
A spectral technique for random satisfiable 3CNF

formulas

Abraham Flaxman ∗

Carnegie Mellon University

Mathematical Sciences Department

abie@cmu.edu

Abstract

Let I be a random 3CNF formula generated by choosing a truth as-
signment φ for variables x1, . . . , xn uniformly at random and including
every clause with i literals set true by φ with probability pi, indepen-
dently. We show that for any constants 0 ≤ η2, η3 ≤ 1 there is a
constant dmin so that for all d ≥ dmin a spectral algorithm similar
to the graph coloring algorithm of [3] will find a satisfying assignment
with high probability for p1 = d/n2, p2 = η2d/n

2, and p3 = η3d/n
2.

Appropriately setting the ηi’s yields natural distributions on satisfiable
3CNFs, not-all-equal-sat 3CNFs, and exactly-one-sat 3CNFs.

1 Introduction

A 3CNF formula over variables x1, . . . , xn consists of clauses C1, . . . , Cm,
where each clause is the disjunction of 3 literals, Ci = ℓi1 ∨ ℓi2 ∨ ℓi3 , and
each literal is a variable or the negation of a variable. A 3CNF formula is
satisfiable if there is an assignment of variables to truth values so that every
clause contains at least 1 true literal. Finding a satisfying assignment for a
given 3CNF formula is NP-hard, so it is unlikely there is an efficient algo-
rithm (meaning an algorithm with running time bounded by a polynomial
function of the input size) which succeeds on all 3CNF formulas [10, 24].
In light of this, it is interesting to investigate efficient algorithms testing

∗Supported in part by NSF VIGRE Grant DMS-9819950

1

for and generating satisfying assignments which work with high probability
(meaning with probability tending to 1 as n goes to infinity and abbreviated
whp) over some reasonable distribution of formulas.

Uniformly random 3CNF formulas have been the focus of extensive research.
It is known that there is a sharp threshold in the ratio of clauses to vari-
ables; a random 3CNF with clause-to-variable ratio below the threshold is
satisfiable whp and one with ratio above is not satisfiable whp [15]. This
threshold is not known exactly, (and not even known to tend to a constant)
but it is known to be at least 3.4 (see [20]) and no more than 4.5 (see [21]).
Experimental results predict the higher end of this interval [7]. (Much more
is known for k-CNF formulas where k is a large constant or slowly growing
function [1, 18].

It is conjectured that proving the non-existence of satisfying assignments
slightly above the threshold is computationally difficult, which yields nice
results in hardness of approximations [11]. One piece of evidence supporting
this conjecture is the exponential length of resolution-type proofs refuting
such instances [9, 6]. Spectral techniques are effective in efficiently proving
the unsatisfiability of formulas an n1/2+ǫ factor above the threshold [16].

An alternative approach is to investigate exponential-time algorithms which
find a satisfying assignment or prove that none exists for all instances. Then
the challenge is to make the base of the exponent as small as possible (see,
for example, [27, 19]).

1.1 The distribution

In this paper we will consider random 3CNF formulas with a “planted”
satisfying assignment. That is, formulas which have a clause-to-variable ra-
tio above the threshold, but which are generated in a way to ensure that
they are satisfiable. To be exact, to form instance I = In,p1,p2,p3

we choose a
truth assignment φ on n variables uniformly at random and include in I each
clause with exactly i literals satisfied by φ independently with probability
pi. By setting p1 = p2 = p3 we obtain the model studied by Motoki and
Uehara in [26], which shows a threshold of p = Θ(log n/n2) for 3CNF formu-
las to have exactly 1 satisfying assignment. An algorithm for p1 = p2 = p3

was analyzed by Koutsoupias and Papadimitriou in [22]. They show that
a greedy variable assignment rule successfully discovers a satisfying assign-
ment whp for instances with p1 = p2 = p3 = Ω(log n/n2)). The authors

2

conjecture that some modification of the greedy algorithm will work when
p1 = p2 = p3 = O(1/n2). The present paper shows that their conjecture is
correct; in the case where p1 = p2 = p3, the spectral phase of the algorithm
presented below can be replaced by the greedy assignment rule.

By setting p1 = p2 and p3 = 0, we obtain a natural distribution on 3CNFs
with a planted not-all-equal assignment, a situation where the greedy vari-
able assignment rule generates a random assignment. By setting p2 = p3 =
0, we obtain 3CNFs with a planted exactly-one-true assignment (which suc-
cumb to the greedy algorithm followed by the non-spectral steps below).
Also, by correctly adjusting the ratios of p1, p2, and p3, we obtain a vari-
ety of (slightly less natural) instance distributions which thwart the greedy
algorithm. Carefully selected values of p1, p2, and p3 are considered in [5],
where it is conjectured that no algorithm running in polynomial time can
solve In,p1,p2,p3

whp when pi = ciα/n
2 and

0.077 < c3 < 0.25 c2 = (1 − 4c3)/6

c1 = (1 + 2c3)/6 α >
4.25

7
.

An implication the present paper is that this conjecture fails when α is a
sufficiently large constant.

This paper originally appeared as an extended abstract [14], and subsequent
extensions have shown that a similar styled analysis is capable of showing
that alternative algorithms succeed in expected polynomial time [23] and on
semi-random instances [13].

In this paper we allow clauses with repeated variables, and formulas with the
same clause with the literals in a different order, so there are 8n3 possible
clauses, 7n3 which are consistent with our planted assignment φ. The results
and proofs hold for other similar models, such as prohibiting clauses with
repeated literals or clauses where the same set of literals appear in a different
order.

1.2 The algorithm

The main result of this paper is a polynomial time algorithm which returns
a satisfying assignment to In,p1,p2,p3

whp when p1 = d/n2, p2 = η2d/n
2 and

p3 = η3d/n
2, for 0 ≤ η2, η3 ≤ 1, and d ≥ dmin, where dmin is a function of

η2, η3. These restrictions on η2 and η3 are more for convenience than neces-
sity, and in Section 2, we will see the matrix equation which dictates the

3

allowable range of ηi’s. The unsymmetric feature of this parameterization,
that there is no η1 is not entirely for convenience, however. If we desire
any η1 > max{η2, η3}, we can renormalize by changing the value of d. Un-
fortunately, taking η1 = 0 is more complicated. The proof of correctness of
Step 4 of the algorithm as decribed below relies on there being some positive
fraction of clauses with 1 true literal, and it is not clear how to remove this
requirement.

The algorithm below is an extension of the 3-coloring algorithm of Alon and
Kahale [3]. They describe an algorithm which, in an analogous model of a
random 3-colorable graph, finds a proper 3-coloring in polynomial time whp.
A previous extension of their algorithm by Chen and Frieze [8] adapted the
technique to 2-color random 3-uniform bipartite hypergraphs. We follow the
same approach:

1. Construct a graph G from the 3CNF.

2. Find the most negative eigenvalue of a matrix related to the adjacency
matrix of G.

3. Assign a value to each variable based on the signs of the eigenvector
corresponding to the most negative eigenvalue.

4. Iteratively improve the assignment.

5. Perfect the assignment by exhaustive search over a small set containing
all the incorrect variables.

We now elaborate on each step:

Step (1): Given 3CNF I = In,p1,p2,p3
, where p1 = d

n2 , p2 = η2
d
n2 , and

p3 = η3
d
n2 , the graph in step (1) G = (V,E) has 2n vertices, corresponding

to the literals in I and labeled {x1, x1, . . . xn, xn}. G has an edge between
vertices ℓi and ℓj if I includes a clause with both ℓi and ℓj (do not add
multiple edges).

Step (2): We consider G′ = (V,E′) formed by deleting all the edges incident
to vertices with degree greater than 180d. Let A be the adjacency matrix of
G′. Let λ be the most negative eigenvalue of A and v be the corresponding
eigenvector.

Step (3): There are two assignments to consider, π+, which is defined by

π+(xi) =

{

T, if vi ≥ 0;

F, otherwise;

4

and π−, which is defined by

π−(x) = ¬π+(x).

Let π0 be the better of π+ and π− (that is, the assignment which satisfies
more clauses). We will argue in the next section that π0 agrees with φ on
at least (1 − C/d)n variables for some absolute constant C.

Step (4): For i = 1, . . . , log n do the following: for each variable x, if x
appears in 5ǫd clauses unsatisfied by πi−1, then set πi(x) = ¬πi−1(x), where
ǫ is an appropriately chosen constant (taking ǫ = 0.1 works); otherwise set
πi(x) = πi−1(x).

Step (5): Let π′0 = πlog n denote the final assignment generated in step

(4). Let Aπ′

0

4 be the set of variables which do not appear in (3 ± 4ǫ)d
clauses as the only true literal with respect to assignment π′0, and let B
be the set of variables which do not appear in (µD ± ǫ)d clauses, where
µDd = (3 + 6)d + (6 + 3)η2d + 3η3d + O(1/n) is the expected number of
clauses containing variable x. Form partial assignment π′1 by unassigning

all variables in Aπ′

0

4 and B. Now, for i ≥ 1, if there is a variable xi which
appears in less than (µD − 2ǫ)d clauses consisting of variables that are all
assigned by π′i, let π′i+1 be the partial assignment formed by unassigning
xi in π′i. Let π′ be the partial assignment when this process terminates.
Consider the graph Γ with a vertex for each variable that is unassigned in
π′ and an edge between two variables if they appear in a clause together.
If any connected component in Γ is larger than log n fail. Otherwise, find
a satisfying assignment for I by performing an exhaustive search on the
variables in each connected component of Γ.

Theorem 1 For any constants 0 ≤ η2, η3 ≤ 1, except (η2, η3) = (0, 1), there
exists a constant dmin such that for any d ≥ dmin, if p1 = d/n2, p2 = η2d/n

2,
and p3 = η3d/n

2 then this polynomial-time algorithm produces a satisfying
assignment for random instances drawn from In,p1,p2,p3

whp.

The exception in this theorem is easy to circumvent superficially, since the
case where η2 = 0 is solvable in worst-case polynomial time by Gaussian
elimination. However, the parameterization above obscures the fact that
there are instances which appear to be hard in general when p2 =

√
dn.

This is the case sometimes called Gaussian elimination with noise.

5

1.3 Outline of what follows

We will prove Theorem 1 in the next 2 sections. Section 2 shows that whp
the eigenvector corresponding to the most negative eigenvalue is close to a
satisfying assignment, by showing that π0 agrees with φ on at least (1 −
C/d)n clauses, where C is an absolute constant. Section 3 shows that whp
the iterative reassignment in step (4) correctly assigns a larger fraction of
variables, so large that the connected components left after unassignment are
size O(log n) and the exhaustive search in step (5) can perfect the assignment
in polynomial time.

2 Spectral Arguments

The goal of this section is to show the assignment constructed from the
eigenvector corresponding to the most negative eigenvalue of A is correct on
a 1−C/d fraction of variables, where C is a constant independent of d. The
intuition behind this result is as follows. Suppose φ(x) = T . Then

• literal x appears in about 3d clauses with 2 false literals, 6η2d clauses
with 1 false and 1 true literal, and 3η3d clauses with 2 true literals

• literal x̄ appears in about 6d clauses with 1 false and 1 true literal and
3η2d clauses with 2 true literals.

We use these estimates to describe roughly the adjacency matrix A. For
each row corresponding to a true literal, we have nonzero columns for about
6η2d+ 6η3d true literals and 6d+ 6η2d false literals. Similarly, for each row
corresponding to a false literal, we have nonzero columns for about 6d+6η2d
true literals and 6d false literals. Let vT be the vector with vT (ℓ) = 1 if ℓ is
a true literal, and 0 if ℓ is a false literal, and let vF = 1−vT . Then we have

AvT ≈ (6η2d+ 6η3d)vT + (6d + 6η2d)vF

AvF ≈ (6d+ 6η2d)vT + 6dvF .

So, heuristically, we expect 2 eigenvectors of A to look something like βvT +
γvF where β, γ solve the 2-dimensional system

[

η2 + η3 1 + η2

1 + η2 1

] [

β
γ

]

= α

[

β
γ

]

.

6

When 0 ≤ η2, η3 ≤ 1 and (η2, η3) 6= (0, 1), this yields a positive eigenvalue α+

and a negative eigenvalue α−. To see this, note that the trace of the matrix
equals the sum of the eigenvalues, and then calculate that one of the eigenval-
ues take the form (1+η2 +η3 +

√

(1 + η2 + η3)2 − 4(η2 + η3 − (1 + η2)2))/2.
The trace of the matrix is 1 + η2 + η3 and this eigenvalue is strictly larger
provided η2+η3−(1+η2)

2 is negative. Simplifying terms shows that is equiv-
alent to having 1 + η2 + η2

2 − η3 > 0, which is the case for all 0 ≤ η2, η3 ≤ 1
besides (η2, η3) = (0, 1).

Let

[

β+

γ+

]

be the eigenvector corresponding to α+ and

[

β−
γ−

]

be the eigen-

vector corresponding to α−. Then additional calculation shows that if
we normalize so β2

− + γ2
− = 1, then β− and γ− have opposite signs, and

|β−|, |γ−| ≥
√

1
17 .

Let v+ = β+vT + γ+vF and v− = β−vT + γ−vF denote our heuristic
approximation of the eigenvectors.

We will argue that whp A has large positive and negative eigenvalues
roughly equal to 6d times the α± and all the other eigenvalues of A are
smaller than C

√
d in absolute value, so the assignment based on the signs

of the most negative eigenvector is close to correct.

To make this precise, let I = In,p1,p2,p3
be a random 3CNF as described above

and let G = (V,E) be the graph on the literals of I with edges connecting
every pair of literals appearing in a common clause. Let G′ = (V,E′) be
obtained by deleting all edges ofG adjacent to a vertex of degree greater than
180d and let A be the adjacency matrix of G′. Denote by λ1 ≥ λ2 ≥ · · · ≥
λ2n the eigenvalues of A and by v1,v2, . . . ,v2n a corresponding collection
of orthonormal eigenvectors.

Lemma 1 There is an absolute constant C such that the following hold
whp:

1. λ1 ≥ (6d)α+ − 2−d/C

2. λ2n ≤ (6d)α− + 2−d/C

3. |λi| ≤ C
√
d for i = 2, . . . , 2n − 1

Proof The proof is very similar to Lemma 5 of [8] and Proposition 2.1
of [3], which use the techniques of Kahn and Szemerédi from [17]. For a

7

self-contained treatment, see also [12]

Our main tool is Rayleigh’s Principle,

λi = min
L

max
v∈L,v 6=0

vTAv

vT v
(1)

where L ranges over all dimension 2n − i + 1 subspaces of R
2n. (See, for

example, [28]).

We partition the matrix A into 4 blocks, Ai,j, i, j ∈ {T, F}, where AT,T

corresponds to the literals l with φ(l) = T , and the other Ai,j are defined
similarly. The edge-set of G has corresponding partition into Ei,j for i, j ∈
{T, F}.

Proposition 1 For the edge sets defined above, the following hold whp:
|ET,T | = (3η3d + 3η2d ± o(1))n, |ET,F | = (6η2d + 6d ± o(1))n, |EF,F | =
(3d ± o(1))n, and |E \ E′| ≤ 2−2d/Cn.

These all follow from standard calculations which are omitted here.

We are now ready to prove Lemma 1. To prove part (1) we apply Rayleigh’s
Principle with v+ = β+vT + γ+vF .

vT
+Av+ = β2

+2|E′
T,T | + 2β+γ+|E′

T,F | + γ2
+2|E′

F,F |
≥ β2

+2(|ET,T | − 2−2d/Cn)

+ 2β+γ+(|ET,F | − 2−2d/Cn)

+ γ2
+2(|EF,F | − 2−2d/Cn)

≥ β2
+(6η2d+ 6η3d± o(1))n

+ β+γ+(12d + 12η2d± o(1))n

+ γ2
+(6d± o(1))n

− 2(|β+| + |γ+|)22−2d/Cn

≥
[

β+ γ+

]

[

6d(η2 + η3) 6d(1 + η2)
6d(1 + η2) 6d

] [

β+

γ+

]

n

− 3(|β+| + |γ+|)22−2d/Cn

≥ (6d)α+n− 2−d/Cn

Since vT
+v+ = n we conclude that λ1 ≥ (6d)α+ − 2−d/C .

8

To prove part (2) of the lemma, we apply Rayleigh’s Principle with L =
{tv+ : t ∈ R}. The calculation is very similar to the one above, and is
omitted.

Proving (3) takes more work. Fortunately we can use a reduction very
similar to Lemma 5(iii) in [8]. Recall that vT is the vector with vT (ℓ) = 1
if literal ℓ is true and 0 otherwise. Also, recall that vF = 1− vT . We begin
by showing

Proposition 2 For any v with vT v = 1, vT vT = 0, and vTvF = 0, we
have |vTAv| ≤ C

√
d.

Proof Observe that the entries of AF,F are 1 independently with probabil-
ity 1−(1−p1)

3n ∼ 3d1/n. Unfortunately, all the other Ai,j have dependencies
because the edges are added a triangle at a time. To work around this, for
each clause, we randomly color the edges of the triangle corresponding to
the clause, one edge red, one green, and one blue. We add each to the appro-
priately colored graph Gr, Gg, or Gb (but add an edge to at most 1 graph).
Note that the edges of a particular Gc appear independently, as each edge
is contributed by a different clause. Let Ac be the adjacency matrix of Gc

for c ∈ {r, g, b}. Note that A = Ar + Ag + Ab. Let Ac
i,j for i, j ∈ {T, F}

be the submatricies of Ac corresponding to the submatricies of A defined
above. Then we have

|vTAv| ≤
∑

c∈{r,g,b}

|vTAcv|

≤
∑

c∈{r,g,b}

∑

i,j∈{T,F}

|vT
i A

c
i,jvj|.

The edges of Ac
i,j occur with different probabilities for different combina-

tions of i, j, but, provided we have made dmin(η2, η3) large enough, all sub-
matricies with non-zero edge probabilities have edge probabilities exceeding
D/n and we can use an argument identical to Lemma 2.4 of [3] (except with
5d changed to 180d) to show that any unit vectors v with vT vT = 0 and
vT vF = 0 has |vT

i A
c
i,jvj | ≤ (C/12)

√
d, which implies |vTAv| ≤ C

√
d. �

We also need

9

Proposition 3 The following hold whp

‖(A − (6d)α+I)v+‖2 ≤ d‖v+‖2,

‖(A − (6d)α−I)v−‖2 ≤ d‖v−‖2.

Proof We work with v+, as the bound on v− is calculated analogously.

Setting y = (A− (6d)α+I)v+, we see that

yT y = vT
+(A− (6d)α+I)

T (A− (6d)α+I)v+

= vT
+A

2v+ − 2(6d)α+vT
+Av+ + ((6d)α+)2vT

+v+.

We know that, whp, vT
+Av+ ≥ (6d)α+n−2−d/Cn from the proof of Lemma

1 (1). By a similar calculation, we have vT
+Av+ ≤ (6d)α+n + 2−d/Cn. To

complete the proposition, we calculate that, whp, vT
+A

2v+ = ((6d)α+)2n±
2−d/Cn. (To see this, write v+ as a linear combination of the eigenvectors of
A, and note that the coefficient of the eigenvector corresponding to eigen-
value (6d)α+ must have most of the weight in the sum in order for vT

+Av+

to be close to (6d)α+). Summing up, we see that whp

yTy = ((6d)α+)2n± 2−d/Cn− 2(6d)α+((6d)α+n± 2−d/Cn) + ((6d)α+)2n

= ±3 · 2−d/Cn.

�

We can now complete the lemma. To show λ2 ≤ (C + 2)
√
d, we apply

Rayleigh’s Principle with L = {v : vTv+ = 0}. Then we write v ∈ L as
tv− + w, where wTv+ = 0 and wTv− = 0. So

vTAv = t2vT
−Av− + 2twTAv− + wTAw

= t2vT
−Av− + 2twT (A− (6d)α−I)v− + wTAw

≤ t2((6d)α− + 2−d/C)‖v−‖2 + 2t
√
d‖w‖‖v−‖

+ C
√
d‖w‖2

≤ (C + 2)
√
d‖v‖2,

where the final inequality follows from α− < 0, ‖w‖ ≤ ‖v‖, and t‖v−‖ ≤
‖v‖.
To show λ2n−1 ≥ −C

√
d, we let L be any 2 dimensional subspace of R

2n.
If L is spanned by {v−,v+}, we take the v in Rayleigh’s Principle to be

10

v = v+, and we have maxv∈L,v 6=0 vTAv/(vT v) > 0. Otherwise, there
is some nonzero vector v ∈ L that is orthogonal to v+ and v−, and so
Proposition 2 shows that maxv∈L,v 6=0 vTAv/(vT v) ≥ −C

√
d. �

We conclude the section by proving

Lemma 2 Let λ2n be the most negative eigenvalue of A and let v2n be the
corresponding eigenvector. Let v− = β−vT + γ−vF as above. Then the sign
of v2n or −v2n disagrees with the sign of v− on at most (C/d)n coordinates.

Proof Expand v− as a linear combination of orthonormal eigenvectors of
A, so that we have v− =

∑2n
i=1 civi. Then

((6d)α−I −A)v− =
2n
∑

i=1

((6d)α− − λi)civi

and

‖((6d)α−I −A)v−‖2 =

2n
∑

i=1

c2i ((6d)α− − λi)
2

≥ c21((6d)α− − λ1)
2 +

2n−1
∑

i=2

c2i ((6d)α− − C
√
d)2

≥ ((3d)α−)2
2n−1
∑

i=1

c2i ,

since α− < 0, λ1 > 0, and λi < C
√
d for i = 2, . . . , 2n − 1.

We know from Proposition 3 above that

d‖v−‖2 ≥ ‖((6d)α−I −A)v−‖2,

so
2n−1
∑

i=1

c2i ≤ d

((3d)α−)2
‖v−‖2 ≤ 1

(9d)α2
−

‖v−‖2 =
1

(9d)α2
−

n.

Let ṽ =
∑2n−1

i=1 civi, and we have c2nv2n = v− − ṽ. Each entry of v− is at

least
√

1
17 in absolute value, so c2nv2n(ℓ) may have sign opposite of v−(ℓ)

for at most 17
(9d)α2

−

n coordinates. �

Corollary 1 After step (3) at least (1 − C/d)n variables are set correctly.

11

3 Non-spectral Arguments

This section completes the main theorem by analyzing steps (4) and (5)
of the algorithm. We choose dmin large enough so the truth assignment π
produced in step (3) is correct on all but δn variables, where δ is a sufficiently
small constant (like 0.001).

To simplify the following discussion we make a few definitions; in the follow-
ing ψ is a partial truth assignment. Recall that φ is the satisfying assignment
we used to generate the instance I.

• We say variable x supports clause C with respect to assignment ψ if
x is the only true literal in C with respect to ψ or x is the only true
literal in C with respect to ψ.

• Let Ak be the set of variables x such that there are (3 ± kǫ)d clauses
which x supports with respect to φ. Here ǫ is a sufficiently small
constant (eg. ǫ = 0.1).

• Let B be the set of variables x such that x appears in (µD±ǫ)d clauses,
where µDd is the expected number of clauses containing x, which is
(3 + 6)d+ (6 + 3)η2d+ 3η3d+ O(1/n).

We will be concerned with A1 and A4, so we may think of A1 as the variables
that support “about the right number of clauses” and A4 as the variables
that support “almost about the right number of clauses” (with respect to
φ).

We now list some useful properties as in [8] which hold for I qs1:

Useful Property 1 |A1 ∩ B| ≥ n(1 − e−d/C).

Useful Property 2 There is no subset of variables U such that |U | ≤ 2δn
and at least 1

9ǫd|U | clauses contain two variables from U .

These follows from standards calculations which are omitted here.

Now we show step (4) improves the assignment found in step (3).

Lemma 3 After step (4) at least (1 − 2−d/C)n variables are set correctly
whp.

1We say a sequence of events En holds quite surely (qs) if the probability Pr[En] =
o(n−C) for any constant C.

12

Proof Define the set of variables H as follows:

1. Let H1 = A1 ∩ B. Let B be the remaining variables.

2. While there is a variable ai ∈ Hi which is in less than (µD − 2ǫ)d
clauses with only variables in Hi, define Hi+1 to be Hi \ {ai}.

3. Let am be the last variable removed in step (2) and let H = Hm.

Proposition 4 |H| ≥ (1 − 2−d/C)n qs.

Proof Useful Property 1 shows that |H1| ≥ (1 − e−d/C)n qs. Suppose
that m ≥ m0 = e−d/Cn. Let U = {a1, . . . , am0

} ∪ B. Each ai appears at
least (µD − ǫ)d clauses but at most (µD −2ǫ)d clauses with only variables in
H, so for each ai there must be at least ǫd clauses containing ai and some
other variable of U . But each clause can account for at most 3 of the ǫm0d
pairs, so the total number of clauses containing two variable from U is at
least 1

3ǫ|U |/2, contradicting Useful Property 2.

Therefore, |H| ≥ (1 − 2e−d/C)n ≥ (1 − 2−d/C)n qs. �

Proposition 5 Let Bi be the incorrectly assigned variables in H at the i-th
iteration of step (4). Then |Bi| ≤ |Bi−1|/2 qs.

Proof We will assume not and use Useful Property 2 to derive a contra-
diction. We know |B0| ≤ δn qs because step (3) works. If x ∈ Bi, there are
2 cases to consider.

If x ∈ Bi−1 then πi−1(x) = πi(x) so x appears in at most 5ǫd clauses
unsatisfied by πi−1. But x ∈ H, so there are at least (3 − ǫ)d clauses which
x supports with respect to φ, so at least (3 − 6ǫ)d of these clauses contain
some other variable y with πi−1(y) 6= φ(y). Also because x ∈ H, x appears
in at most (µD + ǫ)d clauses, at least (µD − 2ǫ)d of which include only
variables also in H. So x appears in at most 3ǫd clauses with variables not
in H. This means of the (3−6ǫ)d clauses containing another variable which
is assigned incorrectly by πi−1, at least (3− 9ǫ)d of them contain a variable
in Bi−1.

If x 6∈ Bi−1 then, since it is in Bi, it must be in 5ǫd clauses which are
unsatisfied with respect to πi−1. Since all these clauses are satisfied with

13

respect to φ, they must each contain some variable y which has πi−1(y) 6=
φ(y). But x is in at most 3ǫd clauses with variables outside of H, so x is in
at least 2ǫd clauses with some variable in Bi−1.

In either case, every variable in Bi appears in at least 2ǫd clauses with some
variable of Bi−1. Setting U = Bi ∪ Bi−1, we have at least 1

32ǫd|Bi| clauses
containing two variables from U . If |Bi| ≥ |Bi−1|/2 then the bound on
number of clauses above exceeds 4

9ǫd|U |, which contradicts Useful Property
2. �

This shows that whp all literals in H are assigned correctly in log n itera-
tions, which completes the proof of Lemma 3. �

Lemma 4 After unassignment in step (5) all variables in H remain as-
signed and no variable which remains assigned is assigned incorrectly whp.

Proof All variables in H remains assigned: all x ∈ H are assigned cor-
rectly at the end of step (4), and there are at most 3ǫd clauses containing
x and variables outside of H, so there are at least (3 − 4ǫ)d clauses (the
ones in H) which x supports and no more than (3 + 4ǫ)d clauses which x
supports. In addition, we know H ⊆ A4, so all x ∈ H remain assigned in
π′1. To see that no x is unassigned in later π′i, note that for x ∈ H, x is in
at least (µD − 2ǫ)d clauses consisting only of other variables in H.

Any variable still assigned after unassignment is assigned correctly: Let U
be the set of variables that are assigned incorrectly after unassignment.
Suppose x ∈ U . Then x appears in at most (µD + ǫ)d clauses, of which at
most 3ǫd contain an unassigned variable. Also, x supports at least (3− 4ǫ)d
clauses, so x supports at least (3 − 7ǫ)d clauses containing no unassigned
variables. In the correct assignment, x is opposite its current value and all
the clauses are satisfied, so each of these (3−7ǫ)d assigned clauses has some
other assigned variable set incorrectly. Thus x appears in (3 − 7ǫ)d clauses
with some other variable from U . Since each clause can account for at most
3 such pairs, we have at least 1

3(3− 7ǫ)d|U | clauses containing two variables

of U . |U | ≤ 2−d/Cn so this contradicts Useful Property 2. �

For the final piece of the argument, consider the graph Γ with a vertex for
each variable and an edge between two unassigned variables if they appear in
a common clause. We will show Γ has connected components of size at most
log n whp. This is proved similarly to Proposition 4 of [8]. The argument is
based on a calculation of the expected number of (log n)-sized trees covered

14

by the clauses of I that are disjoint from H.

Lemma 5 No connected component of Γ has size larger than log n whp.

Proof Let T ′ be a fixed tree on log n vertices, and let T be a fixed collection
of clauses such that each edge of T ′ appears in some clause of T . We call
T minimal if deleting any clause results in a set which does not cover T ′.
Let V (T) denote the set of variables appearing in some clause of T and
V (T ′) denote the set of variables appearing in T ′. We wish to show that
Pr[T ⊆ I and V (T ′) ∩H = ∅] is small. Let J be the subset of variables of
V (T ′) which appear in at most 6 clauses of T .

Proposition 6 |J | ≥ |V (T ′)|/2

Proof Suppose |J | < |V (T ′)|/2. Then at least |V (T ′)|/2 variables appear
in more than 6 clauses of T . So |T | ≥ 1

3 · 6 · |V (T ′)|/2 = |V (T ′)|. But
since T is minimal, each clause of T covers at least 1 unique edge of T ′, so
|T | ≤ |V (T ′)| − 1. Contradiction. �

We define the set of variables H ′ by the following iterative procedure (which
is similar to the procedure we used to generate H, but depends on V (T)\J):

1. Set H ′
1 to be the set of variables x such that x supports at least (3−ǫ)d

clauses and at most (3 + ǫ)d− 6 clauses with respect to φ, x appears
in at least (µD − ǫ)d clauses and at most (µD + ǫ)d− 6 clauses, and x
is not in V (T) \ J

2. While there exists xi appearing in less than (µD − 2ǫ)d clauses with
only variables from H ′

i, set H ′
i+1 = H ′

i \ {xi}.

3. Set H ′ to H ′
m, the final result of the previous step.

Proposition 7 Let F be a set of clauses and let H(F ∪ T) be the value
of H if I = F ∪ T and let H ′(F) be the value of H ′ if I = F . Then
H ′(F) ⊆ H(F ∪ T).

Proof First, we argue that H ′
1(F) ⊆ H1(F ∪ T). For x 6∈ H1(F ∪ T)

consider the following cases:

15

1. If x appears in more than (µD + ǫ)d clauses of F ∪T or supports more
than (3+ ǫ)d clauses of F ∪T with respect to φ then it is not included
in H1(F ∪ T); we argue x is also not in H ′

1(F) by examining 2 cases:

(a) x ∈ V (T) \ J . Then x is not included in H ′
1(F).

(b) x 6∈ V (T) \ J . Then x appears in most 6 clauses of T , so it
appears in more than (µD + ǫ)d − 6 clauses of F or x supports
more than (3 + ǫ)d− 6 clauses of F with respect to φ and hence
is not included in H ′

1(F).

2. If x appears in less than (µD − ǫ)d clauses of F ∪ T or supports less
than (3−ǫ)d clauses of F ∪T with respect to φ then, since it appears in
no more clauses of F and supports no more clauses of F with respect
to φ, it is not included in H1(F ∪ T) or H ′

1(F).

We proceed by showing that ifH ′
i(F) ⊆ Hi(F∪T) then H ′

i+1(F) ⊆ Hi+1(F∪
T): if xi appears in less than (µD −2ǫ)d clauses of F ∪T with only variables
of Hi(F ∪ T) then it also appears in less than (µD − 2ǫ)d clauses of F with
only variables of H ′

i(F).

Thus, we conclude that H ′(F) ⊆ H(F ∪ T). �

Proposition 8 Pr[T ⊆ I and V (T ′) ∩H = ∅] ≤ Pr[T ⊆ I] Pr[J ∩H ′ = ∅]

Proof It is sufficient to show that

Pr[J ∩H = ∅
∣

∣ T ⊆ I] ≤ Pr[J ∩H ′ = ∅].

We do this now:

Pr[J ∩H ′ = ∅] =
∑

F : J∩H′(F)=∅

Pr[I = F]

≥
∑

F : J∩H(F∪T)=∅

Pr[I = F],

where the inequality follows from H ′(F) ⊆ H(F ∪ T). Now, we break each
set of clauses F into F ′ = F \ T and F ′′ = F ∩ T . We rewrite the value

16

above as
∑

F : J∩H(F∪T)=∅

Pr[I = F]

=
∑

F ′ : F ′∩T=∅,
J∩H(F ′∪T)=∅

∑

F ′′ : F ′′⊆T

Pr
[

I \ T = F ′ ∧ I ∩ T = F ′′
]

=

(

∑

F ′ : F ′∩T=∅,
J∩H(F ′∪T)=∅

Pr[I \ T = F ′]

)

(

∑

F ′′ : F ′′⊆T

Pr[I ∩ T = F ′′]

)

=
∑

F ′ : F ′∩T=∅,
J∩H(F ′∪T)=∅

Pr[I \ T = F ′]

=
∑

F ′ : F ′∩T=∅,
J∩H(F ′∪T)=∅

Pr[I \ T = F ′
∣

∣ T ⊆ I]

= Pr[J ∩H = ∅
∣

∣ T ⊆ I].

�

Proposition 9 Pr[J ∩H ′ = ∅] ≤ 2n−d/2C

Proof Although H ′ is formed by a complicated iterative procedure, this
procedure does not depend in any way on J , and so the probability that
J does not intersect H ′ is the same as the probability that any set of size
j = |J | does not intersect H ′. Conditioned on |H ′|, this is given by

Pr
[

J ∩H ′ = ∅
∣

∣ |H ′| = h
]

=

(

n− j

h

)/(

n

h

)

≤ (n− h)j .

It follows from the same arguments as in Proposition 4 that |H ′| > (1 −
2−d/C)n qs.

Therefore the unconditional probability that J ∩H ′ = ∅ is at most 2−jd/C +
n−d/2C . Since j = |J | ≥ |V (T ′)|/2 = (log n)/2, the desired bound on the
probability holds. �

Let k = log n, and let NT ′,s denote the number of ways to pair 2s edges of T ′

to form s clauses which each cover 2 edges. Since there are 6 ways to permute
the order of the variables in each clause, 8 ways to set the negations, and

17

k − 1 − s clauses total, it follows that there are at most NT ′,s(48n)k−1−2s

ways to cover tree T ′ with a minimial set of clauses such that s clauses
cover 2 edges and k − 1 − 2s clauses cover 1 edge. Let T be such a set of
clauses. Then we have Pr[T ⊆ I] = (d/n2)k−1−s. Above we showed that
Pr[J ∩ H ′] ≤ e−k(d/2C). Thus, the probability that the random instance I
contains a set of clauses which cover a k-tree that is disjoint from H is at
most

∑

k-trees T ′

k/2
∑

s=0

NT ′,s(48n)k−1−2s
(

d/n2
)k−1−s

e−k(d/2C)

≤
∑

k-trees T ′

(k/2
∑

s=0

NT ′,s

)

(48d)kn1−ke−k(d/2C)

To obtain useful upper bounds on the sum
(
∑

sNT ′,s

)

, we fix a degree
sequence (d1, . . . , dk) for T ′, and consider the following procedure for pairing
edges so that triangles can cover the edge pairs. For each vertex, we specify
a permutation of the edges incident to that vertex. Then we iterate through
the vertices, and for each vertex, we iterate through the edges and pair up
each unpaired edge with the edge given by the permutation associated with
the current vertex (and leave the edge unpaired if the permutation sends
the edge to itself). Any pairing of edges which can be covered by clauses
can be generated this way by choosing the permutations to transpose each
pair of edges to be covered by a single clause and to leave fixed all the other
edges. Since there are di! different permutations for vertex i, we have

k/2
∑

s=0

NT ′,s ≤
k
∏

i=1

(di!) .

Prüfer codes give a bijection between the set [k]k−2 and labeled trees on k
vertices. They have the additional nice property that the degree of vertex i
in the tree corresponding to code c ∈ [k]k−2 is exactly 1 less than the number
of times i appears in c. It follows that the number of k-trees with degree
sequence (d1, . . . , dk) equals

(k−2
d1−1,...,dk−1

)

(see, for example, [25, Section 4.1,

p. 33]). There are
(n
k

)

ways to choose the k vertices of the tree. So the

18

probability above is at most

∑

d1+...+dk=2(k−1)

(

k − 2

d1 − 1, . . . , dk − 1

)(

n

k

)(k
∏

i=1

(di!)

)

(48d)kn1−ke−k(d/2C)

≤
∑

d1+...+dk=2(k−1)

k2ek
(k
∏

i=1

di

)

(48d)kne−k(d/2C).

For (d1, . . . , dk) with d1 + . . . + dk = 2(k − 1), the product
∏k

i=1 di is max-

imized when d1 = . . . = dk and so
∏k

i=1 di < 2k. The number of ways to
choose positive integers (d1, . . . , dk) so that d1 + . . . + dk = 2(k − 1) is less
than

(2k−1
k−1

)

, which is less than 22k. So, provided we have chosen the con-
stant d sufficiently large, we find that the probability that I contains a set
of clauses which covers a (log n)-tree disjoint from H is at most

22 log n(log n)2elog n2log n(48d)log nne− log n(d/2C) = o(1).

�

4 Acknowledgments

Thanks to Alan Frieze for recommending average case analysis of 3SAT
as an interesting area of study and encouraging me to pursue the spectral
approach. Thanks also to Luis von Ahn for helpful comments and discussion.

References

[1] D. Achlioptas and Y. Peres, The threshold for random k-SAT is
2k log 2 −O(k), Proc. of the 35th ACM STOC (2003) 223-231.

[2] M. Alekhnovich, More on average case vs approximation complexity,
Proc. of the 44rd IEEE FOCS (2003) 298-307.

[3] N. Alon and N. Kahale, A Spectral Technique for Coloring Random
3-Colorable Graphs, DIMACS TR-94-35 (1994).

[4] N. Alon and J. Spencer, The Probabilistic Method, John Wiley & Sons
(2000).

19

[5] W. Barthel, A. K. Hartmann, M. Leone, F. Ricci-Tersenghi, M. Weigt,
and R. Zecchina, Hiding solutions in random satisfiability problems: A
statistical mechanics approach, Phys. Rev. Lett. 88, 188701 (2002)

[6] E. Ben-Sasson and A. Wigderson, Short proofs are narrow – Resolution
made simple, J. Assoc. Comp. Mach. (1999) 517-526.

[7] J. Crawford and L. Auton. Experimental results on the crossover point
in random 3-SAT, Artificial Intelligence 81 (1996) 31-57.

[8] H. Chen and A. Frieze, Coloring Bipartite Hypergraphs, Proc. 5th
IPCO (1996) 345-358.

[9] V. Chvátal and E. Szemerédi, Many hard examples for resolution, J.
Assoc. Comp. Mach. (1988) 759-768.

[10] S. Cook, The Complexity of theorem-proving procedures, Proc. 3rd
FOCS (1971) 151-158.

[11] U. Feige, Relations between average case complexity and approximation
complexity, Proc. 34th ACM STOC (2002).

[12] U. Feige and E. Ofek, Spectral techniques applied to sparse random
graphs, Random Structures and Algorithms, 27 (2) 251-275.

[13] U. Feige and D. Vilenchik, A local search algorithm for 3SAT, Technical
Report MCS04-07 of the Weizmann Institute, 2004.

[14] A. D. Flaxman, A spectral technique for random satisfiable 3CNF for-
mulas, Proc. 14th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA) (2003) 357-363.

[15] E. Friedgut, Necessary and sufficient conditions for sharp thresholds
of graph properties, and the k-SAT problem. J. Amer. Math. Soc. 12
(1999) 1017-1054.

[16] J. Friedman and A. Goerdt, Recognizing More Unsatisfiable Random
3-SAT Instances Efficiently, Proc. 28th ICALP (2001) 310-321

[17] J. Friedman, J. Kahn, and E. Szemerédi, On the second eigenvalue in
random regular graphs, Proc. 21st ACM STOC (1989) 587-598.

[18] A. M. Freize and N. C. Wormald, Random k-SAT: a tight threshold for
moderately growing k. In Proc. 5th International Symposium on Theory
and Applications of Satisfiability Testing (2002) 1-6.

20

[19] T. Hofmeister, W. Schöning, R. Schuler, and O. Watanabe, A Proba-
bilistic 3-SAT Algorithm Further Improved, Proc. of the 19th Annual
Symposium on Theoretical Aspects of Computer Science (STACS ’02)
LCNS 2285 (2002) 192-202.

[20] A. Kaporis, L. Kirousis, and E. Lalas, The probabilistic analysis of a
greedy satisfiability algorithm, Proc. 5th Satisfiability Testing Work-
shop (2002) 362-276.

[21] A. Kaporis, L. Kirousis, Y. Stamatiou, M. Vamvakari, M. Zito, Coupon
Collectors, q-Binomial Coefficients and the Unsatisfiability Threshold.
Proc. 7th ICTCS (2001) 328-338

[22] E. Koutsoupias and C. Papadimitriou, On the greedy algorithm for
satisfiability, Info. Proc. Let., 43 (1992) 53-55.

[23] M. Krivelevich and D. Vilenchik, Solving random satisfiable 3CNF for-
mulas in expected polynomial time, to appear in Proc. 17th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA) (2003).

[24] L. Levin, Universal search problems, Prob. Info. Trans. 9 (1973) 265-
266.

[25] L. Lovász, Combinatorial problems and exercises, 2nd Ed., Elsevier
Science Publishers, Amsterdam, 1993.

[26] M. Motoki and R. Uehara, Unique Solution Instance Generation for the
3- Satisfiability (3SAT) Problem, IEICE Technical Report, COMP98-54
(1998) 25-32.

[27] U. Schoning, A Probabilistic Algorithm for k-SAT and Constraint Sat-
isfaction Problems, Proc. 40th Symp. on Foundations of Computer Sci-
ence (1999) 410-414

[28] G. Strang, Linear algebra and its applications, Hardcourt Brace Jo-
vanovich Publishing (1988).

21

