
A new bound for the 2/3 conjecture

Daniel Král’∗ Chun-Hung Liu† Jean-Sébastien Sereni‡
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Abstract

We show that any n-vertex complete graph with edges colored with three
colors contains a set of at most four vertices such that the number of the
neighbors of these vertices in one of the colors is at least 2n/3. The previous
best value, proved by Erdős et al. in 1989, is 22. It is conjectured that three
vertices suffice.

1 Introduction
Erdős and Hajnal [5] made the observation that for fixed positive integer t, positive
real ε, and graph G on n > n0 vertices, there is a set of t vertices that have a
neighborhood of size at least (1 − (1 + ε)(2/3)t)n in either G or its complement.
They further inquired whether 2/3 may be replaced by 1/2. This was answered in
the affirmative by Erdős, Faudree, Gyárfás and Schelp [3], who not only proved the
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result but also dispensed with the (1 + ε) factor. They also phrased the question as a
problem of vertex domination in a multicolored graph.

Given a color c in an r-coloring of the edges of the complete graph, a subset A of
the vertex set c-dominates another subset B if, for every y ∈ B \ A, there exists a
vertex x ∈ A such that the edge xy is colored c. The subset A strongly c-dominates
B if such a vertex x ∈ A exists for every y ∈ B. (Thus, the two notions coincide
when A ∩B = ∅.) The result of Erdős et al. [3] may then be stated as follows.

Theorem 1. For any fixed positive integer t and any 2-coloring of the edges of the
complete graph Kn on n vertices, there exist a color c and a subset X of size at most
t such that all but at most n/2t vertices of Kn are c-dominated by X.

In a more general form, they asked: Given positive integers r, t, and n along with
an r-coloring of the edges of the complete graph Kn on n vertices, what is the largest
subset B of the vertices of Kn necessarily monochromatically dominated by some
t-element subset of Kn? However, in the same paper [3], the authors presented a
3-coloring of the edges of Kn — attributed to Kierstead — which shows that if r > 3,
then it is not possible to monochromatically dominate all but a small fraction of the
vertices with any fixed number t of vertices. This 3-coloring is defined as follows: the
vertices of Kn are partitioned into three sets V1, V2, V3 of equal sizes and an edge xy
with x ∈ Vi and y ∈ Vj is colored i if 1 6 i 6 j 6 3. Observe that, if t is fixed, then
at most 2n/3 vertices may be monochromatically dominated.

In the other direction, it was shown in the follow-up paper of Erdős, Faudree,
Gould, Gyárfás, Rousseau and Schelp [4], that if t > 22, then, indeed, at least 2n/3
vertices are monochromatically dominated in any 3-coloring of the edges of Kn. The
authors then ask if 22 may be replaced by a smaller number (specifically, 3). We
prove here that t > 4 is sufficient.

Theorem 2. For any 3-coloring of the edges of Kn, where n > 2, there exist a color
c and a subset A of at most four vertices of Kn such that A strongly c-dominates at
least 2n/3 vertices of Kn.

Our proof suggests that Kierstead’s coloring is in some sense extremal, giving more
credence to the conjecture that three vertices would suffice to monochromatically
dominate a set of size 2n/3 in any 3-coloring of the edges of Kn.

We note that there exists 3-colorings of the edges of Kn such that no pair of
vertices monochromatically dominate 2n/3 + O(1) vertices. This can be seen by
realizing that in a random 3-coloring, the probability that an arbitrary pair of vertices
monochromatically dominate more than 5n/9 + o(n) vertices is o(n−2) by Chernoff’s
bound.
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Our proof of Theorem 2 utilizes the flag algebra theory introduced by Razborov,
which, recently, has led to numerous results in extremal graph and hypergraph theory.
In the following section, we present a brief introduction to the flag algebra framework.
The proof of Theorem 2 is presented in Section 3.

We end this introduction by pointing out another interesting question: what
happens when one increases r, the number of colors? Constructions in the vein of
that of Kierstead — for example, partitioning Kn into s parts and using r =

(
s
2

)
colors — show that the size of dominated sets decreases with increasing r. While it
may be difficult to determine the minimum value of t dominating a certain proportion
of the vertices, it would be interesting to find out whether such constructions do, in
fact, give the correct bounds.

2 Flag Algebras
Flag algebras were introduced by Razborov [11] as a tool based on the graph limit
theory of Lovász and Szegedy [10] and Borgs et al. [2] to approach problems per-
taining to extremal graph theory. This tool has been successfully applied to various
topics, such as Turán-type problems [13], super-saturation questions [12], jumps in
hypergraphs [1], the Caccetta-Häggkvist conjecture [9], the chromatic number of
common graphs [7] and the number of pentagons in triangle-free graphs [6, 8].

Let us now introduce the terminology related to flag algebras needed in this
paper. Since we deal with 3-colorings of the edges of complete graphs, we restrict
our attention only to this particular case. Let us define a tricolored graph to be a
complete graph whose edges are colored with 3 colors. If G is a tricolored graph,
then V (G) is its vertex-set. For a set F , we define RF to be the set of all formal
linear combinations of elements of F with real coefficients. Let F` be the set of
non-isomorphic tricolored graphs with ` vertices (two tricolored graphs are considered
to be isomorphic if they differ by a permutation of the vertices and a permutation
of the edge colors). The elements of F3 are shown in Figure 1. We set F := ∪`∈NF`.
Given a tricolored graph σ, we define Fσ` to be the set of tricolored graphs F on
` vertices with a fixed embedding of σ, that is, an injective mapping ν from V (σ)
to V (F ) such that Im(ν) induces in F a subgraph that differs from σ only by a
permutation of the edge colors. We set Fσ := ∪`∈NFσ` .

The central notions are factor algebras of F and Fσ equipped with addition and
multiplication. Let us start with the simpler case of F. Let F be RF factorised by

3
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σB

1 2
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3

Figure 1: The elements of F3. The edges of color 1, 2 and 3 are represented by solid,
dashed and dotted lines, respectively.

the subspace of RF generated by all combinations of the form

H −
∑

H′∈F|H|+1

p(H,H ′)H ′,

where p(H,H ′) is the probability that a randomly chosen subset of |V (H)| vertices
of H ′ induces a subgraph isomorphic to H. We set A := RF .

Next, we define the multiplication on A based on the elements of F as

H1 ·H2 :=
∑

H∈F|H1|+|H2|

p(H1, H2;H),

where p(H1, H2;H) is the probability that two randomly chosen disjoint subsets of
vertices of H with sizes |V (H1)| and |V (H2)| induce subgraphs isomorphic to H1 and
H2, respectively. The multiplication is linearly extended to RF. Further, it can be
shown that the result of the multiplication falls into the same class of A independently
of the choice of the elements of F in their classes.

The definition of Aσ follows the same lines. Let H and H ′ be two tricolored
graphs in Fσ with embeddings ν and ν ′ of σ. Let p(H,H ′) be the probability that
ν ′(V (σ)) together with a randomly chosen subset of |V (H)| − |V (σ)| vertices in
V (H ′) \ ν ′(V (σ)) induce a subgraph that is isomorphic to H through an isomorphism
f that preserves the embeddings, that is, ν ′ = f ◦ ν. The set Aσ is composed of all
formal real linear combinations of elements of RFσ factorised by the subspace of RFσ
generated by all combinations of the form

H −
∑

H′∈Fσ|H|+1

p(H,H ′)H ′.

Similarly, p(H1, H2;H) is the probability that ν(V (σ)) together with two randomly
chosen disjoint subsets of |V (H1)| − |V (σ)| and |V (H2)| − |V (σ)| vertices in V (H) \
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ν(V (σ)) induce subgraphs isomorphic to H1 and H2, respectively, with the isomor-
phisms preserving the embeddings of σ. The definition of the product is then analogous
to that in A.

Consider an infinite sequence (Gi)i∈N of tricolored graphs with an increasing
number of vertices. Recall that if H ∈ F, then p(H,Gi) is the probability that a
randomly chosen subset of |V (H)| vertices of Gi induces a subgraph isomorphic to
H. The sequence (Gi)i∈N is convergent if p(H,Gi) has a limit for every H ∈ F. A
standard argument (using Tychonoff’s theorem [14]) yields that every infinite sequence
of tricolored graphs has a convergent (infinite) subsequence.

Fix now a convergent sequence (Gi)i∈N of tricolored graphs. We set q(H) :=
limi→∞ p(H,Gi) for every H ∈ F, and we linearly extend q to A. The key property is
that q is a homomorphism from A to R. Moreover, for σ ∈ F and an embedding ν
of σ in Gi, define pνi (H) := p(H,Gi). So, for every i ∈ N, the mappings pνi form a
random distribution of mappings from A to R, where randomness comes from the
choice of ν. Since p(H,Gi) converges (as i tends to infinity) for every H ∈ F, the
sequence of these distributions also converges. In what follows, qσ will be a randomly
chosen mapping from Aσ to R based on the limit distribution. It can be shown that
such a mapping is a homomorphism from Aσ to R. In fact, q fully determines the
random distributions of qσ for all σ.

Let us now have a closer look at the relation between q and qσ. The “averaging”
operator J·Kσ : Aσ → A is a linear operator defined on the elements of Fσ by JHKσ :=
p ·H ′, where H ′ is the (unlabeled) tricolored graph in F corresponding to H and p is
the probability that a random injective mapping from V (σ) to V (H ′) is an embedding
of σ in H ′ yielding H. The key relation between q and qσ is the following:

∀H ∈ Aσ, q(JHKσ) =
∫
qσ(H), (1)

where the integration is over the probability space given by the limit random dis-
tribution of qσ. We immediately conclude that if qσ(H) > 0 almost surely, then
q(JHKσ) > 0. In particular,

∀H ∈ Aσ, q(
q
H2y

σ
) > 0. (2)

2.1 Particular Notation Used in our Proof
Before presenting the proof of Theorem 2, we need to introduce some notation and
several lemmas. Recall that σA, σB and σC , the elements of F3, are given in Figure 1.
For i ∈ {A,B,C} and a triple t ∈ {1, 2, 3}3, let F i

t be the element of Fσi4 in which the
unlabeled vertex of F i

t is joined by an edge of color tj to the image of the j-th vertex
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Figure 2: The elements σ1, . . . , σ7 of F4. The edges of color 1, 2 and 3 are represented
by solid, dashed and dotted lines, respectively.

of σi for j ∈ {1, 2, 3}. Two elements of AσB and two of AσC will be of interest in our
further considerations:

wB := 165FB
113 + 165FB

333 − 279FB
123 − 44FB

131 + 328FB
133 + 10FB

233 + 421FB
323,

w′B := −580FB
113 − 580FB

333 + 668FB
123 − 264FB

131 + 10FB
133 + 725FB

233 + 632FB
323,

wC := 100FC
112 + 100FC

312 − 100FC
113 − 100FC

133 + 162FC
122 + 163FC

221, and
w′C := −10FC

112 − 10FC
312 + 10FC

113 + 10FC
133 − 77FC

122 + 89FC
221.

We make use of seven elements σ1, . . . , σ7 out of the 15 elements of F4. They are
depicted in Figure 2. For i ∈ {1, . . . , 7} and a quadruple q ∈ {1, 2, 3}4, let F i

q be the
element of Fσi5 such that the unlabeled vertex of F i

q is joined by an edge of color qj to
the j-th vertex of σi for j ∈ {1, 2, 3, 4}. If i ∈ {1, . . . , 7} and c ∈ {1, 2, 3}, then F i

(c)
is the element of Aσi that is the sum of all the five-vertex σi-flags F i

q such that the
unlabeled vertex is joined by an edge of color c to at least one of the vertices of σi,
i.e., at least one of the entries of q is c.

Finally, we define H1, . . . , H142 to be the elements of F5 in the way depicted in
Appendix A.

3 Proof of Theorem 2
In this section, we prove Theorem 2 by contradiction: in a series of lemma, we shall
prove some properties of a counterexample, which eventually allows us to establish
the nonexistence of counterexamples.

Let G be a tricolored complete graph. For a vertex v of G, let Av be the set of the
colors of the edges incident with v. Consider a sequence of graphs (Gk)k∈N, obtained
from G by replacing each vertex v of G with a complete graph of order k with edges
colored uniformly at random with colors in Av; the colors of the edges between the
complete graphs corresponding to the vertices v and v′ of G being assigned the color
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i=1 i=2 i=3 i=4 i=5 i=6 i=7
c = 1 -1/3 0 -1/3 -1/3 0 0 0
c = 2 1/2 0 1/6 -1/3 -1/3 -1/3 0
c = 3 1/2 1/2 1/2 1/2 1/2 0 0

Table 1: The values εc(σi) for i ∈ {1, . . . , 7} and c ∈ {1, 2, 3}.

of the edge vv′. This sequence of graphs converges asymptotically almost surely; let
qG be the corresponding homomorphism from A to R.

Let n > 2. We define a counterexample to be a tricolored graph with n vertices
such that for every color c ∈ {1, 2, 3}, each set W of at most four vertices strongly
c-dominates less than 2n/3 vertices of G. A counterexample readily satisfies the
following.

Lemma 3. If G is a counterexample, then every vertex is incident with edges of at
least two different colors.

In the next lemma, we establish an inequality that qG satisfies if G is a counterex-
ample. To do so, define the quantity εc(σi) for i ∈ {1, . . . , 7} and c ∈ {1, 2, 3} to
be 1/2 if σi contains a single edge with color c, −1/3 if each vertex of σi is incident
with an edge colored c, 1/6 if σi contains at least two edges with color c and a vertex
incident with edges of a single color different from c, and 0, otherwise. These values
are gathered in Table 1.

Lemma 4. Let G be a counterexample with n vertices. For every i ∈ {1, . . . , 7} and
c ∈ {1, 2, 3}, a homomorphism qσiG from Aσi to R almost surely satisfies the inequality

qσiG (F i
(c)) 6

2
3 + εc(σi)

n
.

Proof. Fix i ∈ {1, . . . , 7} and c ∈ {1, 2, 3}. Consider the graph Gk for sufficiently
large k. Let (w1, w2, w3, w4) be a quadruple of vertices of Gk inducing a subgraph
isomorphic to σi. Further, let W be the set of vertices strongly c-dominated by
{w1, . . . , w4}. We show that |W | 6 2nk

3 + εc(σi)k + o(k) with probability tending to
one as k tends to infinity. This will establish the inequality stated in the lemma.

For i ∈ {1, 2, 3, 4}, let vi be the vertex of G corresponding to the clique Wi of Gk

containing wi. Let V be the set of vertices of G that are strongly c-dominated by
{v1, . . . , v4}. Since G is a counterexample, |V | < 2n/3, and hence, |V | 6 2n/3− 1/3.
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If wj and wj′ are joined by an edge of color c and, furthermore, vj = vj′ , then vj is
added to V as well. Since V is still strongly c-dominated by a quadruple of vertices
in G (replace vj′ by any of its c-neighbors), it follows that |V | 6 2n/3− 1/3.

The set W can contain the |V | k vertices of the cliques corresponding to the
vertices of V , and, potentially, it also contains some additional vertices if wi has
no c-neighbors among w1, . . . , w4. In this case, the additional vertices in W are the
c-neighbors of wi in Wi. There are at most k/3 + o(k) such vertices if vi is incident
with edges of all three colors in G, and at most k/2 + o(k) if vi is incident with edges
of only two colors in G.

If εc(σi) = −1/3, then all the vertices w1, . . . , w4 have a c-neighbor among
w1, . . . , w4 and thus W contains only vertices of the cliques corresponding to the
vertices V . We conclude that |W | 6 (2n−1)k

3 + o(k), as required.
If εc(σi) = 0, then all but one of the vertices w1, . . . , w4 have a c-neighbor among

w1, . . . , w4 and the vertex wj that has none is incident in σi with edges of the two
colors different from c. In particular, either wj has no c-neighbors inside Wj or vj is
incident with edges of three distinct colors in G. This implies that |W | 6 (2n−1)k

3 +o(k)
in the former case and |W | 6 2nk

3 + o(k) in the latter case. So, the bound holds.
If εc(σi) = 1/6, then all but one of the vertices among w1, . . . , w4 have a c-neighbor

among w1, . . . , w4. Let wj be the exceptional vertex. Since wj has at most k/2 + o(k)
c-neighbors in Wj, it follows that |W | 6 2nk

3 + k
6 + o(k).

Finally, if εc(σi) = 1/2, then two vertices wj and wj′ among w1, . . . , w4 have
no c-neighbors in {w1, . . . , w4}. The vertices wj and wj′ have at most k/2 + o(k)
c-neighbors each in Wj and Wj′ , respectively. Moreover, since σi contains edges of all
three colors, one of wj and wj′ is incident in σi with edges of the two colors different
from c. Hence, this vertex has at most k/3 + o(k) c-neighbors in Wj. We conclude
that the set W contains at most |V | k + 5k/6 + o(k) 6 2nk

3 + k
2 + o(k) vertices.

As a consequence of (1), we have the following corollary of Lemma 4.

Lemma 5. Let G be a counterexample with n vertices. For every i ∈ {1, . . . , 7} and
c ∈ {1, 2, 3} such that εc(σi) 6 0, it holds that

qG(
q
2σi/3− F i

(c)
y
σi

) > 0.

We now prove that in a counterexample, at most two colors are used to color the
edges incident with any given vertex. As we shall see, this structural property of
counterexamples directly implies their nonexistence, thereby proving Theorem 2.

Lemma 6. No counterexample contains a vertex incident with edges of all three
colors.
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Proof. Let G be a counterexample and w3 ∈ A be the sum of all elements of F5
that contain a vertex incident with at least three colors. By the definition of qG, the
graph G has a vertex incident with edges of all three colors if and only if qG(w3) > 0.
Lemma 5 implies that qG(H) is non-negative for each element H of A corresponding
to any column of Table 2 (in Appendix B). In addition, (2) ensures that qG(H) is also
non-negative for each element H of A corresponding to any of the first four columns
of Table 3 (in Appendix B). Summing these columns with coefficients

23457815885978657985
1029505785512512 , 134730108347752975

4596007971038 , 134730108347752975
4596007971038 ,

15852088219609163945
514752892756256 , 196791037567187109905

12354069426150144 , 33245823856447882025
24708138852300288 ,

3956624143678293415
772129339134384 , 30762195734543710715

772129339134384 , 20816545085118359705
4118023142050048 ,

74313622711306287405
2059011571025024 , 48968798259015

514752892756256 ,
39315342699665

6177034713075072 ,
15977347300925119
32944185136400384 ,

8880723226482731
24708138852300288 ,

respectively, yields an element w0 of A given in the very last column of Table 3. As
qG is a homomorphism from A to R, it follows that qG(w0) > 0. Since w0 6 −w3, we
deduce that qG(w3) 6 0, which therefore implies that qG(w3) = 0, as desired.

We are now in a position to prove Theorem 2, whose statement is recalled below.

Theorem 7. Let n > 2. Every tricolored graph with n vertices contains a subset of
at most four vertices that strongly c-dominates at least 2n/3 vertices for some color c.

Proof. Suppose, on the contrary, that there exists a counterexample G. Recall that
Av is the set of colors that appear on the edges incident to the vertex v. Now, by
Lemmas 3 and 6, it holds that |Av| = 2 for every vertex v of G. Hence, V (G) can
be partitioned into three sets V1, V2 and V3, where v ∈ Vi if and only if i /∈ Av.
Without loss of generality, assume that |V1| > |V2| > |V3|. Pick u ∈ V1 and v ∈ V2.
As Au∩Aw = {3} for all w ∈ V2, we observe that V2 is 3-dominated by {u}. Similarly,
V1 is 3-dominated by {v}. Therefore, the set {u, v} strongly 3-dominates V1 ∪ V2,
which has size at least 2n/3.
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and R. H. Schelp, Monochromatic coverings in colored complete graphs, in
Proceedings of the Twentieth Southeastern Conference on Combinatorics, Graph
Theory, and Computing (Boca Raton, FL, 1989), vol. 71 of Congr. Numer., 1990,
pp. 29–38.
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A The Elements of F5

H1 H2 H3 H4 H5 H6 H7 H8 H9

H10 H11 H12 H13 H14 H15 H16 H17 H18

H19 H20 H21 H22 H23 H24 H25 H26 H27

H28 H29 H30 H31 H32 H33 H34 H35 H36

H37 H38 H39 H40 H41 H42 H43 H44 H45

H46 H47 H48 H49 H50 H51 H52 H53 H54

H55 H56 H57 H58 H59 H60 H61 H62 H63

H64 H65 H66 H67 H68 H69 H70 H71 H72

H73 H74 H75 H76 H77 H78 H79 H80 H81

H82 H83 H84 H85 H86 H87 H88 H89 H90



H91 H92 H93 H94 H95 H96 H97 H98 H99

H100 H101 H102 H103 H104 H105 H106 H107 H108

H109 H110 H111 H112 H113 H114 H115 H116 H117

H118 H119 H120 H121 H122 H123 H124 H125 H126

H127 H128 H129 H130 H131 H132 H133 H134 H135

H136 H137 H138 H139 H140 H141 H142



B Vectors Used in the Proof of Lemma 6

Table 2: The first ten vectors
r 2σ

1/
3
−
F

1 (1
)z σ

1

r 2σ
2/

3
−
F

2 (1
)z σ

2

r 2σ
2/

3
−
F

2 (2
)z σ

2

r 2σ
3/

3
−
F

3 (1
)z σ

3

r 2σ
4/

3
−
F

4 (1
)z σ

4

r 2σ
4/

3
−
F

4 (2
)z σ

4

r 2σ
5/

3
−
F

5 (1
)z σ

5

r 2σ
5/

3
−
F

5 (2
)z σ

5

r 2σ
6/

3
−
F

6 (1
)z σ

6

r 2σ
7/

3
−
F

7 (2
)z σ

7

H1 0 0 0 0 0 0 0 0 0 0
H2 0 0 0 0 0 0 0 0 0 0
H3 0 0 0 0 0 0 0 0 0 0
H4 -1/90 0 0 0 0 0 0 0 0 0
H5 0 0 0 0 0 0 0 0 0 0
H6 -1/90 -1/180 1/90 0 0 0 0 0 0 0
H7 0 0 0 0 0 0 0 0 0 0
H8 0 -1/60 -1/60 0 0 0 0 0 0 0
H9 0 -1/45 2/45 0 0 0 0 0 0 0
H10 0 0 0 0 0 0 0 0 0 0
H11 0 0 0 -1/90 0 0 0 0 0 0
H12 0 0 0 0 0 0 0 0 0 0
H13 0 0 0 0 0 0 0 0 0 0
H14 -1/90 0 0 0 -1/180 1/90 0 0 0 0
H15 0 0 0 0 0 0 0 0 0 0
H16 -1/180 0 0 -1/180 0 0 -1/360 1/180 0 0
H17 -1/90 0 0 -1/180 0 0 0 0 1/180 0
H18 0 0 0 0 0 0 0 0 0 0
H19 -1/180 0 0 0 0 0 1/180 -1/360 0 0
H20 -1/90 1/90 -1/180 0 0 0 0 0 0 0
H21 -1/180 0 0 -1/180 0 0 0 0 0 1/120
H22 0 0 0 1/180 0 0 0 0 0 0
H23 0 0 0 0 0 0 0 0 0 0
H24 0 0 0 0 0 0 0 0 0 0
H25 0 -1/180 -1/180 0 -1/90 -1/90 0 0 0 0
H26 0 0 0 0 0 0 0 0 0 0
H27 0 -1/180 -1/180 0 0 0 -1/180 -1/180 0 0
H28 0 -1/90 -1/90 0 0 0 0 0 1/90 0
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H29 -1/90 0 0 0 0 0 0 0 0 0
H30 -1/180 -1/180 -1/180 0 0 0 -1/360 -1/360 0 0
H31 -1/180 -1/180 1/90 0 -1/180 1/90 1/180 -1/360 0 0
H32 0 -1/60 -1/60 0 0 0 0 0 0 0
H33 0 -1/90 1/180 0 0 0 -1/360 1/180 0 0
H34 0 -1/90 -1/90 1/90 0 0 0 0 -1/90 0
H35 0 0 0 0 0 0 0 0 0 0
H36 0 -1/180 1/90 0 0 0 1/90 -1/180 0 0
H37 0 0 0 0 0 0 -1/180 -1/180 0 0
H38 0 1/90 1/90 0 0 0 0 0 0 0
H39 0 -1/180 -1/180 0 0 0 0 0 0 0
H40 0 0 0 -1/90 0 0 0 0 0 0
H41 0 0 0 0 0 0 0 0 0 0
H42 0 0 0 -1/90 0 0 0 0 0 0
H43 -1/90 0 0 0 1/90 -1/180 0 0 0 0
H44 1/180 0 0 -1/180 0 0 0 0 0 0
H45 -1/180 0 0 -1/90 0 0 1/180 1/180 0 0
H46 -1/90 0 0 0 0 0 0 0 1/45 0
H47 0 0 0 0 0 0 0 0 0 0
H48 0 0 0 0 0 0 0 0 0 0
H49 0 0 0 0 0 0 0 0 0 0
H50 0 0 0 0 -1/180 -1/180 -1/180 -1/180 0 0
H51 -1/180 0 0 0 -1/180 -1/180 -1/360 -1/360 0 0
H52 -1/180 0 0 -1/180 0 0 -1/360 -1/360 0 0
H53 -1/180 0 0 0 -1/180 -1/180 0 0 1/180 0
H54 0 0 0 0 0 0 0 0 0 0
H55 0 0 0 0 0 0 -1/180 -1/180 0 0
H56 0 -1/180 -1/180 0 -1/90 -1/90 0 0 0 0
H57 -1/180 -1/180 -1/180 0 0 0 -1/360 -1/360 0 0
H58 0 -1/180 -1/180 0 0 0 1/360 -1/180 1/180 0
H59 0 -1/180 1/90 0 -1/90 -1/90 0 0 1/180 0
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H60 0 -1/180 1/90 -1/180 0 0 -1/180 -1/180 0 0
H61 0 -1/180 -1/180 1/90 0 0 0 0 -1/45 0
H62 -1/180 0 0 0 0 0 -1/360 -1/360 0 0
H63 -1/180 0 0 0 0 0 1/360 1/360 0 0
H64 0 0 0 0 0 0 1/90 -1/180 0 0
H65 0 0 0 1/90 0 0 -1/360 -1/360 0 0
H66 0 -1/180 -1/180 0 0 0 -1/180 -1/180 0 0
H67 0 -1/180 -1/180 0 0 0 0 0 0 0
H68 0 -1/180 1/90 0 1/90 -1/180 1/360 -1/180 0 0
H69 1/90 -1/90 1/180 0 0 0 0 0 0 0
H70 0 -1/180 -1/180 1/90 0 0 -1/360 1/180 0 -1/120
H71 0 0 0 0 0 0 -1/180 -1/180 1/180 0
H72 0 0 0 1/90 0 0 0 0 0 -1/60
H73 0 0 0 -1/60 0 0 0 0 0 0
H74 -1/90 1/90 1/90 -1/180 0 0 0 0 0 0
H75 -1/45 0 0 0 0 0 0 0 0 0
H76 -1/90 0 0 -1/90 1/90 1/90 0 0 0 0
H77 -1/90 0 0 0 0 0 1/90 -1/180 0 0
H78 -1/90 0 0 0 0 0 0 0 0 0
H79 -1/90 1/45 -1/90 0 -1/180 1/90 0 0 0 0
H80 -1/180 0 0 0 -1/180 -1/180 -1/360 -1/360 0 0
H81 1/90 0 0 0 0 0 1/360 -1/180 0 0
H82 -1/180 -1/180 -1/180 0 0 0 1/180 -1/360 1/180 0
H83 1/90 1/60 -1/60 0 0 0 -1/360 1/180 0 0
H84 -1/90 0 0 0 -1/90 1/45 0 0 0 0
H85 -1/90 0 0 0 0 0 -1/180 1/360 -1/90 0
H86 -1/180 -1/180 -1/180 0 -1/180 -1/180 -1/360 -1/360 0 0
H87 1/90 -1/180 -1/180 -1/180 -1/180 1/90 -1/360 -1/360 0 0
H88 1/90 -1/180 -1/180 0 1/90 -1/180 0 0 -1/90 -1/120
H89 -1/180 -1/180 -1/180 0 1/180 1/180 -1/360 -1/360 0 0
H90 1/90 -1/180 -1/180 0 0 0 -1/180 1/90 0 -1/120
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H91 1/45 -1/90 -1/90 0 0 0 0 0 -1/90 0
H92 0 0 0 0 0 0 0 0 0 0
H93 0 0 0 0 0 0 0 0 0 0
H94 0 -1/180 -1/180 0 -1/90 -1/90 0 0 0 0
H95 0 1/90 -1/180 0 0 0 1/90 -1/180 0 0
H96 0 -1/180 1/90 0 -1/90 -1/90 0 0 1/180 0
H97 0 1/90 -1/180 1/90 0 0 -1/180 -1/180 0 0
H98 0 0 0 0 0 0 0 0 -1/30 0
H99 0 0 0 -1/60 0 0 0 0 0 0
H100 0 -1/90 -1/90 0 0 0 0 0 1/90 0
H101 0 2/45 -1/45 0 0 0 0 0 0 0
H102 0 -1/90 -1/90 0 -1/90 -1/90 0 0 0 0
H103 0 1/45 -1/90 0 1/90 -1/180 -1/180 -1/180 0 0
H104 0 -1/90 -1/90 0 1/45 -1/90 0 0 -1/90 0
H105 0 -1/90 -1/90 0 0 0 0 0 -1/90 0
H106 0 1/45 -1/90 -1/180 -1/90 -1/90 0 0 0 0
H107 0 0 0 -1/45 0 0 0 0 0 0
H108 0 0 0 -1/45 0 0 0 0 0 0
H109 0 0 0 -1/90 0 0 0 0 0 0
H110 0 0 0 -1/180 0 0 -1/180 -1/180 0 0
H111 0 0 0 -1/180 -1/180 -1/180 1/180 -1/360 0 0
H112 0 0 0 -1/90 0 0 0 0 0 0
H113 0 0 0 -1/180 -1/180 -1/180 1/180 -1/360 0 0
H114 0 0 0 -1/90 0 0 1/360 -1/180 0 0
H115 0 0 0 -1/180 -1/90 -1/90 0 0 -1/90 0
H116 0 0 0 -1/180 -1/90 1/180 -1/180 -1/180 0 0
H117 0 0 0 -1/180 -1/180 -1/180 -1/180 1/360 -1/90 0
H118 0 0 0 1/180 0 0 -1/180 -1/180 0 0
H119 0 0 0 1/90 0 0 -1/360 -1/360 -1/90 -1/120
H120 0 0 0 -1/90 0 0 0 0 0 0
H121 0 0 0 -1/180 -1/180 1/90 -1/180 1/360 0 0
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H122 0 0 0 -1/180 0 0 -1/360 -1/360 0 0
H123 0 0 0 -1/180 0 0 -1/180 -1/180 -1/90 0
H124 0 0 0 -1/180 0 0 -1/90 1/180 0 0
H125 0 0 0 1/180 0 0 -1/360 -1/360 0 -1/120
H126 0 0 0 -1/180 0 0 -1/180 -1/180 1/180 0
H127 0 0 0 -1/180 1/180 -1/90 -1/360 -1/360 0 -1/120
H128 0 0 0 1/90 0 0 0 0 -1/90 -1/60
H129 0 0 0 0 0 0 -1/180 -1/180 0 0
H130 0 0 0 0 0 0 0 0 0 0
H131 0 0 0 0 -1/180 -1/180 -1/180 -1/180 0 0
H132 0 0 0 0 0 0 1/180 -1/90 0 0
H133 0 0 0 0 -1/180 -1/180 -1/360 -1/360 1/180 0
H134 0 0 0 0 -1/60 0 -1/180 -1/180 0 0
H135 0 0 0 0 0 -1/60 0 0 0 -1/60
H136 0 0 0 0 -1/90 -1/90 -1/180 -1/180 -1/90 0
H137 0 0 0 0 1/90 -1/180 -1/120 0 0 -1/120
H138 0 0 0 0 -1/180 -1/180 -1/180 1/360 -1/45 0
H139 0 0 0 0 -1/180 -1/180 -1/360 -1/360 -1/90 -1/120
H140 0 0 0 0 0 0 -1/180 1/90 0 -1/60
H141 0 0 0 0 0 0 -1/90 -1/90 0 0
H142 0 0 0 0 0 0 0 0 -2/45 0



Table 3: The last six vectors

JwB · wBKσB Jw′B · w′BKσB JwC · wCKσC Jw′C · w′CKσC w3 w0

H1 0 0 0 0 0 0
H2 0 0 0 0 0 0
H3 0 0 0 0 0 0
H4 0 0 0 0 1 −1563854392398577199

6177034713075072
H5 0 0 0 0 0 0
H6 29161/60 101524/15 0 0 1 -1
H7 0 0 0 0 0 0
H8 0 0 2000 20 0 0
H9 0 0 -4000/3 -40/3 0 0
H10 0 0 0 0 0 0
H11 1815/2 33640/3 0 0 1 −10173977739002723

55152095652456
H12 0 0 0 0 0 0
H13 0 0 0 0 0 0
H14 -242 5104 0 0 1 −734882450141728337

2316388017403152
H15 0 0 0 0 0 0
H16 -9922/15 -422/3 0 0 1 −5722046702587908817

37062208278450432
H17 57013/60 -65634/5 0 0 1 −57717650068438077139

148248833113801728
H18 0 0 0 0 0 0
H19 0 0 0 0 1 −703462682135213465

3369291661677312
H20 29161/60 101524/15 0 0 1 -1
H21 781/2 -37700/3 0 0 1 −5891700664190917297

148248833113801728
H22 -1804 -580/3 0 0 1 −32614888977443071

18531104139225216
H23 0 0 0 0 0 0
H24 0 0 0 0 0 0
H25 0 0 19723/20 2047/20 1 −15461491234942018543

5929953324552069120
H26 0 0 0 0 0 0
H27 0 0 540 77/3 1 −88140807390257339

289548502175394
H28 10/3 105125/6 0 0 1 −35834405989042100849

74124416556900864
H29 0 0 0 0 1 −1563854392398577199

6177034713075072
H30 0 0 270 77/6 1 −5456161234717178191

12354069426150144
H31 0 0 0 0 1 −4427934211353668633

37062208278450432
H32 0 0 2000 20 0 0
H33 0 0 -1810/3 -97/6 1 −1570031427111652271

6177034713075072
H34 -328/3 725/3 2000/3 20/3 1 −327323049775204219

6738583323354624
H35 0 0 0 0 0 0
H36 0 0 0 0 1 −2040849950139277

1323650295658944
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Table 3 – Continued from previous page
JwB · wBKσB Jw′B · w′BKσB JwC · wCKσC Jw′C · w′CKσC w3 w0

H37 0 0 2187/5 5929/60 1 −324486989357699
150414806324880

H38 0 0 -4000/3 -40/3 0 0
H39 177241/60 99856/15 0 0 1 −14389006173379021

6177034713075072
H40 53792/15 10/3 0 0 1 -1
H41 0 0 0 0 0 0
H42 53792/15 10/3 0 0 1 -1
H43 -242 5104 0 0 1 −2444189262506217731

32944185136400384
H44 -19723/60 8018 0 0 1 −130980504818216225

5294601182635776
H45 19251/20 -46426/5 0 0 1 −767941410949255531

4118023142050048
H46 0 0 0 0 1 −5219817337367791253

37062208278450432
H47 -4743/20 -27388/5 0 0 1 −354709127257189891

6177034713075072
H48 0 0 0 0 0 0
H49 0 0 0 0 0 0
H50 0 0 0 0 1 −102522009006261748933

296497666227603456
H51 0 0 4401/10 -6853/60 1 −103816701767414115797

592995332455206912
H52 1331/4 24476/3 0 0 1 −1794830760611264087

5294601182635776
H53 -7157/30 72838/15 0 0 1 −55226415700070668835

296497666227603456
H54 0 0 0 0 0 0
H55 0 0 2187/5 5929/60 1 −324486989357699

150414806324880
H56 0 0 1630/3 -89/3 1 −148706888944854103

561548610279552
H57 0 0 270 77/6 1 −5456161234717178191

12354069426150144
H58 0 0 0 0 1 −74826771055029195907

148248833113801728
H59 0 0 0 0 1 -1
H60 0 0 -540 -77/3 1 −127346913837154513

240663690119808
H61 -93 48430/3 0 0 1 −10466732649688555

5294601182635776
H62 0 0 0 0 1 −9320739160958665481

37062208278450432
H63 0 0 0 0 1 −62387193432797713

37062208278450432
H64 0 0 0 0 1 −217609023306544037

1323650295658944
H65 -34522/15 316/3 0 0 1 -1
H66 0 0 540 77/3 1 −88140807390257339

289548502175394
H67 177241/60 99856/15 0 0 1 −14389006173379021

6177034713075072
H68 0 0 -815/3 89/6 1 −42621413028711205

37062208278450432
H69 4631/4 -18328/3 -1000/3 -10/3 1 −1330374174754201

1029505785512512
H70 -39153/20 105544/15 -270 -77/6 1 −5834645898385742195

16472092568200192
H71 0 0 0 0 1 −3652233205897755459

16472092568200192
H72 -39153/10 211088/15 0 0 1 −40194399986166687563

74124416556900864
H73 17391/4 114896/15 0 0 1 −67376462435613401

1323650295658944
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JwB · wBKσB Jw′B · w′BKσB JwC · wCKσC Jw′C · w′CKσC w3 w0

H74 -3069/2 -38744/3 0 0 1 -1
H75 -968 20416 0 0 1 −206704879201250857

441216765219648
H76 -13706/15 -92396/15 0 0 1 −8722501888932923387

16472092568200192
H77 0 0 0 0 1 −703462682135213465

1684645830838656
H78 4631/2 -36656/3 0 0 1 −2050765293919679467

18531104139225216
H79 0 0 0 0 1 -1
H80 0 0 0 0 1 −34340368851241376879

98832555409201152
H81 -4631/15 -13904/5 0 0 1 -1
H82 0 0 0 0 1 −10725188546965769537

21178404730543104
H83 0 0 -2810/3 -39/2 1 -1
H84 0 0 0 0 1 −7417316739041385395

18531104139225216
H85 121/6 -30595/3 0 0 1 −21505715322664188433

74124416556900864
H86 0 0 815/3 -89/6 1 −10051575074463385

18384031884152
H87 1331/4 24476/3 270 77/6 1 −2065655974432544177

9265552069612608
H88 -8657/30 -194687/15 -815/3 89/6 1 −10513889487465286471

21178404730543104
H89 0 0 270 77/6 1 −102492676367157469795

296497666227603456
H90 4631/4 -18328/3 -270 -77/6 1 −3470421686575164043

148248833113801728
H91 121/3 -61190/3 2000/3 20/3 1 −12539057139644285

8236046284100096
H92 0 0 0 0 0 0
H93 0 0 0 0 0 0
H94 0 0 19723/20 2047/20 1 −15461491234942018543

5929953324552069120
H95 0 0 0 0 1 −2040849950139277

1323650295658944
H96 0 0 -1630/3 89/3 1 −37632094249561791565

148248833113801728
H97 0 0 -540 -77/3 1 −147229716847699567

9265552069612608
H98 0 0 0 0 1 −4163309017023671941

24708138852300288
H99 77841/20 111556/5 0 0 1 -1
H100 10/3 105125/6 0 0 1 −35834405989042100849

74124416556900864
H101 0 0 -4000/3 -40/3 0 0
H102 0 0 1630/3 -89/3 1 −10943236189159518679

18531104139225216
H103 0 0 -1630/3 89/3 1 −244304794290394685

32944185136400384
H104 0 0 -1630/3 89/3 1 −6580270239524616359

10589202365271552
H105 0 0 0 0 1 −17483526616286112727

24708138852300288
H106 0 0 -1630/3 89/3 1 −2389728277891266261

8236046284100096
H107 107584/15 20/3 0 0 1 -2
H108 30504/5 1336/3 0 0 1 −66935245670393753

661825147829472
H109 1815/2 33640/3 0 0 1 −10173977739002723

55152095652456
H110 0 0 0 0 1 −866621514187196297

2059011571025024
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Table 3 – Continued from previous page
JwB · wBKσB Jw′B · w′BKσB JwC · wCKσC Jw′C · w′CKσC w3 w0

H111 4631/4 -18328/3 0 0 1 −7493427555720786047
26954333293418496

H112 -1804 -580/3 0 0 1 −4771933910371470719
9265552069612608

H113 -34522/15 316/3 0 0 1 −56090180193586615063
98832555409201152

H114 -3069/4 -19372/3 0 0 1 −6146435219180552237
9265552069612608

H115 55 -42050/3 26569/60 7921/60 1 −476307820942045182061
1976651108184023040

H116 0 0 0 0 1 −19450524422641811549
32944185136400384

H117 -93/2 24215/3 0 0 1 −8220306420511019599
42356809461086208

H118 -1804 -580/3 2187/5 5929/60 1 −362958430331557939
92655520696126080

H119 -70439/30 8177 0 0 1 −15367554150816847711
49416277704600576

H120 1815/2 33640/3 0 0 1 −10173977739002723
55152095652456

H121 0 0 0 0 1 −1003343753899617143
6177034713075072

H122 4631/4 -18328/3 0 0 1 −2082303347082636833
9265552069612608

H123 -328/3 725/3 0 0 1 −12006211264574547431
24708138852300288

H124 0 0 0 0 1 −13765701958912919
2059011571025024

H125 -27249/10 8684/15 0 0 1 −75624575885139732659
148248833113801728

H126 55 -42050/3 0 0 1 −70683455524198969843
148248833113801728

H127 0 0 0 0 1 −11080743495118222157
21178404730543104

H128 170681/60 103481/15 0 0 1 -1
H129 0 0 0 0 1 −1157293995940733471

4632776034806304
H130 0 0 0 0 0 0
H131 0 0 4401/5 -6853/30 1 -1
H132 0 0 0 0 1 −426427906114141689

1029505785512512
H133 421/6 22910/3 0 0 1 −1235497822172284283

8984777764472832
H134 0 0 4401/5 -6853/30 1 −5617524380783071181

32944185136400384
H135 0 0 0 0 1 −26428837039774952311

42356809461086208
H136 0 0 0 0 1 −73815219170205621743

148248833113801728
H137 0 0 0 0 1 −51576322752518046641

296497666227603456
H138 0 0 0 0 1 −37389454791911250173

296497666227603456
H139 421/6 22910/3 0 0 1 −17214181054154995319

32944185136400384
H140 0 0 0 0 1 −1542818265173952315

8236046284100096
H141 0 0 0 0 1 −1157293995940733471

2316388017403152
H142 20/3 105125/3 0 0 1 -1


