FIRST-PASSAGE PERCOLATION ON A WIDTH-2 STRIP,
AND THE PATH COST IN A VCG AUCTION

ABRAHAM FLAXMAN, DAVID GAMARNIK, AND GREGORY B. SORKIN

ABSTRACT. We study the time constant for first-passage percolation, and the Yi€karke-Groves (VCG) pay-
ment for the shortest path, on a width-2 strip with random edge costsseTstatistics attempt to describe two
seemingly unrelated phenomena, arising in physics and economiestigsfy: the first-passage percolation time
predicts how long it takes for a fluid to spread through a random meditnite the VCG payment for the shortest
path is the cost maximizing social welfare among selfish agents. Hoveeweanalyses of the two are quite similar,
and require solving (slightly different) recursive distributional equatid#sing Harris chains, we can characterize
distributions, not just expectations.

1. INTRODUCTION

The general topic of this paper is the random structure produced wkiredagraph is assigned edge costs
independently at random. We will focus on a particular fixed graphptleng width-2 strip (defined below),
and study some aspects of a minimum-cost path. In particular, we will cortbieléime constant for first-
passage percolation, and the Vickery-Clarke-Groves (VCG) payrii@etse statistics attempt to describe two
seemingly unrelated phenomena arising in physics and economics, resiyet¢fowever, our analyses of the
two are quite similar.

First-passage percolationkirst-passage percolation is a model of the time it takes a fluid to spread lthaoug
random medium [BH57, HW65, Kes87]. Mathematically, it is described bysttwetest edge-weighted paths
from an origin to every other point in a graph. For our purposes, the “tomstant” is the limiting ratio of
this length to the unweighted shortest path lengthsn tends to infinity. Previous research has derived upper
and lower bounds for the time constant of first-passage percolation arithESW78, Jan81, AP02] and on
the random graply,, , [HHMO1]. For the width-2 strip, we provide a method of calculating the time t@ons
for any discrete edge-length distribution; the method can also be usedvideoarbitrarily good bounds for
any well-behaved continuous distribution, as we illustrate for the uniformitalision on |0, 1]. Our method

is similar in spirit to the Objective Method (or Local Weak Convergence) [A]d8S04, GNS, Ald05], in the
sense that that rather then looking at a collection of random variablesewdawdinality diverges to infinity as
the size of the underlying graph diverges to infinity, we look at a relatiantjty defined on a localized part
of the graph. Previously this has been achieved by looking at the relatiue of an edge included in the
potential largest matching or similar structure. The corresponding quantillésd abonus and a recursive
distributional equation defining the distribution of the bonus is derived.e @®o the survey of recursive
distributional equations [AB05].) The model in the present paper is ceraddtly simpler due to the structure
of the width-2 strip, which makes the underlying recursive distributionahtign simply a Markov chain.

Because it is a Markov chain, the analysis for discrete edge-length digtnb is straightforward; for a
Bernoulli edge-length distributioBe(p) the incremental cost(n) to go from stage: — 1 to n has a unique
stationary distribution with a simple, closed-form expression, and its exjetta the time constant in ques-
tion. When the edge-length distribution is continuous (uniform, for examqaplacing it with a rounded-down
(respectively, rounded-up) discretized equivalent gives a lowesp(, upper) bound on the time constant, but
no information about the incremental cegin). A subtly different approach gives stochastic lower and upper
bound bounds on the incremental cost, and, separately, an analyslianiigchainsshows it to have a unique
stationary distribution. The Harris-chain approach is well known in godibatheory, but is worthy of greater
attention in tangential fields.
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VCG PaymentThe Vickery-Clarke-Groves (VCG) mechanism [Vic61, Cla7l, Grog3plies to a setting in
economics where each edge of a graph is controlled by a differenhsadfesnt, and each agent has some private
value describing the cost of using her edge. Anyone interested in bayath in such a network is faced with
the problem that an agent will lie about her edge cost if such a lie will yietdatlégher payment. The VCG
mechanism provides a solution to this problem in which payments to agentsrefallgsselected to produce
the cheapest path (maximizing social welfare) in such a way that eachfagisit in her best interest to reveal
her true edge cost. The VCG mechanism was first applied to the shortegirphlem explicitly in [NR99].

Unfortunately, the VCG mechanism may result in the auctioneer paying mudahthrar the cost of the shortest
path, and the overpayment can be large. Even in the case where thd-4st path has cost close to that of the
best path, the VCG overpayment can be large. See [AT02] for a desaildy of the worst-case behavior of this
overpayment. Additional investigation of shortest paths in this setting app@dPS03, ESS04, CR04, EIK05].

It is possible that the worst-case bounds on the cost of the VCG mecharésoverly pessimistic. To inves-
tigate this, we compare the cost of the VCG mechanism with the shortest-path tusaverage-case setting
(for the width-2 strip with random edge costs). Other average-casestiat completely different graphs
appear in [MPS03, CR04], and real-world measurements appear iis{F2p.S

Generalizations:We rely on no special properties of the uniform distribution; the methodsssdaianalyze
this edge-length distribution could equally well be applied to any well-behda@dchded distribution.

For the2 x n strip, we show that it is not important whether edges parallel to the longtidinemust be
traversed left-to-right or whether they can be traversed in either dinecigen for the3 x n strip, however,
the distinction is important. For any fixed, our methods apply to the. x n strip in the left-to-right model
(with some more complicated recursive equations replacing (1) and (@)pbto the undirected model.

2. THE MODEL

Let [n] denote{0, 1,...,n — 1}. Define theinfinite width-2 stripto be the infinite graph whose vertex set is
[2] x Z, and whose edges join vertices at Hamming distance 1, i.e., éfddeand(j’,i") where(|j — 7', |i —i'|)

is either(0, 1) or (1,0). Thehalf-infinite stripis the subgraph induced 3] x Z%*, and am-long stripis the
(finite) subgraph induced bg] x [n + 1].

If each edge: has a weightu(e) € R%*, for each vertex let P(v) be the “shortest” (minimum-weight) path
from (0, 0) towv, and let/(v) be the weight of this path. We consider two models: the “general-path”if@B!
wherePgp(v) may be any path fronf0, 0) to v, and the “left-right” (LR) model wheré* g (v) is restricted to
be a left-to-right path. That is;,r(v) is the shortest path to which does not traverse any edge from right to
left, or, still more precisely, which contains no successive pair of vextite), (7,7 — 1).

Suppose that the edge weights are drawn independently from somedistghution, such af3e(p) (the
Bernoulli distribution with parametes, whereX = 1 with probabilityp and X = 0 w.p. 1 — p) or U[0, 1]
(the uniform distribution over the intervil, 1]). Our first-passage percolation problem is simply to determine,
for each of three types of strips, for a given distribution, and undegémeral-path or left-right model, the
existence and value of the limiting time constant or “rate” of percolation

lim LK(O,H).

n—oo n
We will also show that (0, n)/n almost surely converges to this value, and that the same statements hold for
¢(1,n), with the same rate. Note that for all our purposes it suffices to determihdguayths up to an additive
constant.

For notational convenience, for any < b, we definetrunc(z; a, b) := max{min{z,b},a}. That is,
trunc(zx; a, b) is the “truncation” ofx to the intervala, b): x if a <z < b;aif x < a;andbif z > b.

3. SHORTEST PATHS

The following lemma shows that, up to an additive error of at most 2, distaa¢ésn) or to (1, n), under any
of the three graph models and the two distance models, are all equivalent.
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FIGURE 1. Moving fromA; 1 to A;.

Lemma 1. LetG denote the infinite width-2 strip with an arbitrary, fixed set of edge weightsinathge[0, 1]
(respectively, random i.i.d. non-negative weights with expectatioh Let H be the half-infinite restriction of
G, and, for anyn > 0, let K be then-long restriction. Then, for any € [2] andi € [n + 1], the distances
(respectively, expected distancégsy (j,7) and{gp(j,i), measured in the three grapld§ H, and K, span a
range of at most 2.

Proof. We will argue only the case of fixed edge weights; the random casequ®edgentically. The cheapest
GP path inG from (0, 0) to whichever of(0, 7) and(1, ) is cheaper is at most as expensive as any of the paths
under consideration, because this path is the least constrained; de’aqjatrrPgP(z'). Fixing 7 = 0 (the

j = 1 case is treated identically), the most constrained problem version is to fithélapesi.R path in K

from (0,0) to (0, i); the resulting patiP; (0, i) is the most expensive one under consideration. By the nature
of the width-2 strip, the restriction d?$p (i) to K, unioned with the edge§0, 0), (1,0)} and{(1,4), (0,4)},

is or includes &R path inK from (0,0) to (0,7). Thus(Sp(i) < £5;(0,1) < €5p(i) + 2, and all the other
lengths must also lie in this range. 0

Because of this, we will henceforth consider ol paths, on the half-infinite strigf, to points(0,») and
(1,n). For convenience, we will writé; (1, ) simply ast(1,4) and#f; (0, i) as¢(0, i) or just/(i). Define

A(i) =0(1,4) — £(0,1).
With reference to Figure 1, for any> 0, let X; be the cost of the edgg0,7 — 1), (0,7)} andY; the cost of
{(1,i—1),(1,4)}, and for anyi > 0 let Z; be the cost of (0, ), (1,1)}.
Observe that foi > 0,
(1) v(@):=4£(i) —L(i—1) =min{X;,A(i — 1)+ Y; + Z;}
2) A(G) =trunc(AGG — 1)+ Y; — Xi; —Zi, Z;).

SinceA (i — 1) depends only on values &f, Y, andZ with indices: — 1 and smaller, the four random variables
A(i— 1), X;, Y;, andZ; are mutually independent.

4. THE BERNOULLI CASE

Suppose that all the random variabl&s, Y;, and Z; are i.i.d. with distributionBe(p), i.e., each is 1 with
probabilityp and0 w.p. 1 — p.

A “stationary distribution” for equation (2) is a distribution fdx(i — 1) giving rise toA(:) with the same
distribution (though typicall not independent).

Lemma 2. When the edge weights are i.i.d. with distributiBa(p), 0 < p < 1, A(%) is a Markov chain on

{-1,0, 1} with a unique stationary distribution, namely = 1 w.p.¢q; A = —1w.p.¢; and A = 0 w.p.1 — 2gq,
2

whereq = lf—gpz.

Proof. All values in question are integral, and easifi) < 1, since(1,7 + 1) may at worst be reached via

(0,7 + 1) at an additional cost of at most 1. Symmetrically, eAdl) > —1. By the independence df(i — 1)

from (X;,Y;, Z;), A(i) is a Markov chain on the state spacel, 0, 1}.
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From (2), if Z; = 0 (which occurs w.pp) thenA(i) = 0. Otherwise we have the following table of possibilities,
their probabilities (including the probabilifythat Z; = 1), and the corresponding valuesAfi):

A(i—1) X; Y P A(i)
1 0 0[pg-(1—p) 1
1 0 1|pg-p(l-p) 1
1 1 0|pg-p(l—p) 0
1 1 1]|pg-p? 1
0 0 0/pl—-29)-(1-p?>| 0
0 0 1|p(1-2q) p(l-p) 1
0 1 0|p(l—2¢)-p(l—p)| -1
0 1 1|p(l-2q)-p? 0
1 0 0|pg-(1—p)? —1
-1 0 1|pg-p(l—p) 0
-1 1 0|pg-p(l—p) -1
-1 1 1|pg-p? -1

If A(i —1) =1andA(:) = 1 are both to have probability, we must have

qg=pq-(1—p)*+pg-p(l—p)+pg-p°+p(l—2q) p(l—p),

whose solution igy = p?/(1 + 3p?). Thus if A is to be stationary, we must have, for this valugyof\ = 1
W.p. ¢; by symmetryA = —1 w.p. ¢; and thusA = 0 w.p. 1 — 2gq.

The Markov chain’s transition matrix, which corresponds to the table afue the 12 omitted cases when
Z; = 0), is easily seen to be ergodic and aperiodic as long asp < 1, and thus has a unique stationary
distribution. Wherp = 0, A; = 0, deterministically, for alk > 0, which still happens to fit the same form.
(Whenp = 1, A; = 1 deterministically: the sole exception.) 0

Lemma 3. When the edge weights are i.i.d. random variables with distribudie), 0 < p < 1,v(i) = £(i)—
¢(i—1) is a Markov chain o{ —1, 0, 1} with a unique stationary distribution: itis-1 w.p.p?(1—p)?/(3p*+1);
1 w.p.2p?(1 + p?)/(3p% + 1); and 0 with the remaining probability, giving(y(i)) = p?(1 + p)?/(3p? + 1).

Proof. That~(7) is a Markov chain, and is ergodic and aperiodic, follows as in the prabiqgbreceding lemma.
Since~(i) depends on four independent random values all of whose distributierisxawn, calculating it is
straightforward. Instead of presenting a table as above we divide it ifee aases. Itis-1iff A(i) = —1,
Y; = 0, andZ; = 0 (the value ofX; is irrelevant), which occurs w.gi(1 — p)2. Itis 1 iff X; = 1 and
A1) +Y; + Z; > 1, the latter of which is satisfied & (i) = —1 andY; = Z; = 1, if A(i) = 0and(Y;, Z;) is
anything but(0,0), or if A(i) = 1, giving total probabilityp [gp* + (1 — 2¢)(1 — (1 — p)?) + ¢q]. The rest of
the calculation is trivial. O

Theorem 4. When the edge weights are i.ile(p) random variables, for anywith0 < p < 1, lim,, . %(”) =

lim,, oo Ey(n) = p?(1 + p)?/(3p* + 1), and almost surelylim,, .« @ exists and has the same value.

Proof. We have established thafi) is an ergodic Markov chain with the unique stationary distribution de-
scribed in Lemma 3. The ergodicity implies that almost surely

tn) . e) —0G-1) (@) _ .2 2 /(0,2
= O T Sl ) S = i BO() =)/ G+ 1),
1<i<n 1<i<n
Since the values(n) are bounded almost surely (in fact surely, by unity, in absolute value)althost sure
convergence implies the convergence in expectation.

0
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5. UNIFORM CASE. EXPECTATION

What if X;, Y;, andZ; have uniform distribution{/[0,1]? The development in the previous sections applies
here as well:y(i) and A(:) are again Markov chains, but with continuous state space. Rather thi&mgvo
with the continuous state space we introduce a natural and simple discretizakan(large) positive integer

k and letU (respectivelyU,) be the uniform distribution on the sét/k, ..., (k — 1)/k, 1} (respectively
{0,1/k,...,(k—1)/k}). Lemma 5 is based on the simple observation that the lef{gthis bounded from
above and below by the lengths corresponding to these discrete unifstmibudions. This enables us to
circumvent infinite state spaces (the discretized Markov chain is finite) aswhipute upper and lower bounds
on the limiting value oft£/(n) /n.

When the edge weight distribution {3[0, 1], let £(i) denote the length of the shortest path anchig) =
(i) — £(i — 1). For the edge weight distributioig, andU, define/, (i), 7, (4), Le (i), andy, (i) likewise.

Lemma 5. The limiting expectations of, (n), 7, (n), £,(n)/n and/;(n)/n exist, and

lim By, (n) = lim BL() _ jip i EE)
E Fr
o <timsup “ <t B b B (0) < lim B, ) + 2/

Proof. Suppose the weight distributiong,. For simplicity of notation, within this paragraph we refer to the
corresponding quantities without embellishment, &g) not/,(n). SinceA(0) = £(1,0) — £(0,0) = Z, has
support{1/k,..., k/k}, it is straightforward to check from the recursion (1) and (2) that thesibte values
of A(i) and~(i) = £(i) — £(i — 1) have support limited t§ -1, —(k — 1)/k,...,(k — 1)/k,1}. The same
recursions imply that/(:) is a Markov chain on this (finite) state space. We claim that this Markov chain is
ergodic and has a unique stationary distribution. For this it suffices to 8taivior some particular state, there
is positive probability of making a transition from any state to the particular statteed, for any value of
A, if X;=1/kandY; = Z; = 1thenA;, 1+ Y; + Z; > 1 > X;, and (1) gives\; = X; = 1/k. Thus the
statel /k is reachable with positive probability from any other state and the ergodidstéblished. Arguing
as in the previous section we obtain thiat,, .., 7, (n) = lim,_.., Efs(n)/n. A similar analysis applies for
Uy

For any valuer € [0, 1], defineZ to be the value of: rounded up to the nearest multiple bfk (i.e.,z =
[kx]/k), andz to be the similar rounding-down. We observe that if we replace the values;, andZ; with
X, Y;, andZ; then the value of (n) increases, and at the same time the distributio, 1] is transformed
into Uy. Similarly, if we roundX;, Y;, andZ; down to X, Y, andZ, then we decrease the value/gf,) and
transformU [0, 1] into U,,. Finally, note thatX; < X, + 1/k and similar bounds hold fdr andZ. Since each

term/(i) — £(i — 1) uses at most two such random variablesn) < £,.(n) +n - 2/k. O
Corollary 6. The limitlim,,_,., E¢(n)/n exists, and
klim lim Ef(n)/n = lim El(n) = klim lim E/4,.(n)/n.
—00 N—00 n—oo n — 00 N—00

Together, Lemma 5 and Corollary 6 allow us to compute bound&opn ., E¢(n)/n. Choosing any valug,
first we compute the stationary distribution g, by finding the fixed point for (2), from which the stationary
distribution for?;, follows by a single application of (1). From the stationary distribution we oliterexpec-
tation. Withk = 190, lim,, . E[fx(n)/n] < 0.4306. Similarly, lim,, ... E[£,(n)/n] > 0.4200, proving that
the true percolation rafém,, .., E¢(n)/n lies between these values. The same calculation for valued 90
yields arbitrarily good bounds on the rate. Note that the direct path ffofr) to (0, n) has expected length ex-
actly 0.5 n, and thus the average “saving” rendered by the availability of the alteenatiges;, 7Z; is between
0.069n and0.080n.

With k£ = 190, Figure 2 (left) shows the densities of the stationary distribution§k()h) and7,(n) (their
n — oo limits). Unfortunately, there is no significance of this for other valuek: df principle the distribution
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FIGURE 2. Left Density functions for the stationary distributionsygf , and,, (as defined

in Section 5), giving bounds df.420 < lim,,_,. Ef(n)/n < 0.431. The discrete density
functions are plotted as continuous lines for visual clafight Distribution functions for the
stationary distributions of . andy,5, (as redefined in Section 6). The stationary distribution
of the true incremental-length distributioy(n) lies between the two; this also proves that
0.4215 < limy, 00 Ey(n) = limy, oo E4(n)/n < 0.4292.

for k = 191 could look completely different. Meanwhile, the observation of the computerniete density’s
unimodality and its large jump at zero prompts a corresponding conjectutieefgontinuous version.

Conjecture 7. Under the uniform distributior/ [0, 1], the density of the stationary distribution of:) is
continuous everywhere but at 0, and is unimodal with mode approxyags.

We note that the method of using rounded-up and rounded-down verditme random edge costs applies to an
arbitrary bounded distribution as well as to the uniform distribution. Howekies method only characterizes
E¢(n)/n: it says nothing about(n). In particular it does not even say thgt:) has a limitingexpectationlet
alone anything about idistributionor limiting distribution.

6. UNIFORM CASE: DISTRIBUTION

In this section we will redress the deficiency just noted: we will prove tlta) has a limiting distribution

as well as a limiting expectation, and compute bounds on both. The previdisn&e shortcoming may be
ascribed to the fact that while we hég(n) < ¢(n), it was not generally true that (n) < ~v(n): a difference

between two rounded-down quantities can be larger than the differetwedn the unrounded quantities.

In this section we define different random variables (which we will aldo-da) and7(n) because they play
a similar role), for which its true thaty(n) < v(n) < 7(n). While the motive behind the construction is quite
different, the calculations are almost identical.

Separately, we argue from “Harris chains” that the random varialfleshave a limiting distribution. Putting
the two things together, calculating the— oo limiting distributions Oflk(”) and7y,(n) (for example with

k = 150) provides bounds on the limiting distribution ©fn).

We work entirely with theA of recurrence (2), from which corresponding conclusiong/ffmlow immediately
via (1). In all the following, by a “lower bound” we mean a stochastic lowaurid. In the previous section,
A, (n) corresponded to a Markov chain on valugs,,Y ., Z,) but A, was not necessarily a lower bound
on A. In this section, we redefind, (or more generallyl) so that itis a lower bound o\, but no longer
corresponds to the discretized Markov chain(éf,, Y., Z;.).

For convenience, writé\ instead ofA(: — 1) and A’ for A(i), and likewise for other variables. Letting
W =Y — X, from (2),

A =trunc(A + (Y - X); —Z, Z)
=trunc(A+W; —Z, Z)
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> trunc(A + W; —Z, Z),

whereZ andZ are any random variables with the property tha Z < Z. ChoosingZ andZ, as before, to
be rounded-down and rounded-up discretizationg,adnd for convenience definirg= 1/k,
A > trunc(A+W; —Z —¢€, Z)
=W +trunc(A; —Z—-W —¢, Z—-W)

4) = A
Similarly,
(5) AN <W+ettrunc(D; —Z-W —¢, Z—W) = A

Defining A(0) = —1 (deterministically) and\(0) = 1, of courseA(0) < A(0) < A(0
to defineA(n) = A’ from A(n— 1) = A, and similarly using (5) to definA(n) from
for all n, A(n) < A(n) < A(n). From (1), trivially,

(6) v(1) > min{X;, A(i — 1) + Y + Z;}

(7) (i) < min{X;, A(i — 1) +Y + Z;}.

(0). Using equation (4)
A(n—1), we have that,

Theorem 9 will show thaty(n) itself has a unique stationary distribution. Meanwhile, for any fikedhe
Markov chains forA(n) andA(n) are both well-behaved finite Markov chains, with stationary distributions
we will call A andA. SubstitutingA and A into (6) and (7) defines corresponding random variablesid

7, which are then stochastic lower and upper bounds on the stationary wdistmitfor v(n). Distribution
functions fory and¥ are plotted in Figure 2 (right). By construction the two curves never cewgsthe bounds
are sufficiently good that they are largely visually indistinguishable. OfsmiEy < Evy < E7, and as it
happens these bounds are better than the previous ones despite tlié: usel60 here andk = 190 there:
0.4215 < Evy < 0.4292.

Remark: SinceA and W each have support of cardinaliyc + 1 and Z has support of cardinality, the

(2k + 1) x (2k + 1) transition matrix forA can be constructed in tim@(k?). The stationary distribution g

is the eigenvector of the transition matrix corresponding to eigenvalue lgaantde computed in tim@ (k3)

by row reduction. Instead, we approximated the eigenvector by takingitfee distribution vectorA(0) and
repeatedly multiplying it by the transition matrix; while we made no effort to compwetimvergence rate,
with k£ = 150 a stationary vectoA was obtained (to within machine precision) in under 10 iterations. The same
statements apply t&, W andZ. Thus to within machine precision, the bounds shown apply to the distribution
of y(n) for anyn > 10 as well as to the stationary distribution.

Just as (3) showed that our upper and lower bounds on the expeatetierwithin2/k of one another, here
we can prove that, for any, the stationary random variablésandA are also arbitrarily near to one another:
d(A, A) = O(1/k), where we define the distance between continuous random varistdes Y as the area
between their CDFs (cumulative density functions). (For any coupling@¥atiablesX andY, E[| X —Y|] >
d(X,Y), with an optimal coupling giving equality.) Recall that 1/k.

Theorem 8. The stationary random variables and A for equationg4) and (5) satisfyd(A, A) = O(e).

Proof. Let A and A be the values of the coupled random variables at some time, defined by fiagoys
values and random variablégE and Z, and letD := A — A. Let A/, D', etc.be the corresponding values
one step later, and” etc.those two steps later. It may help to think&f A, andD as the state variables of
the single Markov chain representing the coupled process. Becausedaupling the random variables, A
always satisfyA < A, the distance/(A, A) between the distributions is by definiti@i{ D).

Condition onD = d. First we observe thad’ < d + ¢, and thusD” < d + 2¢; this is immediate from (4) and
(5). (The two truncations have identical lower and upper “stops”, sodlfeerence is at most the difference of
their central arguments, and the other terms in (4) and (5) contribute eedifie of exactly.)
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Second, if the truncation definingy” takes the value of its upper stop then so does thafqrin which case
D" < e. This happens with constant probability, as we now argue. We assgf&01. From the right hand
side of the first line of (4), iZ’ < 0.1 then

A>Z —e> (7 —¢)—e>—0.12.
If in addition W” > 0.5, andZ"” < 0.37, then
é/ +E// Z é/ + (W// _ 6) Z 037 Z Z// Z ZN,

and from (4)A” = Z". These events occur with probabilZ’ < 0.1) - P(W"” > 0.5) - P(Z” < 0.37) =
0.1-1-0.37 > 0.001.

Assembling these two facts, conditioned Bn= d, with probability> 0.001 D” < e while with the remaining
probability D" < d + 2e. ThusE(D” | D = d) < 0.001e 4+ 0.999(d 4+ 2¢) < 2e + 0.999d. Integrating,
E(D") < 2e + 0.999E(D). Since the Markov chain is in stationarif§ D”) = E(D), s00.001E(D) < 2e,
i.e.,E(D) < 2000e. O

From (1), a lower-bounding random variable < ; is given byy, = min{X;, A(i — 1)}, and an upper-
bounding one by, = min{X;, A( — 1)} < min{X; + ¢, A(i — 1)}. In the coupling, the random variables’

values always satisf§ < 7; — v, < e+ (A(i — 1) — A(i — 1)). Taking expectations over the stationary
distributions we know to exist (these are finite-state Markov chaifs)Y, 7, and~ are all discrete random
variables) givesl(y,7) = E(¥ — 7) < e+ E(A — A) = O(e). -

Finally, we show that\ has a well-defined stationary distribution; from (1) it is then immediatetdues as
well.

Theorem 9. The continuous Markov chaif(:) defined by(2) has a unique stationary distribution.

Proof. Per the remarks after Definition 10, any recurrent Harris chain pessasunique stationary distribution,
and Lemma 11 shows that tihe7) is a recurrent Harris chain. O

Definition 10. A discrete time Markov chait(¢) with state spacé! is defined to be a recurrent Harris chain
if there exist two setd, B C () satisfying the following properties.

(1) ®(t) € Ainfinitely often w.p. 1.
(2) There exists a non-zero measwr@ith support contained it such that for every: € A andC C B,
P(@(t+1)eC|P(t)=z)>v(0).

(See [Dur96] Section 5.6 pages 325-326 for a Harris chain, and328jfer recurrent Harris.) One can use this
definition to embed a recurrent Harris Markov chain into a modified chain witexé&ra statey, such that the
special state is visited infinitely often with probability 1. Then various recurrent propertéthe chain can
be deduced. Specifically, it can be established (see Durrett [Dutted]}he recurrent Harris chain possesses
a unique stationary distribution. Our next goal is to show that our ch&in is indeed recurrent Harris. Let
A =1[-0.1,1], B = [0, 0.4] and letr be uniform probability distribution o multiplied by0.2.

Lemma 11. A(7) is a recurrent Harris chain with the set$, B and measure defined above.

Proof. To show that the chain is a recurrent Harris chain, we observe thativfig € A, thatisA(i) > —0.1,
if in addition Wiy1 > 0.5 andZiH < 0.4, thenA(z + 1) = trunc(A(i) + Wi+1; —2Zi+1, Zi—i-l) = Zj41.
Let Vi41 = 1{Z;+1 < 0.4}. Note that, conditioned ol;;; = 1, Z;; is distributed uniformly o0, 0.4]. Let
p=P(W;;1 >0.5,V;31 = 1) = 0.2. Then for everyC' C B andz € A we have

P(A(Z + 1) eC | A(Z) = ZL‘) > ]P)(VVZ'+1 > 0.5, Vi+1 = 1) . ]P)(ZZ'+1 eC ‘ Wi+1 > 0.5, V;+1 = 1)
= pP(Zit1 € C' | Vi1 = 1) = pu(C) = v(C),

wherey is the uniform measure oB and we define’ by v(C) = pu(C). Therefore A(i) satisfies condition
(2) of Definition 10. We now prove condition (1), that w.p. 1 the 4é$ visited infinitely often. This is a simple
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corollary of the fact that itZ; < 0.1 thenA(i) = trunc(A(i — 1) + Wy; —Z;, Z;) > —0.1, thatisA(i) € A.
Clearly this happens infinitely often w.p. 1. O

7. AN AUCTION MODEL

Auction models for networks have received much attention recently. Seppat in the half-infinite width-2
strip, each edge is provided by an independent agent who incurg focssipplying it (or for allowing us to
drive over it, transmit data over it, or whatever). What we have coreitden far would be the case where the
agents’ costs are random variables, and we pay for a cheapesthatrever, in this setup, agents have an
incentive to lie: their true cost is not the cost they will sensibly tell us.

A popular way to deal with potentially dishonest agents is to assume that ganhwill act independently
to maximize her own utility, and to design a mechanism where this behavior wilt iasevery agent being
truthful. 1t is within this framework that the Vickery-Clarke-Groves (VQGgchanism operates [Vic61, Cla71,
Gro73]; in a truthful fashion, the VCG mechanism finds the outcome that maed@rsizcial welfare. For buying
an (s, t)-path, the VCG mechanism is the following: The auctioneer finds a cheagtbstgnd, for each edge
on that path, pays the corresponding agent the difference betweeosthaf a cheapest path avoiding the edge
and the cost of a cheapest path if the edge cost were 0. (The mecharrstiiful because by inflating her
cost, an agent does not affect the amount she gets paid, until the gantske inflates the price so much that
her edge is no longer in a shortest path and she gets paid nothing.) ThenéClaanism was first applied to
the shortest-path problem explicitly in [NR99].

Unfortunately, the VCG mechanism may result in the auctioneer paying mudahthraor the cost of the shortest
path, and the overpayment can be large. The simplest example comesdonmtea and sink connected by two
parallel edges, one with cost 1 and the other with eost 1. The shortest path is the edge with cost 1, and
the payment made to it is— 0 = ¢; the ratio between this VCG cost and the simple shortest-path cost of 1
is unbounded it is much larger than 1. In fact, even in the case where the second-tledigsacost close

to that of the best one, the VCG overpayment can be large; see [AdD2]detailed study of the worst-case
behavior of this overpayment. An example from [AT02] consists of two @isjB, t)-paths, with length€ and
L(1+¢), and with the cheaper path containingdges; the total paymentig1+ ke). Additional investigation

of shortest paths in the worst-case setting appear in [MPS03, ESS04, ERO05].

Itis natural to wonder how the cost of the VCG mechanism compares withtnest-path cost in the average-
case setting. We will study the cost on the width-2 strip with random edge tgeifffor average-case studies
on completely different graphs, see [MPS03, CR04], and for realdwoeasurements see [FPSS02].)

Theorem 12. When the edge weights are i.ilde(p) random variables, witl) < p < 1, the VCG path cost
satisfies
_p(2+5p+4p*+8p°+11pt —3p° +p®)

.1
(8) Jim B (b (n) = (1132 :

Proof. With reference to Figure 1, we compute the contribution ofithetriple of edgeg X;,Y;, Z;) to the
expected VCG cost. Leb(n) be any function tending to infinity much slower thantself, i.e., with1l <
w(n) < n. Note that any edge’s contribution to the VCG cost is at most 3: we cameueat any horizontal
edge with a “loop” of 3 edges around it, each edge costing at most 1, ammdmvbypass any vertical edge at
worst by going one more step to the right and traversing the next vertigal éor a cost of at most 2. Thus the
contribution of the first and lasi(n) edges to the limit is at mostu(n)/n, which tends to 0.

Now, for anyi, a shortest path betweéf, 0) and(0, n) may be found by taking the shortest paths fran0)

to both(0,¢) and(1, ), and also the shortest paths frdthn) to both(0, ¢ + 2) and(1, ¢ + 2), and finding the
cheapest total way of joining one of the first paths to one of the secohe fifst two paths depend only on
variables with indices less thanand without loss of generality (up to an additive constant) we may consider
their two costs to be 0 and. Likewise, the second two paths depend only on variables with indige3 or
more, and their costs may be given as 0 &ddForw(n) < i < n —w(n), A andA’ are independent random
variables drawn from a distribution asymptotically equal to the stationary distsib Thus, with reference



10 ABRAHAM FLAXMAN, DAVID GAMARNIK, AND GREGORY B. SORKIN

AY;, Vi A
Z;
0X;, U0

FIGURE 3. The VCG cost at stef working in from the left and the right, and assuming both
sides are in stationarity.

to Figure 3, we consider the payments we must make for the edges, andZ;, whenA andA’ are i.i.d.
random variables drawn from the stationary distribution, andY;, Z;, U;, andV; are i.i.d.Be(p) random
variables. Since, over al|l such group$.X;,Y;, Z;) cover each edge exactly once (except for the single edge
Zy), the total of the expected payments for one such group is precisely the limiuegtation called for in (8).
This is a straightforward calculation. Dropping the subscripts for caawes, letA = X + U be the cost of

the path using{,U; B = X + Z + V + A’ that of the path using’, Z,V; C = A +Y + V + A’ that using

Y, V;andD = A+Y + Z + U thatusingY, Z, U. If we break ties in favor of lower lettersi(in favor of B

in favor of C in favor of D), the payment toX is

C(X) = x(min(A, B) < min(C, D)) - [min(C, D) — (min(A4, B) — X)],

that is, it is O unless the edgde is used, and then it is the cost of the cheapest path avoiitess the cost of
the cheapest path X were 0, which in this case is the cheapest path uginminusX . Similarly, the payment
toYis

C(Y) = x(min(C, D) < min(A, B)) - [min(A, B) — (min(C, D) — Y)].

The payment tdZ follows similarly, with slightly more complicated tie-breaking:
C(Z)=x((B<A)V(B<min(C,D))V (D < min(A, B,C))) - [min(A4, C) — (min(B, D) — Z)].
Where the stationary probabilities fdrandA’ are written a®4 (-), and the Bernoulli probabilities &%(1) =

p andBe(0) = 1 — p, the expected total payments f&r, Y, andZ is
Z Be(X)Be(Y) Be(Z) Be(U) Be(V)PA(A)PA(A) - [C(X) + C(Y) + C(Z)],
X,Y,Z,UV,A,A!

the sum taken over th2?32 possible values of the variables. This is a small finite sum of an explicit ssiore
and is calculated (by Mathematica) to be the value shown in expression (8). d

A plot of the VCG cost ratéim,, ... Efy,;(n)/n, along with the corresponding shortest-path cost rate, is
given in Figure 4 (left), and Figure 4 (right) shows the ratio of the VCQG tmthe shortest-path cost.

1.75
1.5 // 12 \
1.25 // 10
1 // / 8 \
0.75 L 6
0.5 ,/ 4 \\\
0.25 ,/ 2 —
0 L/ 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

FIGURE 4. Left: VCG and usual shortest-path rates.
Right: Ratio of VCG cost to shortest-path cost.
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