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ABSTRACT. We study the time constant for first-passage percolation, and the Vickery-Clarke-Groves (VCG) pay-
ment for the shortest path, on a width-2 strip with random edge costs. These statistics attempt to describe two
seemingly unrelated phenomena, arising in physics and economics respectively: the first-passage percolation time
predicts how long it takes for a fluid to spread through a random medium, while the VCG payment for the shortest
path is the cost maximizing social welfare among selfish agents. However, our analyses of the two are quite similar,
and require solving (slightly different) recursive distributional equations. Using Harris chains, we can characterize
distributions, not just expectations.

1. INTRODUCTION

The general topic of this paper is the random structure produced when afixed graph is assigned edge costs
independently at random. We will focus on a particular fixed graph, then-long width-2 strip (defined below),
and study some aspects of a minimum-cost path. In particular, we will considerthe time constant for first-
passage percolation, and the Vickery-Clarke-Groves (VCG) payment.These statistics attempt to describe two
seemingly unrelated phenomena arising in physics and economics, respectively. However, our analyses of the
two are quite similar.

First-passage percolation:First-passage percolation is a model of the time it takes a fluid to spread through a
random medium [BH57, HW65, Kes87]. Mathematically, it is described by theshortest edge-weighted paths
from an origin to every other point in a graph. For our purposes, the “timeconstant” is the limiting ratio of
this length to the unweighted shortest path lengthn, asn tends to infinity. Previous research has derived upper
and lower bounds for the time constant of first-passage percolation on thegrid [SW78, Jan81, AP02] and on
the random graphGn,p [HHM01]. For the width-2 strip, we provide a method of calculating the time constant
for any discrete edge-length distribution; the method can also be used to provide arbitrarily good bounds for
any well-behaved continuous distribution, as we illustrate for the uniform distribution on [0, 1]. Our method
is similar in spirit to the Objective Method (or Local Weak Convergence) [Ald01, AS04, GNS, Ald05], in the
sense that that rather then looking at a collection of random variables whose cardinality diverges to infinity as
the size of the underlying graph diverges to infinity, we look at a relative quantity defined on a localized part
of the graph. Previously this has been achieved by looking at the relativevalue of an edge included in the
potential largest matching or similar structure. The corresponding quantity iscalled abonus, and a recursive
distributional equation defining the distribution of the bonus is derived. (See also the survey of recursive
distributional equations [AB05].) The model in the present paper is considerably simpler due to the structure
of the width-2 strip, which makes the underlying recursive distributional equation simply a Markov chain.

Because it is a Markov chain, the analysis for discrete edge-length distributions is straightforward; for a
Bernoulli edge-length distributionBe(p) the incremental costγ(n) to go from stagen − 1 to n has a unique
stationary distribution with a simple, closed-form expression, and its expectation is the time constant in ques-
tion. When the edge-length distribution is continuous (uniform, for example),replacing it with a rounded-down
(respectively, rounded-up) discretized equivalent gives a lower (resp., upper) bound on the time constant, but
no information about the incremental costγ(n). A subtly different approach gives stochastic lower and upper
bound bounds on the incremental cost, and, separately, an analysis viaHarris chainsshows it to have a unique
stationary distribution. The Harris-chain approach is well known in probability theory, but is worthy of greater
attention in tangential fields.
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VCG Payment:The Vickery-Clarke-Groves (VCG) mechanism [Vic61, Cla71, Gro73]applies to a setting in
economics where each edge of a graph is controlled by a different selfish agent, and each agent has some private
value describing the cost of using her edge. Anyone interested in buyinga path in such a network is faced with
the problem that an agent will lie about her edge cost if such a lie will yield her a higher payment. The VCG
mechanism provides a solution to this problem in which payments to agents are carefully selected to produce
the cheapest path (maximizing social welfare) in such a way that each agent finds it in her best interest to reveal
her true edge cost. The VCG mechanism was first applied to the shortest-path problem explicitly in [NR99].

Unfortunately, the VCG mechanism may result in the auctioneer paying much more than the cost of the shortest
path, and the overpayment can be large. Even in the case where the second-best path has cost close to that of the
best path, the VCG overpayment can be large. See [AT02] for a detailedstudy of the worst-case behavior of this
overpayment. Additional investigation of shortest paths in this setting appearin [MPS03, ESS04, CR04, Elk05].

It is possible that the worst-case bounds on the cost of the VCG mechanismare overly pessimistic. To inves-
tigate this, we compare the cost of the VCG mechanism with the shortest-path cost in the average-case setting
(for the width-2 strip with random edge costs). Other average-case studies for completely different graphs
appear in [MPS03, CR04], and real-world measurements appear in [FPSS02].

Generalizations:We rely on no special properties of the uniform distribution; the methods we use to analyze
this edge-length distribution could equally well be applied to any well-behaved, bounded distribution.

For the2 × n strip, we show that it is not important whether edges parallel to the long direction must be
traversed left-to-right or whether they can be traversed in either direction. Even for the3 × n strip, however,
the distinction is important. For any fixedm, our methods apply to them × n strip in the left-to-right model
(with some more complicated recursive equations replacing (1) and (2)), but not to the undirected model.

2. THE MODEL

Let [n] denote{0, 1, . . . , n − 1}. Define theinfinite width-2 stripto be the infinite graph whose vertex set is
[2]×Z, and whose edges join vertices at Hamming distance 1, i.e., edges(j, i) and(j′, i′) where(|j−j′|, |i−i′|)
is either(0, 1) or (1, 0). Thehalf-infinite stripis the subgraph induced by[2]× Z

0,+, and ann-long strip is the
(finite) subgraph induced by[2] × [n + 1].

If each edgee has a weightw(e) ∈ R
0,+, for each vertexv let P(v) be the “shortest” (minimum-weight) path

from (0, 0) to v, and let̀ (v) be the weight of this path. We consider two models: the “general-path” (GP)model
wherePGP(v) may be any path from(0, 0) to v, and the “left-right” (LR) model wherePLR(v) is restricted to
be a left-to-right path. That is,PLR(v) is the shortest path tov which does not traverse any edge from right to
left, or, still more precisely, which contains no successive pair of vertices (j, i), (j, i − 1).

Suppose that the edge weights are drawn independently from some givendistribution, such asBe(p) (the
Bernoulli distribution with parameterp, whereX = 1 with probabilityp andX = 0 w.p. 1 − p) or U [0, 1]
(the uniform distribution over the interval[0, 1]). Our first-passage percolation problem is simply to determine,
for each of three types of strips, for a given distribution, and under thegeneral-path or left-right model, the
existence and value of the limiting time constant or “rate” of percolation

lim
n→∞

E`(0, n)

n
.

We will also show that̀ (0, n)/n almost surely converges to this value, and that the same statements hold for
`(1, n), with the same rate. Note that for all our purposes it suffices to determine path lengths up to an additive
constant.

For notational convenience, for anya ≤ b, we definetrunc(x; a, b) := max{min{x, b}, a}. That is,
trunc(x; a, b) is the “truncation” ofx to the interval[a, b]: x if a ≤ x ≤ b; a if x < a; andb if x > b.

3. SHORTEST PATHS

The following lemma shows that, up to an additive error of at most 2, distancesto (0, n) or to (1, n), under any
of the three graph models and the two distance models, are all equivalent.
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FIGURE 1. Moving from∆i−1 to ∆i.

Lemma 1. LetG denote the infinite width-2 strip with an arbitrary, fixed set of edge weights in the range[0, 1]
(respectively, random i.i.d. non-negative weights with expectation≤ 1). LetH be the half-infinite restriction of
G, and, for anyn ≥ 0, let K be then-long restriction. Then, for anyj ∈ [2] and i ∈ [n + 1], the distances
(respectively, expected distances)`LR(j, i) and`GP(j, i), measured in the three graphsG, H, andK, span a
range of at most 2.

Proof. We will argue only the case of fixed edge weights; the random case proceeds identically. The cheapest
GP path inG from (0, 0) to whichever of(0, i) and(1, i) is cheaper is at most as expensive as any of the paths
under consideration, because this path is the least constrained; denote this pathPG

GP(i). Fixing j = 0 (the
j = 1 case is treated identically), the most constrained problem version is to find thecheapestLR path inK
from (0, 0) to (0, i); the resulting pathPK

LR(0, i) is the most expensive one under consideration. By the nature
of the width-2 strip, the restriction ofPG

GP(i) to K, unioned with the edges{(0, 0), (1, 0)} and{(1, i), (0, i)},
is or includes aLR path inK from (0, 0) to (0, i). Thus`G

GP(i) ≤ `K
LR(0, i) ≤ `G

GP(i) + 2, and all the other
lengths must also lie in this range. ¤

Because of this, we will henceforth consider onlyLR paths, on the half-infinite stripH, to points(0, n) and
(1, n). For convenience, we will writèH

LR(1, i) simply as̀ (1, i) and`H
LR(0, i) as`(0, i) or just`(i). Define

∆(i) = `(1, i) − `(0, i).

With reference to Figure 1, for anyi > 0, let Xi be the cost of the edge{(0, i − 1), (0, i)} andYi the cost of
{(1, i − 1), (1, i)}, and for anyi ≥ 0 let Zi be the cost of{(0, i), (1, i)}.

Observe that fori > 0,

γ(i) := `(i) − `(i − 1) = min{Xi, ∆(i − 1) + Yi + Zi}(1)

∆(i) = trunc(∆(i − 1) + Yi − Xi; −Zi, Zi).(2)

Since∆(i−1) depends only on values ofX, Y , andZ with indicesi−1 and smaller, the four random variables
∆(i − 1), Xi, Yi, andZi are mutually independent.

4. THE BERNOULLI CASE

Suppose that all the random variablesXi, Yi, andZi are i.i.d. with distributionBe(p), i.e., each is 1 with
probabilityp and0 w.p.1 − p.

A “stationary distribution” for equation (2) is a distribution for∆(i − 1) giving rise to∆(i) with the same
distribution (though typicall not independent).

Lemma 2. When the edge weights are i.i.d. with distributionBe(p), 0 ≤ p < 1, ∆(i) is a Markov chain on
{−1, 0, 1} with a unique stationary distribution, namely∆ = 1 w.p.q; ∆ = −1 w.p.q; and∆ = 0 w.p.1− 2q,

whereq = p2

1+3p2 .

Proof. All values in question are integral, and each∆(i) ≤ 1, since(1, i + 1) may at worst be reached via
(0, i + 1) at an additional cost of at most 1. Symmetrically, each∆(i) ≥ −1. By the independence of∆(i− 1)
from (Xi, Yi, Zi), ∆(i) is a Markov chain on the state space{−1, 0, 1}.
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From (2), ifZi = 0 (which occurs w.p.p) then∆(i) = 0. Otherwise we have the following table of possibilities,
their probabilities (including the probabilityp thatZi = 1), and the corresponding values of∆(i):

∆(i − 1) Xi Yi P ∆(i)
1 0 0 pq · (1 − p)2 1
1 0 1 pq · p(1 − p) 1
1 1 0 pq · p(1 − p) 0
1 1 1 pq · p2 1
0 0 0 p(1 − 2q) · (1 − p)2 0
0 0 1 p(1 − 2q) · p(1 − p) 1
0 1 0 p(1 − 2q) · p(1 − p) −1
0 1 1 p(1 − 2q) · p2 0
1 0 0 pq · (1 − p)2 −1

−1 0 1 pq · p(1 − p) 0
−1 1 0 pq · p(1 − p) −1
−1 1 1 pq · p2 −1

If ∆(i − 1) = 1 and∆(i) = 1 are both to have probabilityq, we must have

q = pq · (1 − p)2 + pq · p(1 − p) + pq · p2 + p(1 − 2q) · p(1 − p),

whose solution isq = p2/(1 + 3p2). Thus if ∆ is to be stationary, we must have, for this value ofq, ∆ = 1
w.p. q; by symmetry∆ = −1 w.p. q; and thus∆ = 0 w.p.1 − 2q.

The Markov chain’s transition matrix, which corresponds to the table above(plus the 12 omitted cases when
Zi = 0), is easily seen to be ergodic and aperiodic as long as0 < p < 1, and thus has a unique stationary
distribution. Whenp = 0, ∆i = 0, deterministically, for alli ≥ 0, which still happens to fit the same form.
(Whenp = 1, ∆i = 1 deterministically: the sole exception.) ¤

Lemma 3. When the edge weights are i.i.d. random variables with distributionBe(p), 0 < p < 1, γ(i) = `(i)−
`(i−1) is a Markov chain on{−1, 0, 1} with a unique stationary distribution: it is−1 w.p.p2(1−p)2/(3p2+1);
1 w.p.2p2(1 + p2)/(3p2 + 1); and0 with the remaining probability, givingE(γ(i)) = p2(1 + p)2/(3p2 + 1).

Proof. Thatγ(i) is a Markov chain, and is ergodic and aperiodic, follows as in the proof ofthe preceding lemma.
Sinceγ(i) depends on four independent random values all of whose distributions are known, calculating it is
straightforward. Instead of presenting a table as above we divide it into afew cases. It is−1 iff ∆(i) = −1,
Yi = 0, andZi = 0 (the value ofXi is irrelevant), which occurs w.p.q(1 − p)2. It is 1 iff Xi = 1 and
∆(i) + Yi + Zi ≥ 1, the latter of which is satisfied if∆(i) = −1 andYi = Zi = 1, if ∆(i) = 0 and(Yi, Zi) is
anything but(0, 0), or if ∆(i) = 1, giving total probabilityp

[

qp2 + (1 − 2q)(1 − (1 − p)2) + q
]

. The rest of
the calculation is trivial. ¤

Theorem 4. When the edge weights are i.i.d.Be(p) random variables, for anyp with0 < p < 1, limn→∞
E`(n)

n
=

limn→∞ Eγ(n) = p2(1 + p)2/(3p2 + 1), and almost surely,limn→∞
`(n)
n

exists and has the same value.

Proof. We have established thatγ(i) is an ergodic Markov chain with the unique stationary distribution de-
scribed in Lemma 3. The ergodicity implies that almost surely

lim
n→∞

`(n)

n
= lim

n→∞

∑

1≤i≤n

`(i) − `(i − 1)

n
= lim

n→∞

∑

1≤i≤n

γ(i)

n
= lim

n→∞
E(γ(n)) = p2(1 + p)2/(3p2 + 1).

Since the valuesγ(n) are bounded almost surely (in fact surely, by unity, in absolute value), the almost sure
convergence implies the convergence in expectation.

¤
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5. UNIFORM CASE: EXPECTATION

What if Xi, Yi, andZi have uniform distribution,U [0, 1]? The development in the previous sections applies
here as well:γ(i) and∆(i) are again Markov chains, but with continuous state space. Rather then working
with the continuous state space we introduce a natural and simple discretization. Fix a (large) positive integer
k and letUk (respectivelyUk) be the uniform distribution on the set{1/k, . . . , (k − 1)/k, 1} (respectively
{0, 1/k, . . . , (k − 1)/k}). Lemma 5 is based on the simple observation that the length`(n) is bounded from
above and below by the lengths corresponding to these discrete uniform distributions. This enables us to
circumvent infinite state spaces (the discretized Markov chain is finite) and tocompute upper and lower bounds
on the limiting value ofE`(n)/n.

When the edge weight distribution isU [0, 1], let `(i) denote the length of the shortest path and letγ(i) =
`(i) − `(i − 1). For the edge weight distributionsUk andUk, define`k(i), γ

k
(i), `k(i), andγk(i) likewise.

Lemma 5. The limiting expectations ofγ
k
(n), γk(n), `k(n)/n and`k(n)/n exist, and

lim
n→∞

Eγ
k
(n) = lim

n→∞

E`k(n)

n
≤ lim inf

n→∞

E`(n)

n

≤ lim sup
n→∞

E`(n)

n
≤ lim

n→∞

E`k(n)

n
= lim

n→∞
Eγk(n) ≤ lim

n→∞
Eγ

k
(n) + 2/k.(3)

Proof. Suppose the weight distribution isUk. For simplicity of notation, within this paragraph we refer to the
corresponding quantities without embellishment, e.g.`(n) not `k(n). Since∆(0) = `(1, 0)− `(0, 0) = Z0 has
support{1/k, . . . , k/k}, it is straightforward to check from the recursion (1) and (2) that the possible values
of ∆(i) andγ(i) = `(i) − `(i − 1) have support limited to{−1,−(k − 1)/k, . . . , (k − 1)/k, 1}. The same
recursions imply thatγ(i) is a Markov chain on this (finite) state space. We claim that this Markov chain is
ergodic and has a unique stationary distribution. For this it suffices to showthat for some particular state, there
is positive probability of making a transition from any state to the particular state.Indeed, for any value of
∆i−1, if Xi = 1/k andYi = Zi = 1 then∆i−1 + Yi + Zi ≥ 1 > Xi, and (1) gives∆i = Xi = 1/k. Thus the
state1/k is reachable with positive probability from any other state and the ergodicity isestablished. Arguing
as in the previous section we obtain thatlimn→∞ γk(n) = limn→∞ E`k(n)/n. A similar analysis applies for
Uk.

For any valuex ∈ [0, 1], definex to be the value ofx rounded up to the nearest multiple of1/k (i.e., x =
dkxe/k), andx to be the similar rounding-down. We observe that if we replace the valuesXi, Yi, andZi with
Xi, Y i, andZi then the value of̀ (n) increases, and at the same time the distributionU [0, 1] is transformed
into Uk. Similarly, if we roundXi, Yi, andZi down toX i, Y i, andZi then we decrease the value of`(n) and
transformU [0, 1] into Uk. Finally, note thatX i ≤ X i + 1/k and similar bounds hold forY andZ. Since each
term`(i) − `(i − 1) uses at most two such random variables,`k(n) ≤ `k(n) + n · 2/k. ¤

Corollary 6. The limit limn→∞ E`(n)/n exists, and

lim
k→∞

lim
n→∞

E`k(n)/n = lim
n→∞

E`(n)

n
= lim

k→∞
lim

n→∞
E`k(n)/n.

Together, Lemma 5 and Corollary 6 allow us to compute bounds onlimn→∞ E`(n)/n. Choosing any valuek,
first we compute the stationary distribution for∆k by finding the fixed point for (2), from which the stationary
distribution for`k follows by a single application of (1). From the stationary distribution we obtainthe expec-
tation. Withk = 190, limn→∞ E[`k(n)/n] < 0.4306. Similarly, limn→∞ E[`k(n)/n] > 0.4200, proving that
the true percolation ratelimn→∞ E`(n)/n lies between these values. The same calculation for valuesk > 190
yields arbitrarily good bounds on the rate. Note that the direct path from(0, 0) to (0, n) has expected length ex-
actly0.5 n, and thus the average “saving” rendered by the availability of the alternative edgesYi, Zi is between
0.069n and0.080n.

With k = 190, Figure 2 (left) shows the densities of the stationary distributions ofγ
k
(n) andγk(n) (their

n → ∞ limits). Unfortunately, there is no significance of this for other values ofk: in principle the distribution
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FIGURE 2. Left: Density functions for the stationary distributions ofγ
190

andγ190 (as defined
in Section 5), giving bounds of0.420 < limn→∞ E`(n)/n < 0.431. The discrete density
functions are plotted as continuous lines for visual clarity.Right: Distribution functions for the
stationary distributions ofγ

150
andγ150 (as redefined in Section 6). The stationary distribution

of the true incremental-length distributionγ(n) lies between the two; this also proves that
0.4215 < limn→∞ Eγ(n) = limn→∞ E`(n)/n < 0.4292.

for k = 191 could look completely different. Meanwhile, the observation of the computed discrete density’s
unimodality and its large jump at zero prompts a corresponding conjecture forthe continuous version.

Conjecture 7. Under the uniform distributionU [0, 1], the density of the stationary distribution ofγ(i) is
continuous everywhere but at 0, and is unimodal with mode approximately 0.23.

We note that the method of using rounded-up and rounded-down versions of the random edge costs applies to an
arbitrary bounded distribution as well as to the uniform distribution. However, this method only characterizes
E`(n)/n: it says nothing aboutγ(n). In particular it does not even say thatγ(n) has a limitingexpectation, let
alone anything about itsdistributionor limiting distribution.

6. UNIFORM CASE: DISTRIBUTION

In this section we will redress the deficiency just noted: we will prove thatγ(n) has a limiting distribution
as well as a limiting expectation, and compute bounds on both. The previous section’s shortcoming may be
ascribed to the fact that while we had`k(n) ≤ `(n), it was not generally true thatγ

k
(n) ≤ γ(n): a difference

between two rounded-down quantities can be larger than the difference between the unrounded quantities.

In this section we define different random variables (which we will also call γ(n) andγ(n) because they play
a similar role), for which itis true thatγ(n) ≤ γ(n) ≤ γ(n). While the motive behind the construction is quite
different, the calculations are almost identical.

Separately, we argue from “Harris chains” that the random variablesγ(n) have a limiting distribution. Putting
the two things together, calculating then → ∞ limiting distributions ofγ

k
(n) andγk(n) (for example with

k = 150) provides bounds on the limiting distribution ofγ(n).

We work entirely with the∆ of recurrence (2), from which corresponding conclusions forγ follow immediately
via (1). In all the following, by a “lower bound” we mean a stochastic lower bound. In the previous section,
∆k(n) corresponded to a Markov chain on values(Xk, Y k, Zk) but ∆k was not necessarily a lower bound
on ∆. In this section, we redefine∆k (or more generally∆) so that itis a lower bound on∆, but no longer
corresponds to the discretized Markov chain on(Xk, Y k, Zk).

For convenience, write∆ instead of∆(i − 1) and ∆′ for ∆(i), and likewise for other variables. Letting
W = Y − X, from (2),

∆′ = trunc(∆ + (Y − X); −Z, Z)

= trunc(∆ + W ; −Z, Z)
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≥ trunc(∆ + W ; −Z, Z),

whereZ andZ are any random variables with the property thatZ ≤ Z ≤ Z. ChoosingZ andZ, as before, to
be rounded-down and rounded-up discretizations ofZ, and for convenience definingε = 1/k,

∆′ ≥ trunc(∆ + W ; −Z − ε, Z)

= W + trunc(∆; −Z − W − ε, Z − W )

=: ∆′.(4)

Similarly,

∆′ ≤ W + ε + trunc(∆; −Z − W − ε, Z − W ) =: ∆
′
.(5)

Defining∆(0) = −1 (deterministically) and∆(0) = 1, of course∆(0) ≤ ∆(0) ≤ ∆(0). Using equation (4)
to define∆(n) = ∆′ from ∆(n−1) = ∆, and similarly using (5) to define∆(n) from ∆(n−1), we have that,
for all n, ∆(n) ≤ ∆(n) ≤ ∆(n). From (1), trivially,

γ(i) ≥ min{Xi, ∆(i − 1) + Y + Zi}(6)

γ(i) ≤ min{Xi, ∆(i − 1) + Y + Zi}.(7)

Theorem 9 will show thatγ(n) itself has a unique stationary distribution. Meanwhile, for any fixedk, the
Markov chains for∆(n) and∆(n) are both well-behaved finite Markov chains, with stationary distributions
we will call ∆ and∆. Substituting∆ and∆ into (6) and (7) defines corresponding random variablesγ and
γ, which are then stochastic lower and upper bounds on the stationary distribution for γ(n). Distribution
functions forγ andγ are plotted in Figure 2 (right). By construction the two curves never cross, and the bounds
are sufficiently good that they are largely visually indistinguishable. Of course,Eγ ≤ Eγ ≤ Eγ, and as it
happens these bounds are better than the previous ones despite the use of k = 150 here andk = 190 there:
0.4215 < Eγ < 0.4292.

Remark: Since∆ andW each have support of cardinality2k + 1 andZ has support of cardinalityk, the
(2k + 1)× (2k + 1) transition matrix for∆ can be constructed in timeO(k3). The stationary distribution of∆
is the eigenvector of the transition matrix corresponding to eigenvalue 1, andcan be computed in timeO(k3)
by row reduction. Instead, we approximated the eigenvector by taking the initial distribution vector∆(0) and
repeatedly multiplying it by the transition matrix; while we made no effort to compute the convergence rate,
with k = 150 a stationary vector∆ was obtained (to within machine precision) in under 10 iterations. The same
statements apply to∆, W andZ. Thus to within machine precision, the bounds shown apply to the distribution
of γ(n) for anyn ≥ 10 as well as to the stationary distribution.

Just as (3) showed that our upper and lower bounds on the expectationwere within2/k of one another, here
we can prove that, for anyk, the stationary random variables∆ and∆ are also arbitrarily near to one another:
d(∆, ∆) = O(1/k), where we define the distance between continuous random variablesX andY as the area
between their CDFs (cumulative density functions). (For any coupling of two variablesX andY , E[|X−Y |] ≥
d(X, Y ), with an optimal coupling giving equality.) Recall thatε = 1/k.

Theorem 8. The stationary random variables∆ and∆ for equations(4) and (5) satisfyd(∆, ∆) = O(ε).

Proof. Let ∆ and∆ be the values of the coupled random variables at some time, defined by their previous
values and random variablesW andZ, and letD := ∆ − ∆. Let ∆′, D′, etc.be the corresponding values
one step later, and∆′′ etc. those two steps later. It may help to think of∆, ∆, andD as the state variables of
the single Markov chain representing the coupled process. Because in the coupling the random variables∆, ∆
always satisfy∆ ≤ ∆, the distanced(∆, ∆) between the distributions is by definitionE(D).

Condition onD = d. First we observe thatD′ ≤ d + ε, and thusD′′ ≤ d + 2ε; this is immediate from (4) and
(5). (The two truncations have identical lower and upper “stops”, so their difference is at most the difference of
their central arguments, and the other terms in (4) and (5) contribute a difference of exactlyε.)
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Second, if the truncation defining∆′′ takes the value of its upper stop then so does that for∆
′′
, in which case

D′′ ≤ ε. This happens with constant probability, as we now argue. We assumeε ≤ 0.01. From the right hand
side of the first line of (4), ifZ ′ ≤ 0.1 then

∆′ ≥ Z ′ − ε ≥ (Z ′ − ε) − ε ≥ −0.12.

If in additionW ′′ ≥ 0.5, andZ ′′ ≤ 0.37, then

∆′ + W ′′ ≥ ∆′ + (W ′′ − ε) ≥ 0.37 ≥ Z ′′ ≥ Z ′′,

and from (4)∆′′ = Z ′′. These events occur with probabilityP(Z ′ ≤ 0.1) · P(W ′′ ≥ 0.5) · P(Z ′′ ≤ 0.37) =
0.1 · 1

8 · 0.37 > 0.001.

Assembling these two facts, conditioned onD = d, with probability≥ 0.001 D′′ ≤ ε while with the remaining
probability D′′ ≤ d + 2ε. ThusE(D′′ | D = d) ≤ 0.001ε + 0.999(d + 2ε) < 2ε + 0.999d. Integrating,
E(D′′) ≤ 2ε + 0.999E(D). Since the Markov chain is in stationarity,E(D′′) = E(D), so0.001E(D) ≤ 2ε,
i.e.,E(D) ≤ 2000ε. ¤

From (1), a lower-bounding random variableγ
i
¹ γi is given byγ

i
= min{X i, ∆(i − 1)}, and an upper-

bounding one byγi = min{X i, ∆(i − 1)} ≤ min{Xi + ε, ∆(i − 1)}. In the coupling, the random variables’
values always satisfy0 ≤ γi − γ

i
≤ ε + (∆(i − 1) − ∆(i − 1)). Taking expectations over the stationary

distributions we know to exist (these are finite-state Markov chains) (∆, ∆, γ, andγ are all discrete random
variables) givesd(γ, γ) = E(γ − γ) ≤ ε + E(∆ − ∆) = O(ε).

Finally, we show that∆ has a well-defined stationary distribution; from (1) it is then immediate thatγ does as
well.

Theorem 9. The continuous Markov chain∆(i) defined by(2) has a unique stationary distribution.

Proof. Per the remarks after Definition 10, any recurrent Harris chain possesses a unique stationary distribution,
and Lemma 11 shows that the∆(i) is a recurrent Harris chain. ¤

Definition 10. A discrete time Markov chainΦ(t) with state spaceΩ is defined to be a recurrent Harris chain
if there exist two setsA, B ⊂ Ω satisfying the following properties.

(1) Φ(t) ∈ A infinitely often w.p. 1.
(2) There exists a non-zero measureν with support contained inB such that for everyx ∈ A andC ⊂ B,

P(Φ(t + 1) ∈ C | Φ(t) = x) ≥ ν(C).

(See [Dur96] Section 5.6 pages 325-326 for a Harris chain, and page329 for recurrent Harris.) One can use this
definition to embed a recurrent Harris Markov chain into a modified chain with an extra stateα, such that the
special stateα is visited infinitely often with probability 1. Then various recurrent properties of the chain can
be deduced. Specifically, it can be established (see Durrett [Dur96])that the recurrent Harris chain possesses
a unique stationary distribution. Our next goal is to show that our chain∆(i) is indeed recurrent Harris. Let
A = [−0.1, 1], B = [0, 0.4] and letν be uniform probability distribution onB multiplied by0.2.

Lemma 11. ∆(i) is a recurrent Harris chain with the setsA, B and measureν defined above.

Proof. To show that the chain is a recurrent Harris chain, we observe that when ∆(i) ∈ A, that is∆(i) ≥ −0.1,
if in addition Wi+1 ≥ 0.5 andZi+1 ≤ 0.4, then∆(i + 1) = trunc(∆(i) + Wi+1; −Zi+1, Zi+1) = Zi+1.
Let Vi+1 = 1{Zi+1 ≤ 0.4}. Note that, conditioned onVi+1 = 1, Zi+1 is distributed uniformly on[0, 0.4]. Let
p = P(Wi+1 ≥ 0.5, Vi+1 = 1) = 0.2. Then for everyC ⊂ B andx ∈ A we have

P(∆(i + 1) ∈ C | ∆(i) = x) ≥ P(Wi+1 ≥ 0.5, Vi+1 = 1) · P(Zi+1 ∈ C | Wi+1 ≥ 0.5, Vi+1 = 1)

= pP(Zi+1 ∈ C | Vi+1 = 1) = pµ(C) = ν(C),

whereµ is the uniform measure onB and we defineν by ν(C) = pµ(C). Therefore,∆(i) satisfies condition
(2) of Definition 10. We now prove condition (1), that w.p. 1 the setA is visited infinitely often. This is a simple
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corollary of the fact that ifZi ≤ 0.1 then∆(i) = trunc(∆(i − 1) + Wi; −Zi, Zi) ≥ −0.1, that is∆(i) ∈ A.
Clearly this happens infinitely often w.p. 1. ¤

7. AN AUCTION MODEL

Auction models for networks have received much attention recently. Suppose that in the half-infinite width-2
strip, each edge is provided by an independent agent who incurs a cost for supplying it (or for allowing us to
drive over it, transmit data over it, or whatever). What we have considered so far would be the case where the
agents’ costs are random variables, and we pay for a cheapest path.However, in this setup, agents have an
incentive to lie: their true cost is not the cost they will sensibly tell us.

A popular way to deal with potentially dishonest agents is to assume that each agent will act independently
to maximize her own utility, and to design a mechanism where this behavior will result in every agent being
truthful. It is within this framework that the Vickery-Clarke-Groves (VCG)mechanism operates [Vic61, Cla71,
Gro73]; in a truthful fashion, the VCG mechanism finds the outcome that maximizes social welfare. For buying
an(s, t)-path, the VCG mechanism is the following: The auctioneer finds a cheapest path, and, for each edge
on that path, pays the corresponding agent the difference between thecost of a cheapest path avoiding the edge
and the cost of a cheapest path if the edge cost were 0. (The mechanismis truthful because by inflating her
cost, an agent does not affect the amount she gets paid, until the point when she inflates the price so much that
her edge is no longer in a shortest path and she gets paid nothing.) The VCGmechanism was first applied to
the shortest-path problem explicitly in [NR99].

Unfortunately, the VCG mechanism may result in the auctioneer paying much more than the cost of the shortest
path, and the overpayment can be large. The simplest example comes from asource and sink connected by two
parallel edges, one with cost 1 and the other with costc > 1. The shortest path is the edge with cost 1, and
the payment made to it isc − 0 = c; the ratio between this VCG cost and the simple shortest-path cost of 1
is unbounded ifc is much larger than 1. In fact, even in the case where the second-best path has cost close
to that of the best one, the VCG overpayment can be large; see [AT02] for a detailed study of the worst-case
behavior of this overpayment. An example from [AT02] consists of two disjoint (s, t)-paths, with lengthsL and
L(1+ε), and with the cheaper path containingk edges; the total payment isL(1+kε). Additional investigation
of shortest paths in the worst-case setting appear in [MPS03, ESS04, CR04, Elk05].

It is natural to wonder how the cost of the VCG mechanism compares with the shortest-path cost in the average-
case setting. We will study the cost on the width-2 strip with random edge weights. (For average-case studies
on completely different graphs, see [MPS03, CR04], and for real-world measurements see [FPSS02].)

Theorem 12. When the edge weights are i.i.d.Be(p) random variables, with0 < p < 1, the VCG path cost
satisfies

lim
n→∞

1

n
E(`VCG(n)) =

p (2 + 5 p + 4 p2 + 8 p3 + 11 p4 − 3 p6 + p8)

(1 + 3 p2)2
.(8)

Proof. With reference to Figure 1, we compute the contribution of theith triple of edges(Xi, Yi, Zi) to the
expected VCG cost. Letω(n) be any function tending to infinity much slower thann itself, i.e., with1 ¿
ω(n) ¿ n. Note that any edge’s contribution to the VCG cost is at most 3: we can circumvent any horizontal
edge with a “loop” of 3 edges around it, each edge costing at most 1, and we can bypass any vertical edge at
worst by going one more step to the right and traversing the next vertical edge, for a cost of at most 2. Thus the
contribution of the first and lastω(n) edges to the limit is at most6ω(n)/n, which tends to 0.

Now, for anyi, a shortest path between(0, 0) and(0, n) may be found by taking the shortest paths from(0, 0)
to both(0, i) and(1, i), and also the shortest paths from(0, n) to both(0, i + 2) and(1, i + 2), and finding the
cheapest total way of joining one of the first paths to one of the second. The first two paths depend only on
variables with indices less thani, and without loss of generality (up to an additive constant) we may consider
their two costs to be 0 and∆. Likewise, the second two paths depend only on variables with indicesi + 2 or
more, and their costs may be given as 0 and∆′. Forω(n) < i < n − ω(n), ∆ and∆′ are independent random
variables drawn from a distribution asymptotically equal to the stationary distribution. Thus, with reference
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Xi

Yi

Zi

Ui

Vi∆ ∆′

0 0

FIGURE 3. The VCG cost at stepi, working in from the left and the right, and assuming both
sides are in stationarity.

to Figure 3, we consider the payments we must make for the edgesXi, Yi, andZi, when∆ and∆′ are i.i.d.
random variables drawn from the stationary distribution, andXi, Yi, Zi, Ui, andVi are i.i.d.Be(p) random
variables. Since, over alli, such groups(Xi, Yi, Zi) cover each edge exactly once (except for the single edge
Z0), the total of the expected payments for one such group is precisely the limitingexpectation called for in (8).

This is a straightforward calculation. Dropping the subscripts for convenience, letA = X + U be the cost of
the path usingX, U ; B = X + Z + V + ∆′ that of the path usingX, Z, V ; C = ∆ + Y + V + ∆′ that using
Y, V ; andD = ∆ + Y + Z + U that usingY, Z, U . If we break ties in favor of lower letters (A in favor ofB
in favor ofC in favor ofD), the payment toX is

C(X) = χ(min(A, B) ≤ min(C, D)) · [min(C, D) − (min(A, B) − X)],

that is, it is 0 unless the edgeX is used, and then it is the cost of the cheapest path avoidingX less the cost of
the cheapest path ifX were 0, which in this case is the cheapest path usingX, minusX. Similarly, the payment
to Y is

C(Y ) = χ(min(C, D) < min(A, B)) · [min(A, B) − (min(C, D) − Y )].

The payment toZ follows similarly, with slightly more complicated tie-breaking:

C(Z) = χ((B < A) ∨ (B ≤ min(C, D)) ∨ (D < min(A, B, C))) · [min(A, C) − (min(B, D) − Z)].

Where the stationary probabilities for∆ and∆′ are written asP∆(·), and the Bernoulli probabilities asBe(1) =
p andBe(0) = 1 − p, the expected total payments forX, Y , andZ is

∑

X,Y,Z,U,V,∆,∆′

Be(X) Be(Y ) Be(Z) Be(U) Be(V )P∆(∆)P∆(∆′) · [C(X) + C(Y ) + C(Z)],

the sum taken over the2532 possible values of the variables. This is a small finite sum of an explicit expression,
and is calculated (by Mathematica) to be the value shown in expression (8). ¤

A plot of the VCG cost ratelimn→∞ E`VCG(n)/n, along with the corresponding shortest-path cost rate, is
given in Figure 4 (left), and Figure 4 (right) shows the ratio of the VCG cost to the shortest-path cost.
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FIGURE 4. Left: VCG and usual shortest-path rates.
Right: Ratio of VCG cost to shortest-path cost.
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