
Embracing the giant component

Abraham Flaxman∗ David Gamarnik† Gregory B. Sorkin†

Abstract

Consider a game in which edges of a graph are provided a pair at a time, and the player
selects one edge from each pair, attempting to construct a graph with a component as large as
possible. This game is in the spirit of recent papers on avoiding a giant component, but here
we embrace it.

We analyze this game in the offline and online setting, for arbitrary and random instances,
which provides for interesting comparisons. For arbitrary instances, we find a large lower bound
on the competitive ratio. For some random instances we find a similar lower bound holds with
high probability (whp). If the instance has 1

4
(1 + ǫ)n random edge pairs, when 0 < ǫ ≤ 0.003

then any online algorithm generates a component of size O((log n)3/2) whp, while the optimal
offline solution contains a component of size Ω(n) whp. For other random instances we find
the average-case competitive ratio is much better than the worst-case bound. If the instance
has 1

2
(1 − ǫ)n random edge pairs, with 0 < ǫ ≤ 0.015, we give an online algorithm which finds

a component of size Ω(n) whp.

1 Introduction

A pair of recent papers [BF01, BFW02] analyze the “Achlioptas process”, where a collection of
random edge pairs is given a pair at a time, and the object is to select one edge from each pair to
avoid having a (suitably defined) giant component in the resulting graph. Without any intelligent
selection process, a giant component forms after about 1

2n edges; [BF01] shows that a strategy
exists which accepts at least 0.535n edges without forming a giant component; [BFW02] shows
(among other things) that no more than about 0.964 edges may be accepted.

It is equally natural to ask the opposite question,

What can you do to encourage a random graph to form
a giant component, using fewer than (1 + ǫ)n/2 edges?

In fact, it is so natural we learned that Bohman and Kravitz are studying it independently [BK03].

We now define the problem of Embracing the Giant Component (EGC) more precisely. An instance
I consists of a sequence of m pairs of edges on n vertices. (If you like, I may be regarded as an

∗Department of Mathematical Sciences, Carnegie Mellon University
†Department of Mathematical Sciences, IBM T.J. Watson Research Center

1

element of
[(n

2

)]2m
.) Edges, including those in a pair, may or may not be distinct. A solution is

a choice of one edge from each pair, and its value is the order (number of vertices) in the largest
component in the graph consisting of the chosen edges. EGC(I) is the maximum value of a solution
for instance I.

We focus on online versions of EGC, in which we see the pairs one at a time and must select our
edge before seeing the next pair, but we also consider offline versions, in which we see all m pairs
before making our choice. In either case, we consider edge pairs chosen randomly (defining an
average-case behavior) or arbitrarily (chosen adversarially).

In addition to being a natural graph-game problem, EGC has two other sources of interest. First,
imagine that you are a company trying to build up a network of some sort, each new link you
build must be in response to a customer demand, and your budget allows you to spend at a rate
which satisfies only half of all new requests. Presuming that a large connected component in the
network is beneficial to your customers and to you, your goal is to solve an optimization problem
very similar to EGC. Of course any real-world problem would be much more complicated, with
different costs and benefits for different links, the ability to wait longer or shorter times to see more
choices, and so forth, but it is conceivable that there are real-world problems whose mathematical
core is captured by EGC.

The second motivation is that EGC provides an example of a problem for which the competitive
ratio is awful in the worst case, but, for certain parameters, quite reasonable in an average case; a
previous example was given by [SSS02]. For certain other parameters, EGC has a lower bound on
average-case competitive ratio that is almost as awful as in the worst case.

1.1 Worst Case

We first observe that in the worst case, it is hard to solve offline EGC exactly (to select edges giving
a component as large as possible), or even to approximate it to better than some fixed factor.

Theorem 1 Offline EGC is MAX SNP-hard.

In the online setting, it is natural to measure performance in terms of the competitive ratio, the
ratio zopt/zonline between the sizes of the components produced by the best possible offline and
online algorithms. The next theorem shows that in the worst case, the competitive ratio is as bad
as it conceivably could be.

Theorem 2 The worst-case competitive ratio for EGC is (m + 1)/2. Specifically, for every online

algorithm, there is a sequence of m edge pairs for which the algorithm produces a collection of

isolated edges, yet the optimal solution has a component on m + 1 vertices.

As we remark after the proof of this theorem, a competitive-ratio lower bound of Ω(n/ log n) holds
even for randomized online algorithms against an oblivious adversary.

2

1.2 Average case

We define In,m to be a random instance of EGC in which each edge of each pair is chosen indepen-
dently, uniformly at random from the edge set of the complete graph Kn.

Our main intention is to compare the average-case competitive ratio with the worst-case lower
bound in Theorem 2. To do so, we need some idea of the optimal offline value of EGC(In,m). We
will see that these random instances exhibit a sharp threshold in objective value at m = 1

4n, which
we will prove by analyzing a greedy heuristic for offline EGC.

Throughout the paper, we will rely on a “component-identification algorithm”. This algorithm,
and our method of analysis, is quite standard in the random-graph literature; see for example the
giant-component chapter of Random Graphs [J LR00, pp. 108–111].

Our component-identification algorithm, Algorithm A, maintains two set of vertices, called unborn,
Ui, and alive, Ai. Initially, a single vertex is alive, A1 = {v1}, and the remainder are unborn,
U1 = [n] \ {v1}. At step i, we look at all the neighbors of some vertex vi ∈ Ai. We kill vi and
give birth to all its unborn neighbors (formally, let Pi = Ui ∩ N(vi) be the progeny of vi, and set
Ai+1 = Ai \ {vi} ∪ Pi and Ui+1 = Ui \ Pi).

Our greedy heuristic is very similar to Algorithm A. Roughly, we try starting at each vertex, and
using the first edge we see from each pair. We will elaborate on this description in the proof of
Theorem 3.

Theorem 3 For any fixed ǫ > 0, for m = 1
4(1 − ǫ)n, we have EGC(In,m) = O(log n) while for

m = 1
4(1 + ǫ)n, our greedy heuristic finds a solution showing EGC(In,m) = Ω(n) whp.

The below-the-threshold half of the theorem follows from well-known results in the theory of random
graphs, since the union of all the edges in all the pairs is a random graph with 1

2(1 − ǫ)n edges,
which is below the threshold for a giant component (see, for example, [J LR00]).

It is interesting to note that below the threshold, the largest component in the union of the edges
contains at most one edge from each pair whp, so for m = 1

4(1 − ǫ)n, we can solve EGC(In,m)
optimally whp.

The above-the-threshold half of the theorem is proved in Section 3, in a manner similar to the
analysis of the giant component above the threshold in Gn,p.

Our next theorem shows that even in the average case, any online algorithm performs much worse
than offline.

Theorem 4 For ǫ ≤ 0.003, on instances In,m with m = 1
4(1 + ǫ)n, every online algorithm finds a

component of size only O((log n)3/2) whp.

3

Theorem 3 and 4 together give a lower bound on the average-case competitive ratio for EGC: the
ratio of offline solution to online is Ω(n/(log n)3/2) whp. This shows that the lower bound on
competitive ratio for EGC is more robust than Theorem 2 alone indicates.

Theorem 4 is only true for some range of ǫ, however. For example, if ǫ > 1, then taking the first
edge from each pair yields a random graph above the giant component threshold, and so this trivial
algorithm has a constant competitive ratio. We go slightly beyond the trivial bound in the next
theorem.

Consider Algorithm C, which does the following: for some γ to be determined later, for the first
γn choices we take the first edge of each pair. For the remaining m − γn choices, we take the first
edge unless it touches an isolated vertex, in which case we take the second edge.

Theorem 5 For ǫ ≤ 0.015, on instances In,m with m = 1
2(1− ǫ)n, Algorithm C yields a component

of size Ω(n) whp.

2 Proofs of Worst-Case Theorems

Proof of Theorem 1: To show the hardness of approximating EGC, we reduce from MAX 3SAT-
5. MAX 3SAT-5 is a structured relative of MAX 3-SAT, introduced by Feige, where every variable
appears in exactly 5 clauses and a variable does not appear in a clause more than once. Feige
proves that there is some ǫ > 0 for which it is NP-hard to distinguish a satisfiable instance from
an instance with at most (1 − ǫ)m satisfiable clauses [Fei98].

Given a MAX 3SAT-5 instance, we make a EGC instance by including a vertex for each literal, ℓ,
3 vertices for each clause C1, C2, C3, and an additional “root” vertex, r. We model the assignment
by n edge pairs which decide if each variable is true or false: let pair i be ({r, xi}, {r, xi}). We
include 3m additional pairs: for the i-th literal, ℓ, of each clause C, include a pair of the form
({ℓ, Ci}, {Ci, Ci+1}). If the assignment is satisfiable, there is a way of selecting edges which yields
a component of size 3m + n + 1. On the other hand, any selection of edges from the first n pairs
corresponds naturally to some assignment. If a literal is not selected, then since it appears in at
most 5 clauses and is not connected to the root, it can be in a component of size at most 16. Since it
is NP-hard to distinguish satisfiable 3SAT-5 instances from instances with at most (1− ǫ)m clauses
satisfiable, it is also NP-hard to distinguish instances of EGC with a component of size 8

5m + 1
from those with a component of size at most (8

5 − ǫ)m + 1. �

Proof of Theorem 2: We will present a sequence of edge pairs, depending on the previous choices
of the algorithm. The edge pairs will all come from a complete binary tree, and the edges in each
pair will be siblings, i.e., of the form ({x, y}, {x, y′}). Whatever the algorithm chooses at step i
— and for a fixed deterministic algorithm this choice is predictable — we make it wish it chose
otherwise. So, if the algorithm selects edge {x, y}, the next pair we give it is ({y′, z}, {y′, z′}).

Thus, the online algorithm obtains a graph with only isolated edges, while making the opposite
choice at every step would yield a component with m edges. �

4

Of course, the same (m + 1)/2 ratio also applies to randomized online algorithm, if the adversary
is allowed to see the algorithm’s choice before constructing the next pair. Even if the adversary
is required to fix a sequence of pairs in advance, and even if she does not know what randomized
algorithm is being used, there is an almost equally bad instance. It is given by a random path down
the tree and the siblings of the path edges, each edge paired with its sibling, the pairs presented in
order from root to leaf. At each step, the online algorithm has probability only 1/2 of choosing the
path edge rather than its sibling, and hence whp gets a largest component of size only O(log n).

3 Proofs of Average-Case Theorems

Proof of Theorem 3: We repeat more formally the greedy heuristic sketched in the introduction,
in a form conducive to analysis. Algorithm B repeats the following n times, starting with each
possible vertex for v1. At each step, we maintain two sets of vertices, called unborn, Ui; and alive,
Ai. Initially, a single vertex is alive, A1 = {v1}, and the remainder are unborn, U1 = [n] \ {v1}. At
step i, we choose some vertex vi ∈ Ai and identify all previously unidentified pairs with an edge
incident to vi. For each such edge pair, we use the edge incident to vi. We let Pi = N(vi) ∩ Ui

denote the set of newly discovered vertices, and we set Ai+1 = (Ai \ {vi}) ∪ Pi and Ui+1 = Ui \ Pi.

For analysis, it is convenient to work with an instance resembling Gn,p. Let In,p be a random
instance formed by including each pair of edges independently with probability p. Thus, our

probability space is {0, 1}(n

2
)
2

with the product measure. We will show that the threshold value
is p = 1

n3 , which has expected n
4 pairs. We do so by analyzing the behavior of Algorithm B on

In,(1+ǫ)n−3 , which proceeds in two claims. We will then translate this result to random instances

In,m where m = 1
4(1 + ǫ)n.

Let p = (1+ǫ)n−3, and let β, δ > 0 be such that (1+ǫ)(1−β)3 = 1+δ and let t0 = 8(1+δ)δ−2 log n
and t1 = βn.

Claim 1: Running Algorithm B on In,p with any starting vertex v1, either the algorithm halts
before step t0 or for all t0 ≤ t ≤ t1 we have |At| ≥ 1 whp.

For this it is sufficient, for each t with t0 ≤ t ≤ t1, to identify t vertices of the component. Before
we have identified a size βn component, there are at least (1 − β)n unborn vertices. So there are
at least 2(n(1 − β))

(

(1−β)n
2

)

≈ (n(1 − β))3 candidate edge pairs which contribute a unique vertex
to Pi. Thus we have

P

[t
∑

i=1

|Pi| ≤ t

]

≤ P

[t
∑

i=1

B((n(1 − β))3, p) ≤ t

]

.

We also have

E

[t
∑

i=1

B(n3(1 − β)3, p)

]

= (1 + ǫ)(1 − β)3t = (1 + δ)t,

so we use a standard Chernoff bound to show the probability that Algorithm B, starting at any

5

vertex, halts at time t for any t0 ≤ t ≤ t1 is at most

n

t1
∑

t=t0

P

[t
∑

i=1

B
(

n3(1 − β)3, p
)

≤ t

]

≤ n

t1
∑

t=t0

exp

(

−(δt)2

2(1 + δ)t

)

≤ nt1e
−δ2t0/2(1+δ)

≤ n−2.

Claim 2: There is some vertex v so that starting Algorithm B on v yields a component of size at
least t0 whp.

For this, we start Algorithm B on some vertex v, and if it fails to discover t0 vertices, we start it on
an unexplored vertex, v′, and keep going. Each run, we expose at most t0 vertices, so if we fail t0
times, the number of edges exposed at each step dominates B(n3(1−β)3, p). Now, for Algorithm B
to fail in every run, we must have that the total number of vertices exposed is less than the number
of steps. But

P

[t2
0
∑

i=1

B(n3(1 − β)3, p) ≤ t20

]

≤ e−δ2t2
0
/2(1+δ) = o(n−2).

Therefore, we have some vertex where Algorithm B runs for at least t0 steps with probability
1 − o(n−2).

Claims 1 and 2 imply Algorithm B finds a component of size t1 = βn in In,p whp.

To translate this result from In,p to In,m, note that the probability In,p has exactly n4

4 p = 1
4 (1 +

ǫ)n =: m edge pairs is

PIn,p [M] =

(n4

4

m

)

pm(1 − p)
n4

4
−m = O(n−1/2),

where M denotes the event that I has m distinct edge pairs. Also note that the probability In,m

consists of m distinct edge pairs is

PIn,m [M] =

m−1
∏

i=0

(

1 −
i
(

n
2

)2

)

= 1 − O(n−2).

And, by symmetry, for any particular instance I⋆ we have

PIn,m [In,m = I⋆ |M] = PIn,p[In,p = I⋆ |M].

So the probability of any event E in the In,m model is related to the probability in the In,p model
by

PIn,m[E] = PIn,m[E |M]PIn,m [M] + PIn,m[E |M]PIn,m[M]

≤ PIn,m[E |M] + O(n−2)

= PIn,p [E |M] + O(n−2)

= O(n1/2)PIn,p [M]PIn,p [E |M] + O(n−2)

≤ O(n1/2)PIn,p [E] + O(n−2).

6

Since the failure probability was O(n−2) in the In,p model, it is O(n−3/2) for In,m. �

Proof of Theorem 4: We will analyze a wider class of algorithms. Instead of requiring the
algorithm to choose edges at each step of the process, we will generate the first γn pairs, and allow
the process to keep any components in the union with at least 2 edges, and additionally to keep up
to γn of the isolated edges. Then we will generously allow the process to keep all edges from an
additional 1

4(1 + ǫ)n− γn pairs. A nonrigorous intuition for our proof is that the first γn pairs are
“pretty much” isolated edges, and so the graph resulting from this process “looks like” the union
of γn + 2(1

4 (1 + ǫ) − γ)n = 1
2(1 + ǫ − 2γ)n random edges. For γ > 1

2ǫ such a graph is below the
threshold for the giant component.

This heuristic argument does not translate directly into a rigorous proof because the union of the
edges in the γn pairs is not a collection of isolated edges. To work around this, we will bound
the contribution of the components of 3 or more vertices in the union of the first γn pairs. Note
that, by symmetry, it makes no difference which γn isolated edges the algorithm selects, so in
this wider class of algorithms, the results of any selection process are the same. To prove the
theorem, we decompose the graph into two parts. Let G′ be the union of γn isolated edges and the
components containing at least 3 vertices in the union of 2γn random edges. Let G′′ be the union
of 2(1

4 (1 + ǫ) − γ)n = 1
2(1 + ǫ− 4γ)n edges. We show that whp G′ ∪G′′ contains no component of

size exceeding
t1 = δ−16(1 − γ)−2(log n)3/2.

To simplify calculations, we make G′′ a realization of Gn,p, with p = (1 + ǫ − 4γ)/n. We will
translate our results to Gn,m at the end of the proof. Let ǫ, γ, δ > 0 so that

(1 + ǫ − 4γ)

(

e−4γ + 4γe−8γ + 2γ +
(4γ)2e3(1−4γ)

1 − 4γe1−4γ

)

= 1 − 2δ.

Note that such ǫ, γ, δ exist, for example taking ǫ = 0.003, γ = 0.003 and δ ≈ 0.003177.

Let Tk denote the number of components in G′ with k vertices. Given the values of the Tk’s, we
use an exposure procedure similar to Algorithm A to prove G′ ∪ G′′ has no large components. We
expose all the vertices adjacent to vi in G′′ and if we discover a vertex of a connected component
of G′, we add every vertex of this component to the set Ai+1. Thus, at each step, and conditioned
on any history, the size of Pi is stochastically dominated by

n
∑

k=1

k B(kTk, p),

and the probability that we discover a component of size exceeding t1 is bounded by

P

[t1
∑

i=1

n
∑

k=1

|Pi| ≤ t1

]

≤ P

[t1
∑

i=1

n
∑

k=1

k B(kTk, p) ≥ t1

]

.

Let E1 denote the event that G′ contains no component with more than K = 6(1 − γ)−2 log n
vertices. Standard arguments show P[E1] ≤ O(n−2) (see, for example, [J LR00]). If E1 holds, we

7

need only consider the sum of weighted Binomial r.v.’s up to the K-th term. In other words, E1

implies
n
∑

k=1

k B(kTk, p) =
K
∑

k=1

k B(kTk, p).

Let Z =
∑K

k=1 k2Tkp. Note that Z is the expectation of the sum above conditioned on the Tk’s.
Also note that the value of Z is dependent on G′ only. We now obtain a bound on Z that holds
whp.

We use a tree census results for sparse random graphs. It is known that in Gn,m=cn/2 we have the
following: (see, for example, Pittel, [Pit90])

E[Tk] ∼ n(kk−2ck−1e−ck/k!),

which, in G′ applies to Tk with k ≥ 3. We also have T2 ≤ γn, and E[T1] = e−4γn + 4γe−8γn− 2T2.
So we have

E[Z] = E

[K
∑

k=1

k2Tkp

]

≤ (1 + ǫ − 4γ)

(

e−4γ + 4γe−8γ + 2
T2

n
+

K
∑

k=3

kk(4γ)k−1e−4γk/k!

)

≤ (1 + ǫ − 4γ)

(

e−4γ + 4γe−8γ + 2γ + (4γ)−1
∞
∑

k=3

(

4γe1−4γ
)k
)

= (1 + ǫ − 4γ)

(

e−4γ + 4γe−8γ + 2γ +
(4γ)2e3(1−4γ)

1 − 4γe1−4γ

)

= 1 − 2δ.

Let E2 be the event that Z ≤ 1 − δ. We use a form of the Azuma-Hoeffding inequality due to
McDiarmid (see [Hoe63, McD89]) to show E2 holds whp. Note that changing one edge of G′ can
create or destroy at most two components in G′. So this can change the value of Z by at most
2K2p. Therefore,

P[E2] = P[Z ≥ 1 − δ]

≤ P[Z ≥ E[Z] + δ]

≤ exp

(

−
2δ2

(2γn)(2K2p)2

)

≤ exp

(

−
δ2n

4K4

)

.

Conditioning on E1 and E2, we have

t1
∑

i=1

n
∑

k=1

k B(kTk, p) =

t1
∑

i=1

K
∑

k=1

k B(kTk, p), (1)

8

and

E

[t1
∑

i=1

K
∑

k=1

k B(kTk, p)

]

= Zt1 ≤ (1 − δ)t1.

To bound the probability that sum (1) is larger than t1, we use the following Chernoff bound,
from [AS00, Theorem A.1.18].

Theorem 6 Let Xi, 1 ≤ i ≤ n be independent random variables with each E[Xi] = 0 and no two

values of any Xi ever more than one apart. Set S = X1 + · · · + Xn. Then P[S > a] < exp(−2a2).

Applying this to (1), we have

P

[t1
∑

i=1

n
∑

k=1

k B(kTk, p) ≥ t1

∣

∣

∣

∣

E1, E2

]

≤ P

[t1
∑

i=1

K
∑

k=1

k B(kTk, p) ≥ Zt1 + δt1

]

≤ P

[t1
∑

i=1

K
∑

k=1

kTk
∑

j=1

(Be(p) − p)k

K
≥ δt1/K

]

≤ exp
(

−2 (δt1/K)2
)

= n−2.

So the probability there exists any vertex on which we run for at least t1 steps is at most n−1 by
the union bound.

Since P[E1] + P[E2] ≤ o(n−1), we complete the theorem by observing that Gn,p has at least 1
2 (1 +

ǫ − 4γ)n edges with constant probability, and extra edges can only increase the size of the largest
component, so our claim also holds in Gn,m. �

Proof of Theorem 5: We bound the size of components formed by this process by exposing edges
starting from a vertex v1 and tracking the number of vertices unborn and alive.

Consider decomposing the graph into G′, the edges selected before time γn, and G′′, the edges
selected after.

To simplify calculations, we take G′ to be a realization of Gn,p, with p = 2γ/n. Also, we generate
G′′ by applying our selection rule to a realization of In,p′, with p′ = 2(1 − ǫ − 2γ)n−3 (recall this
is an instance where every pair of edges is included independently with probability p′). Thus the
expected number of edges in G′ ∪ G′′ is γn + 1

2(1 − ǫ − 2γ)n = 1
2 (1 − ǫ)n, as it should be.

Let α, β, γ, δ, ǫ, η, θ > 0 be such that (1 − β)(2γ) = 2γ − ǫ/2 + δ, and

(1 − β − (1 + η)e−2γ)(1 − β)2/2 + (1 − β − (1 + η)e−2γ)(1 − δ)e−2γ(1 − β) = α

and
α2(1 − ǫ − 2γ) = 1 − 2γ − ǫ/2 + θ.

Note that such parameters exist, for example β = η = 10−6, γ = 0.4, ǫ = 0.015, yielding α ≈ 0.521,
δ ≈ 0.007, and θ ≈ 0.0002. Let t0 = 8 max{δ−2(1 − β)γ, θ−2(1 − ǫ − 2γ)} log n and t1 = βn.

9

We wish to bound the probability Algorithm C halts with a component of size t0 ≤ t ≤ t1. For
this, it is sufficient to bound the probability

∑t
i=1 |Pi| ≤ t for all t0 ≤ t ≤ t1. We decompose

Pi into Pi = P ′
i ∪ P ′′

i , where P ′
i are the progeny contributed by edges in G′ and P ′′

i are the
progeny contributed by edges in G′′ (and not by edges in G′). If

∑t
i=1 |Pi| ≤ t, then either

∑t
i=1 |P

′
i | ≤ (2γ − ǫ/2)t or

∑t
i=1 |P

′′
i | ≤ (1 − 2γ + ǫ/2)t.

Now, at any step t, conditioned on any history that has not yet discovered βn vertices, we have
|P ′

i | stochastically dominates B((1 − β)n, p) and

P

[t
∑

i=1

|P ′
i | ≤ (2γ − ǫ/2)t

]

≤ P

[t
∑

i=1

B((1 − β)n, p) ≤ (2γ − ǫ/2)t

]

≤ e−δ2t/4γ(1−β)

≤ n−2.

Let E3 denote the event that G′ contains (1±η)e−2γn isolated vertices. We omit a simple calculation
using Chebyschev’s inequality to show E3 holds whp.

Conditioning on E3, we have that at any step t, conditioned on any history that has not yet
discovered βn vertices, there are at least (1− β − (1 + η)e−2γ)n vertices that are not isolated in G′

and are still in Ui. So there are at least ((1−β − (1 + η)e−2γ)(1−β)2/2 + (1−β − (1 + η)e−2γ)(1−
δ)e−2γ(1−β))n3 = αn3 unexposed edge pairs which would cause our selection rule to place a vertex
in P ′

i . So

P

[t
∑

i=1

|P ′′
i | ≤ (1 − 2γ − ǫ/2)t

]

≤ P

[t
∑

i=1

B(αn3, p′) ≤ (1 − 2γ − ǫ/2)t

]

≤ e−θ2t/4α(1−ǫ−2γ) ≤ n−4.

Thus by the union bound, the probability that some component has size t for t0 ≤ t ≤ t1 is O(n−2).

Now, as in the proof of Theorem 3, we argue that some component has size at least t0 whp. The
argument is identical to the earlier theorem, and the size of the progeny at each stage is bounded
identically to the previous paragraph, so we omit further details.

Finally, we observe that the probability there is no giant component is O(n−2), so we can convert
to the original model as in Theorem 3. �

References

[AS00] Noga Alon and Joel H. Spencer, The probabilistic method, second ed., Wiley-Interscience
Series in Discrete Mathematics and Optimization, Wiley-Interscience [John Wiley &
Sons], New York, 2000, With an appendix on the life and work of Paul Erdős. MR
2003f:60003

[BF01] Tom Bohman and Alan Frieze, Avoiding a giant component, Random Structures Algo-
rithms 19 (2001), no. 1, 75–85. MR 2002g:05169

10

[BFW02] Tom Bohman, Alan Frieze, and Nicholas C. Wormald, Avoiding a giant component II,
manuscript, 2002.

[BK03] Tom Bohman and David Kravitz, personal communication, 2003.

[Fei98] Uriel Feige, A threshold of ln n for approximating set cover, J. ACM 45 (1998), no. 4,
634–652. MR 2000f:68049

[Hoe63] Wassily Hoeffding, Probability inequalities for sums of bounded random variables, J.
Amer. Statist. Assoc. 58 (1963), 13–30. MR 26 #1908

[J LR00] Svante Janson, Tomasz Luczak, and Andrzej Rucinski, Random graphs, Wiley-
Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience, New
York, 2000. MR 2001k:05180

[McD89] Colin McDiarmid, On the method of bounded differences, Surveys in combinatorics, 1989
(Norwich, 1989), London Math. Soc. Lecture Note Ser., vol. 141, Cambridge Univ. Press,
Cambridge, 1989, pp. 148–188. MR 91e:05077

[Pit90] Boris Pittel, On tree census and the giant component in sparse random graphs, Random
Structures Algorithms 1 (1990), no. 3, 311–342. MR 92f:05087

[SSS02] Mark Scharbrodt, Thomas Schickinger, and Angelika Steger, A new average case analysis

for completion time scheduling, Proceedings of the 34th Annual ACM Symposium on
Theory of Computing (STOC), 2002, pp. 170–178.

11

