vu, V. The spectra of random graphs with given expected
degrees. Internet Math. 1, 3 (2004), 257–275.

BIBLIOGRAPHY 117

[79] Chung, F. R. K., and Garey, M. R. Diameter bounds for altered graphs. J.
Graph Theory 8, 4 (1984), 511–534.

[80] Chvátal, V. Hard knapsack problems. Oper. Res. 28, 6 (1980), 1402–1411.

[81] Chvátal, V., and Reed, B. Mick gets some (the odds are on his side). In 33th An-
nual Symposium on Foundations of Computer Science (Pittsburgh, PA, 1992). IEEE
Comput. Soc. Press, Los Alamitos, CA, 1992, pp. 620–627.

[82] Chvátal, V., and Szemerédi, E. Many hard examples for resolution. J. Assoc.
Comput. Mach. 35, 4 (1988), 759–768.

[83] Coarfa, C., Demopoulos, D. D., San Miguel Aguirre, A., Subramanian,

D., and Vardi, M. Y. Random 3-SAT: the plot thickens. Constraints 8, 3 (2003),
243–261. Special issue of the Sixth International Conference on Principles and Practice
of Constraint Programming (Singapore, 2000).

[84] Coja-Oghlan, A. A spectral heuristic for bisecting random graphs. In SODA
’05: Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algo-
rithms (Philadelphia, PA, USA, 2005), Society for Industrial and Applied Mathemat-
ics, pp. 850–859.

[85] Coja-Oghlan, A., Goerdt, A., Lanka, A., and Schädlich, F. Techniques
from combinatorial approximation algorithms yield efficient algorithms for random
2k-SAT. Theoret. Comput. Sci. 329, 1-3 (2004), 1–45.

[86] Condon, A., and Karp, R. M. Algorithms for graph partitioning on the planted
partition model. Random Structures Algorithms 18, 2 (2001), 116–140.

[87] Cook, S. The complexity of theorem-proving procedures. In Proc. 3rd FOCS (1971),
pp. 151–158.

[88] Cooper, C. Classifying special interest groups in web graphs. In Randomization and
approximation techniques in computer science, vol. 2483 of Lecture Notes in Comput.
Sci. Springer, Berlin, 2002, pp. 263–275.

[89] Cooper, C., and Frieze, A. Crawling on simple models of web graphs. Internet
Math. 1, 1 (2003), 57–90.

[90] Cooper, C., and Frieze, A. A general model of web graphs. Random Structures
Algorithms 22, 3 (2003), 311–335.

[91] Cooper, C., and Frieze, A. The size of the largest strongly connected component
of a random digraph with a given degree sequence. Combin. Probab. Comput. 13, 3
(2004), 319–337.

[92] Cooper, C., Frieze, A., and Vera, J. Random deletion in a scale-free random
graph process. Internet Math. 1, 4 (2004), 463–483.

118

[93] Cornuéjols, G., Nemhauser, G. L., and Wolsey, L. A. The uncapacitated
facility location problem. In Discrete location theory, Wiley-Intersci. Ser. Discrete
Math. Optim. Wiley, New York, 1990, pp. 119–171.

[94] Coster, M. J., Joux, A., LaMacchia, B. A., Odlyzko, A. M., Schnorr, C.-

P., and Stern, J. Improved low-density subset sum algorithms. Comput. Complexity
2, 2 (1992), 111–128.

[95] Crawford, J. M., and Auton, L. D. Experimental results on the crossover point
in random 3-SAT. Artificial Intelligence 81, 1-2 (1996), 31–57. Frontiers in problem
solving: phase transitions and complexity.

[96] Creignou, N., and Daudé, H. Generalized satisfiability problems: minimal ele-
ments and phase transitions. Theoretical Computer Science 302 (2003), 417–430.

[97] DeWitt, H. K. Applications of the theory of random graphs to average algorithm
performance analysis. In ACM 79: Proceedings of the 1979 annual conference (New
York, NY, USA, 1979), ACM Press, pp. 251–258.

[98] DeWitt, H. K., and Krieger, M. M. Expected length of shortest paths and al-
gorithm behavior. In Proceedings of the Tenth Southeastern Conference on Combina-
torics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979)
(Winnipeg, Man., 1979), Congress. Numer., XXIII–XXIV, Utilitas Math., pp. 367–
380.

[99] Dhamdhere, K., Ravi, R., and Singh, M. On two-stage stochastic minimum
spanning trees. In Integer Programming and Combinatorial Optimization: 11th Inter-
national IPCO Conference, Berlin, Germany, June 8-10, 2005. Proceedings, vol. 3509
/ 2005 of Lecture Notes in Comput. Sci. Springer, Berlin, 2005, pp. 321–334.

[100] D́ıaz, J., Pérez, X., Serna, M. J., and Wormald, N. C. Connectivity for
wireless agents moving on a cycle or grid. In STACS 2005, vol. 3404 of Lecture Notes
in Comput. Sci. Springer, Berlin, 2005, pp. 353–364.

[101] D́ıaz, J., Petit, J., and Serna, M. Random geometric problems on [0, 1]2. In
Randomization and approximation techniques in computer science (Barcelona, 1998),
vol. 1518 of Lecture Notes in Comput. Sci. Springer, Berlin, 1998, pp. 294–306.

[102] Diestel, R. Graph theory, third ed., vol. 173 of Graduate Texts in Mathematics.
Springer-Verlag, Berlin, 2005.

[103] Dorogovtsev, S. N., and Mendes, J. F. F. Evolution of networks. Oxford
University Press, Oxford, 2003. From biological nets to the Internet and WWW.

[104] Drinea, E., Enachescu, M., and Mitzenmacher, M. Variations on random
graph models for the web. Tech. rep., Harvard University, 2001.

BIBLIOGRAPHY 119

[105] Dubois, O., Boufkhad, Y., and Mandler, J. Typical random 3-SAT formu-
lae and the satisfiability threshold. In Proceedings of the 11th Annual ACM-SIAM
Symposium on Discrete Algorithms (2000), pp. 126–127.

[106] Erdős, P., and Rényi, A. On random graphs. I. Publ. Math. Debrecen 6 (1959),
290–297.

[107] Fabrikant, A., Koutsoupias, E., and Papadimitriou, C. H. Heuristically op-
timized trade-offs: a new paradigm for power laws in the internet. In Automata,
languages and programming, vol. 2380 of Lecture Notes in Comput. Sci. Springer,
Berlin, 2002, pp. 110–122.

[108] Faloutsos, M., Faloutsos, P., and Faloutsos, C. On power-law relationships
of the internet topology. In SIGCOMM ’99: Proceedings of the conference on Appli-
cations, technologies, architectures, and protocols for computer communication (New
York, NY, USA, 1999), ACM Press, pp. 251–262.

[109] Feige, U. A tight lower bound on the cover time for random walks on graphs.
Random Structures Algorithms 6, 4 (1995), 433–438.

[110] Feige, U. A tight upper bound on the cover time for random walks on graphs.
Random Structures Algorithms 6, 1 (1995), 51–54.

[111] Feige, U. Relations between average case complexity and approximation complexity.
In Proc. 34th ACM STOC (2002).

[112] Feige, U., and Kilian, J. Heuristics for semirandom graph problems. J. Comput.
System Sci. 63, 4 (2001), 639–671. Special issue on FOCS 98 (Palo Alto, CA).

[113] Feige, U., and Krauthgamer, R. Finding and certifying a large hidden clique in
a semirandom graph. Random Structures Algorithms 16, 2 (2000), 195–208.

[114] Feige, U., and Ofek, E. Spectral techniques applied to sparse random graphs.
Random Structures and Algorithms 27, 2 (2005), 251–275.

[115] Feige, U., and Vilenchik, D. A local search algorithm for 3-SAT. Tech. rep., The
Weizmann Institute, 2004.

[116] Fernandez de la Vega, W. On random 2-SAT. Manuscript, 1992.

[117] Flaxman, A. D. A spectral technique for random satisfiable 3CNF formulas. In
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(Baltimore, MD, 2003) (New York, 2003), ACM, pp. 357–363.

[118] Flaxman, A. D. A sharp threshold for a random constraint satisfaction problem.
Discrete Math. 285, 1-3 (2004), 301–305.

120

[119] Flaxman, A. D., Frieze, A., and Krivelevich, M. On the random 2-stage
minimum spanning tree. In SODA ’05: Proceedings of the sixteenth annual ACM-
SIAM symposium on Discrete algorithms (Philadelphia, PA, USA, 2005), Society for
Industrial and Applied Mathematics, pp. 919–926.

[120] Flaxman, A. D., Frieze, A., and Krivelevich, M. On the random 2-stage
minimum spanning tree. Random Structures Algorithms 28, 1 (2006), 24–36.

[121] Flaxman, A. D., and Frieze, A. M. The diameter of randomly perturbed digraphs
and some applications. In Proc. of the 8th Int. Workshop on Randomization and
Computation (RANDOM) (2004), K. Jansen, S. Khanna, J. D. P. Rolim, and D. Ron,
Eds., vol. 3122 of Lecture Notes in Computer Science, Springer, pp. 345–356.

[122] Flaxman, A. D., Frieze, A. M., and Vera, J. Adversarial deletion in a scale
free random graph process. In SODA ’05: Proceedings of the sixteenth annual ACM-
SIAM symposium on Discrete algorithms (Philadelphia, PA, USA, 2005), Society for
Industrial and Applied Mathematics, pp. 287–292.

[123] Flaxman, A. D., Frieze, A. M., and Vera, J. C. On the average case perfor-
mance of some greedy approximation algorithms for the uncapacitated facility location
problem. In STOC’05: Proceedings of the 37th Annual ACM Symposium on Theory
of Computing (New York, 2005), ACM, pp. 441–449.

[124] Flaxman, A. D., and Przydatek, B. Solving medium-density subset sum prob-
lems in expected polynomial time. In STACS 2005, vol. 3404 of Lecture Notes in
Comput. Sci. Springer, Berlin, 2005, pp. 305–314.

[125] Flaxman, A. D., and Sorkin, G. B. Tools for average-case analysis of opti-
mization heuristics. In Handbooks of Operations Research and Management Science:
Approximation and Heuristics. In preparation.

[126] Ford, G. W., and Uhlenbeck, G. E. Combinatorial problems in the theory of
graphs. I. Proc. Nat. Acad. Sci. U. S. A. 42 (1956), 122–128.

[127] Friedgut, E. Sharp thresholds of graph properties, and the k-sat problem. J. Amer.
Math. Soc. 12, 4 (1999), 1017–1054. With an appendix by Jean Bourgain.

[128] Friedgut, E. Hunting for sharp thresholds. Random Structures Algorithms 26, 1-2
(2005), 37–51.

[129] Friedman, J., and Goerdt, A. Recognizing more unsatisfiable random 3-SAT
instances efficiently. In Automata, languages and programming, vol. 2076 of Lecture
Notes in Comput. Sci. Springer, Berlin, 2001, pp. 310–321.

[130] Friedman, J., Kahn, J., and Szemerédi, E. On the second eigenvalue of random
regular graphs. In Proceedings of the 21st annual ACM symposium on Theory of
computing (New York, NY, USA, 1989), ACM Press, pp. 587–598.

BIBLIOGRAPHY 121

[131] Frieze, A., and Krivelevich, M. Hamilton cycles in random subgraphs of pseudo-
random graphs. Discrete Math. 256, 1-2 (2002), 137–150.

[132] Frieze, A., and McDiarmid, C. Algorithmic theory of random graphs. Ran-
dom Structures Algorithms 10, 1-2 (1997), 5–42. Average-case analysis of algorithms
(Dagstuhl, 1995).

[133] Frieze, A., and Sorkin, G. A note on random 2-sat with prescribed literal degrees.
In Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms
(2002).

[134] Frieze, A., and Wormald, N. C. Random k-SAT: a tight threshold for moderately
growing k. Combinatorica 25, 3 (2005), 297–305.

[135] Frieze, A. M. On the value of a random minimum spanning tree problem. Discrete
Appl. Math. 10, 1 (1985), 47–56.

[136] Frieze, A. M. On the Lagarias-Odlyzko algorithm for the subset sum problem.
SIAM J. Comput. 15, 2 (1986), 536–539.

[137] Frieze, A. M., and Reed, B. Probabilistic analysis of algorithms. In Probabilistic
methods for algorithmic discrete mathematics, vol. 16 of Algorithms Combin. Springer,
Berlin, 1998, pp. 36–92.

[138] Frieze, A. M., and Suen, S. Analysis of two simple heuristics on a random instance
of k-SAT. J. Algorithms 20, 2 (1996), 312–355.

[139] Galil, Z., and Margalit, O. An almost linear-time algorithm for the dense subset-
sum problem. SIAM J. Comput. 20, 6 (1991), 1157–1189.

[140] Gilbert, E. N. Enumeration of labelled graphs. Canad. J. Math. 8 (1956), 405–411.

[141] Goel, A., Rai, S., and Krishnamachari, B. Monotone properties of random
geometric graphs have sharp thresholds. Ann. Appl. Probab. 15, 4 (2005), 2535–2552.

[142] Goerdt, A. A threshold for unsatisfiability. J. Comput. System Sci. 53, 3 (1996),
469–486.

[143] Goerdt, A., and Jurdziński, T. Some results on random unsatisfiable k-Sat in-
stances and approximation algorithms applied to random structures. Combin. Probab.
Comput. 12, 3 (2003), 245–267. Combinatorics, probability and computing (Oberwol-
fach, 2001).

[144] Goerdt, A., and Lanka, A. Recognizing more random unsatisfiable 3-SAT in-
stances efficiently. In Typical case complexity and phase transitions, vol. 16 of Electron.
Notes Discrete Math. Elsevier, Amsterdam, 2003, p. 26 pp. (electronic).

[145] Goldreich, O., Goldwasser, S., and Ron, D. Property testing and its connection
to learning and approximation. J. ACM 45, 4 (1998), 653–750.

122

[146] Goldreich, O., and Ron, D. Property testing in bounded degree graphs. Algo-
rithmica 32, 2 (2002), 302–343.

[147] Grimmett, G. Percolation, second ed., vol. 321 of Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag,
Berlin, 1999.

[148] Grimmett, G. R., and McDiarmid, C. J. H. On colouring random graphs. Math.
Proc. Cambridge Philos. Soc. 77 (1975), 313–324.

[149] Hayes, B. Graph theory in practice: Part II. American Scientist 88 (2000), 104–109.

[150] Hoefer, M. Experimental comparison of heuristic and approximation algorithms for
uncapacitated facility location. In Experimental and efficient algorithms, vol. 2647 of
Lecture Notes in Comput. Sci. Springer, Berlin, 2003, pp. 165–178.

[151] Hofmeister, T., Schöning, U., Schuler, R., and Watanabe, O. A probabilis-
tic 3-SAT algorithm further improved. In STACS 2002, vol. 2285 of Lecture Notes in
Comput. Sci. Springer, Berlin, 2002, pp. 192–202.

[152] Impagliazzo, R., and Naor, M. Efficient cryptographic schemes provably as secure
as subset sum. J. Cryptology 9, 4 (1996), 199–216.

[153] Jain, K., Mahdian, M., Markakis, E., Saberi, A., and Vazirani, V. V. Greedy
facility location algorithms analyzed using dual fitting with factor-revealing LP. J.
ACM 50, 6 (2003), 795–824 (electronic).

[154] Jain, K., and Vazirani, V. V. Approximation algorithms for metric facility location
and k-median problems using the primal-dual schema and Lagrangian relaxation. J.
ACM 48, 2 (2001), 274–296.

[155] Janson, S., Knuth, D. E., �Luczak, T., and Pittel, B. The birth of the giant
component. Random Structures Algorithms 4, 3 (1993), 231–358. With an introduc-
tion by the editors.

[156] Janson, S., �Luczak, T., and Rucinski, A. Random graphs. Wiley-Interscience Se-
ries in Discrete Mathematics and Optimization. Wiley-Interscience, New York, 2000.

[157] Janson, S., Stamatiou, Y. C., and Vamvakari, M. Bounding the unsatisfiability
threshold of random 3-SAT. Random Structures Algorithms 17, 2 (2000), 103–116.

[158] Jerrum, M., and Sorkin, G. B. The Metropolis algorithm for graph bisection.
Discrete Appl. Math. 82, 1-3 (1998), 155–175.

[159] Jones, N. D. Space-bounded reducibility among combinatorial problems. J. Comput.
System Sci. 11, 1 (1975), 68–85.

[160] Juels, A., and Peinado, M. Hiding cliques for cryptographic security. Des. Codes
Cryptogr. 20, 3 (2000), 269–280.

BIBLIOGRAPHY 123

[161] Kaporis, A. C., Kirousis, L. M., and Lalas, E. G. The probabilistic analysis
of a greedy satisfiability algorithm. In Algorithms—ESA 2002, vol. 2461 of Lecture
Notes in Comput. Sci. Springer, Berlin, 2002, pp. 574–585.

[162] Kaporis, A. C., Kirousis, L. M., Stamatiou, Y. C., Vamvakari, M., and

Zito, M. Coupon collectors, q-binomial coefficients and the unsatisfiability threshold.
In Theoretical computer science (Torino, 2001), vol. 2202 of Lecture Notes in Comput.
Sci. Springer, Berlin, 2001, pp. 328–338.

[163] Karoński, M., and �Luczak, T. Random hypergraphs. In Combinatorics, Paul
Erdős is eighty, Vol. 2 (Keszthely, 1993), vol. 2 of Bolyai Soc. Math. Stud. János
Bolyai Math. Soc., Budapest, 1996, pp. 283–293.

[164] Karp, R. M. The probabilistic analysis of some combinatorial search algorithms. In
Algorithms and complexity (Proc. Sympos., Carnegie-Mellon Univ., Pittsburgh, Pa.,
1976). Academic Press, New York, 1976, pp. 1–19.

[165] Karp, R. M. The transitive closure of a random digraph. Random Structures Algo-
rithms 1, 1 (1990), 73–93.

[166] Kim, J. H., and Vu, V. H. Sandwiching random graphs: universality between
random graph models. Adv. Math. 188, 2 (2004), 444–469.

[167] Kirousis, L., Kranakis, E., Krizanc, D., and Stamatiou, Y. Approximating
the unsatisfiability threshold of random formulas. Random Structures and Algorithms
17 (2000), 103–116.

[168] Kleinberg, J. The small-world phenomenon: an algorithm perspective. In Proceed-
ings of the Thiry-Second Annual ACM Symposium on Theory of Computing (New
York, 2000), ACM, pp. 163–170 (electronic).

[169] Kleinberg, J. M., Kumar, R., Raghavan, P., Rajagopalan, S., and

Tomkins, A. S. The web as a graph: measurements, models, and methods. In
Computing and combinatorics (Tokyo, 1999), vol. 1627 of Lecture Notes in Comput.
Sci. Springer, Berlin, 1999, pp. 1–17.

[170] Knuth, D. E. Stable marriage and its relation to other combinatorial problems,
vol. 10 of CRM Proceedings & Lecture Notes. American Mathematical Society, Prov-
idence, RI, 1997. An introduction to the mathematical analysis of algorithms, Trans-
lated from the French by Martin Goldstein and revised by the author.

[171] Knuth, D. E., Motwani, R., and Pittel, B. Stable husbands. Random Structures
Algorithms 1, 1 (1990), 1–14.

[172] Korupolu, M. R., Plaxton, C. G., and Rajaraman, R. Analysis of a local
search heuristic for facility location problems. J. Algorithms 37, 1 (2000), 146–188.
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms (San Francisco, CA,
1998).

124

[173] Koutsoupias, E., and Papadimitriou, C. H. On the greedy algorithm for satis-
fiability. Inform. Process. Lett. 43, 1 (1992), 53–55.

[174] Krarup, J., and Pruzan, P. M. The simple plant location problem: survey and
synthesis. European J. Oper. Res. 12, 1 (1983), 36–81.

[175] Krivelevich, M. Coloring random graphs—an algorithmic perspective. In Mathe-
matics and computer science, II (Versailles, 2002), Trends Math. Birkhäuser, Basel,
2002, pp. 175–195.

[176] Krivelevich, M., Sudakov, B., and Tetali, P. On smoothed analysis in dense
graphs and formulas. To appear in Random Structures Algorithms.

[177] Krivelevich, M., and Vilenchik, D. Solving random satisfiable 3cnf formulas in
expected polynomial time. In SODA (2006).

[178] Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A.,

and Upfal, E. Stochastic models for the web graph. In 41st Annual Symposium on
Foundations of Computer Science (Redondo Beach, CA, 2000). IEEE Comput. Soc.
Press, Los Alamitos, CA, 2000, pp. 57–65.

[179] Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A.,

and Upfal, E. The Web as a graph. In Proc. 19th ACM SIGACT-SIGMOD-
AIGART Symp. Principles of Database Systems, PODS (15–17 2000), ACM Press,
pp. 1–10.

[180] Kumar, R., Raghavan, P., Rajagopalan, S., and Tomkins, A. Trawling the
Web for emerging cyber-communities. Computer Networks (Amsterdam, Netherlands:
1999) 31, 11–16 (1999), 1481–1493.

[181] Lagarias, J. C., and Odlyzko, A. M. Solving low-density subset sum problems.
J. Assoc. Comput. Mach. 32, 1 (1985), 229–246.

[182] Levin, L. A. Universal enumeration problems. Problemy Peredači Informacii 9, 3
(1973), 115–116.

[183] Linial, N., and Rozenman, E. Random lifts of graphs: perfect matchings. Com-
binatorica 25, 4 (2005), 407–424.

[184] Linusson, S., and Wästlund, J. A proof of Parisi’s conjecture on the random
assignment problem. Probab. Theory Related Fields 128, 3 (2004), 419–440.

[185] Lovász, L. Combinatorial problems and exercises, second ed. North-Holland Pub-
lishing Co., Amsterdam, 1993.

[186] Lueker, G. S. Average-case analysis of off-line and on-line knapsack problems. J.
Algorithms 29, 2 (1998), 277–305. SODA ’95 (San Francisco, CA).

BIBLIOGRAPHY 125

[187] Lueker, G. S. Exponentially small bounds on the expected optimum of the partition
and subset sum problems. Random Structures Algorithms 12, 1 (1998), 51–62.

[188] Lyubashevsky, V. On random high density subset sums. Tech. rep., Electronic
Colloquium on Computational Complexity, 2005.

[189] Mahdian, M., Ye, Y., and Zhang, J. A 2-approximation algorithm for the soft-
capacitated facility location problem. In Approximation, randomization, and combi-
natorial optimization, vol. 2764 of Lecture Notes in Comput. Sci. Springer, Berlin,
2003, pp. 129–140.

[190] McDiarmid, C. On the method of bounded differences. In London Mathematical
Society Lecture Note Series, vol. 141. Cambridge University Press, 1989, pp. 148–188.

[191] McSherry, F. Spectral partitioning of random graphs. In 42nd IEEE Symposium
on Foundations of Computer Science (Las Vegas, NV, 2001). IEEE Computer Soc.,
Los Alamitos, CA, 2001, pp. 529–537.

[192] Mihail, M., and Papadimitriou, C. On the eigenvalue power law. In Randomiza-
tion and approximation techniques in computer science, vol. 2483 of Lecture Notes in
Comput. Sci. Springer, Berlin, 2002, pp. 254–262.

[193] Milgram, S. The small world problem. Psychology Today 61, 1 (1967), 60–67.

[194] Mitzenmacher, M. A brief history of generative models for power law and lognormal
distributions. Internet Math. 1, 2 (2004), 226–251.

[195] Molloy, M., and Reed, B. A critical point for random graphs with a given degree
sequence. Random Structures Algorithms 6, 2-3 (1995), 161–179.

[196] Molloy, M., and Reed, B. Graph colouring and the probabilistic method, vol. 23
of Algorithms and Combinatorics. Springer-Verlag, Berlin, 2002.

[197] Moore, C., and Russell, A. Explicit multiregister measurements for hidden sub-
group problems; or, fourier sampling strikes back. Tech. Rep. TR-CS-2005-20, Uni-
versity of New Mexico, 2005.

[198] Motoki, M., and Uehara, R. Unique solution instance generation for the 3-
satisfiability (3SAT) problem. Tech. rep., Tokyo Institute of Technology, 1998.

[199] Motwani, R. Average-case analysis of algorithms for matchings and related prob-
lems. J. Assoc. Comput. Mach. 41, 6 (1994), 1329–1356.

[200] Muthukrishnan, S., and Pandurangan, G. The bin-covering technique for
thresholding random geometric graph properties. In SODA ’05: Proceedings of the
sixteenth annual ACM-SIAM symposium on Discrete algorithms (Philadelphia, PA,
USA, 2005), Society for Industrial and Applied Mathematics, pp. 989–998.

126

[201] Nair, C., Prabhakar, B., and Sharma, M. Proofs of the Parisi and Coppersmith-
Sorkin random assignment conjectures. Random Structures Algorithms 27, 4 (2005),
413–444.

[202] Newman, M. E. J. Random graphs as models of networks. In Handbook of graphs
and networks. Wiley-VCH, Weinheim, 2003, pp. 35–68.

[203] Nisan, N. On read-once vs. multiple access to randomness in logspace. Theoret.
Comput. Sci. 107, 1 (1993), 135–144. Structure in complexity theory (Barcelona,
1990).

[204] Penrose, M. Random geometric graphs, vol. 5 of Oxford Studies in Probability.
Oxford University Press, Oxford, 2003.

[205] Reingold, O. Undirected ST-connectivity in log-space. In Proceedings of the 37th
annual ACM symposium on Theory of computing (New York, NY, USA, 2005), ACM
Press, pp. 376–385.

[206] Sántha, M., and Vazirani, U. V. Generating quasirandom sequences from semi-
random sources. J. Comput. System Sci. 33, 1 (1986), 75–87. Twenty-fifth annual
symposium on foundations of computer science (Singer Island, Fla., 1984).

[207] Schmidt, J. P. Probabilistic analysis of strong hypergraph coloring algorithms and
the strong chromatic number. Discrete Math. 66, 3 (1987), 259–277.

[208] Schmidt-Pruzan, J., Shamir, E., and Upfal, E. Random hypergraph coloring
algorithms and the weak chromatic number. J. Graph Theory 9, 3 (1985), 347–362.

[209] Schöning, U. A probabilistic algorithm for k-SAT and constraint satisfaction prob-
lems. In 40th Annual Symposium on Foundations of Computer Science (New York,
1999). IEEE Computer Soc., Los Alamitos, CA, 1999, pp. 410–414.

[210] Selman, B., Mitchell, D. G., and Levesque, H. J. Generating hard satisfiability
problems. Artificial Intelligence 81, 1-2 (1996), 17–29. Frontiers in problem solving:
phase transitions and complexity.

[211] Shmoys, D. B., Tardos, E., and Aardal, K. Approximation algorithms for
facility location problems (extended abstract). In STOC ’97: Proceedings of the
twenty-ninth annual ACM symposium on Theory of computing (New York, NY, USA,
1997), ACM Press, pp. 265–274.

[212] Sipser, M. Introduction to the Theory of Computation. PWS Publishing Company,
1996.

[213] Spielman, D., and Teng, S.-H. Smoothed analysis of algorithms: why the simplex
algorithm usually takes polynomial time. In Proceedings of the Thirty-Third Annual
ACM Symposium on Theory of Computing (New York, 2001), ACM, pp. 296–305
(electronic).

BIBLIOGRAPHY 127

[214] Spielman, D. A., and Teng, S.-H. Smoothed analysis: motivation and discrete
models. In Algorithms and data structures, vol. 2748 of Lecture Notes in Comput. Sci.
Springer, Berlin, 2003, pp. 256–270.

[215] Spielman, D. A., and Teng, S.-H. Smoothed analysis of algorithms: why the
simplex algorithm usually takes polynomial time. J. ACM 51, 3 (2004), 385–463
(electronic).

[216] Steele, J. M. Probability theory and combinatorial optimization, vol. 69 of CBMS-
NSF Regional Conference Series in Applied Mathematics. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 1997.

[217] Strang, G. Linear algebra and its applications, second ed. Academic Press [Harcourt
Brace Jovanovich Publishers], New York, 1980.

[218] Subramanian, C. R., Fürer, M., and Veni Madhavan, C. E. Algorithms for
coloring semi-random graphs. Random Structures Algorithms 13, 2 (1998), 125–158.

[219] Sviridenko, M. An improved approximation algorithm for the metric uncapacitated
facility location problem. In Proceedings of the 9th International IPCO Conference on
Integer Programming and Combinatorial Optimization (London, UK, 2002), Springer-
Verlag, pp. 240–257.

[220] Szpankowski, W. Average case analysis of algorithms on sequences. Wiley-
Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience,
New York, 2001. With a foreword by Philippe Flajolet.

[221] Talagrand, M. Concentration of measure and isoperimetric inequalities in product
spaces. Inst. Hautes Études Sci. Publ. Math., 81 (1995), 73–205.

[222] Verhoeven, Y. Random 2-SAT and unsatisfiability. Inform. Process. Lett. 72, 3-4
(1999), 119–123.

[223] Vollmer, H., and Wagner, K. W. Measure one results in computational com-
plexity theory. In Advances in algorithms, languages, and complexity. Kluwer Acad.
Publ., Dordrecht, 1997, pp. 285–312.

[224] Wagner, D. A generalized birthday problem (extended abstract). In Advances in
cryptology—CRYPTO 2002, vol. 2442 of Lecture Notes in Comput. Sci. Springer,
Berlin, 2002, pp. 288–303.

[225] Watts, D. J. Small worlds. Princeton Studies in Complexity. Princeton University
Press, Princeton, NJ, 1999. The dynamics of networks between order and randomness.

[226] Watts, D. J., and Strogatz, S. H. Collective dynamics of “small-world” networks.
Nature 292 (1998), 440–442.

[227] West, D. B. Introduction to graph theory. Prentice Hall Inc., Upper Saddle River,
NJ, 1996.

128

[228] Xu, K., Boussemart, F., Hemery, F., and Lecoutre, C. A simple model to
generate hard satisfiable instances. In Proc. of 19th International Joint Conference
on Artificial Intelligence (IJCAI) (Edinburgh, Scotland, 2005), pp. 337–342.

[229] Xu, K., and Li, W. Exact phase transitions in random constraint satisfaction
problems. Journal of Artificial Intelligence Research 12 (2000), 93–103.

[230] Yukich, J. E. Probability theory of classical Euclidean optimization problems,
vol. 1675 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1998.

