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Abstract

An antimagic labeling of a graph with m edges and n vertices is a bijection from the set of
edges to the integers 1, . . . , m such that all n vertex sums are pairwise distinct, where a vertex
sum is the sum of labels of all edges incident with the same vertex. A graph is called antimagic
if it has an antimagic labeling. In this paper we discuss antimagic properties of graphs which
contain vertices of large degree. We also show that graphs with maximum degree at least n−3
are antimagic.

1 Introduction

All graphs in this paper are finite, undirected and simple. To avoid repetition, unless specified
otherwise, a graph G has m edges and n vertices. We denote by ΓG(v) and dG(v) (dropping the
subscripts when the graph G is clear from context) the neighborhood and the degree, respectively,
of a vertex v ∈ V (G).

For some S ⊆ Z, let τ : E(G) → S be a labeling of the edges of a graph G. The labeling τ
induces a weight, wτ : V (G) → Z, on the vertices of G, where wτ (v) =

∑
uv∈E τ(uv). One may

then specify the set S and/or put restrictions on the function τ and ask if wτ satisfies a specified
property. There are various results and conjectures using this setup (see, for example, [6, 7]). In
this paper, we consider labelings where S = {1, . . . ,m} and τ is a bijection. Such a labeling is
called antimagic if wτ (v) 6= wτ (u) for all distinct u, v ∈ V . The graph G is antimagic if it permits
an antimagic labeling.

It is conjectured in [3] that

Conjecture 1.1. Every connected graph, but K2, is antimagic.

While the general question is still open, probabilistic (Alon, Kaplan, Roditty, and Yuster [1]),
combinatorial (Cranston [2]), and algebraic (Hefetz [4]; Hefetz, Saluz, and Tran [5] ) arguments
have been used to confirm the conjecture for certain classes of graphs. One such class is that of
graphs with large maximum degree. In [1], Alon, et al., show the following result.

Theorem 1.2. If G has n > 4 vertices and ∆(G) ≥ n− 2 then G is antimagic.

1



They also note that it is still open whether every connected graph with ∆(G) ≥ n − k and
n > n0(k) is antimagic.

In this paper we provide a simple constructive proof of the following:

Theorem 1.3. If G is a graph on n vertices, ∆(G) = d(x) = n−k where k ≤ n/3, and there exists
y ∈ V such that Γ(x) ∪ Γ(y) = V , then G is antimagic.

This not only provides a simpler proof of Theorem 1.2 but arguments in the proof may be
modified to show

Theorem 1.4. If G is connected, has n ≥ 9 vertices, and ∆(G) ≥ n− 3, then G is antimagic.

In the next section, we present a lemma which provides us with the basic framework that we
exploit in proving both Theorem 1.3 (Section 3) and Theorem 1.4 (Section 4).

2 Framework

We reproduce the proof of this well known result which also appears in [1].

Lemma 2.1. If ∆(G) = n− 1, then G is antimagic.

Proof. Let v0 be a vertex of degree n − 1 and let T be a breadth-first spanning tree rooted at v0

(in this case, T is a star). Let G′ = G \ T . Let τ ′ : E(G′) → {1, . . . ,m − n + 1} be an arbitrary
(bijective) labeling of the edges of G′ and let w′ = wτ ′ . Order the n− 1 vertices V \ {v0} such that
w′(vi) ≥ w′(vj) for 1 ≤ i < j ≤ n − 1. Let τ : E → {1, . . . ,m} be an extension of τ ′ such that
τ(v0vi) = m− i+ 1 for i = 1, . . . , n− 1. Then, for i < j,

wτ (vi) = w′(vi) +m+ 1− i ≥ w′(vj) +m+ 1− i > w′(vj) +m+ 1− j = wτ (vj).

In addition, edges incident to v0 receive the largest n − 1 labels. Thus, wτ (vi) > wτ (vj) for all
0 ≤ i < j ≤ n− 1 and G is antimagic.

The above proof highlights the major steps in proving Theorems 1.3 and 1.4. The key idea is
to isolate a breadth-first spanning tree T and reserve the largest n − 1 labels for it. First of all,
this guarantees (given lower bounds on ∆(G)) that the root vertex has the highest possible vertex
sum. In addition, after arbitrarily labeling the remaining edges (or, in general, assigning arbitrary,
but bounded, partial weights to the other vertices), we may label the edges of T so that all other
vertex sums are distinct.

However, when ∆(G) < n − 1, the above simple labeling of T may not suffice. To fix this
problem we alter the above labeling by shifting the labels on some edges. We prove that this shifting
procedure remedies some instances of the problem when T has at most two non-root vertices which
are not leaves. The analysis seems to get messy after that.

3 Proof of Theorem 1.3

Let x be a vertex of degree ∆(G) = n− k, where k ≤ n/3, and let y be such that Γ(x)∪ Γ(y) = V .
Let T be a breadth-first spanning tree rooted at x and visiting y first. Therefore, all vertices in
V \ {x, y} are leaves in T and the degree sequence of T is (n− k, k, 1, . . . , 1). Let G′ = G \ T . Fix
an arbitrary bijection τ ′ : E(G′)→ {1, . . . ,m− n+ 1} and let w′ = wτ ′ .
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Lemma 3.1. For any extension τ : E(G)→ {1, . . . ,m} of τ ′ and all u 6= x, wτ (x) > wτ (u).

Proof of Lemma. First note that

wτ (x) ≥
n−k∑
i=1

(m− n+ 1 + i).

Let u ∈ V , u 6= x. Then,

wτ (u) = w′(u) +
∑

v∈ΓT (u)

τ(uv)

≤
dG′ (u)−1∑
i=0

(m− n+ 1− i) +
dT (u)−1∑
i=0

(m− i) (1)

≤
n−2k−1∑
i=0

(m− n+ 1− i) +
k−1∑
i=0

(m− i) (2)

=
n−2k−1∑
i=0

(m− n+ 2 + i) +
n−k−1∑
i=n−2k

(m− n+ 2 + i)− (n− 2k)2 + 2
(
k

2

)

≤
n−k−1∑
i=0

(m− n+ 2 + i)− k2 + 2
(
k

2

)
(3)

≤ wτ (x)− k.

In (1), we bound wτ (u) from above by taking the largest dG′(u) labels from {1, . . . ,m− n+ 1}
and the largest dT (u) labels from {m−n+2, . . . ,m}. However, as dG(u) = dG′(u)+dT (u) ≤ n−k,
this sum is maximized when dT (u) is as large as possible. We then obtain (2) by noting that
dT (u) ≤ k for u 6= x. We rewrite the expression in a more convenient form and use the fact that
n ≥ 3k to obtain (3), thereby proving the lemma.

Now let V ′ = V \ {x, y} = {v1, . . . , vn−2} where the vertices vj ∈ V ′ are ordered such that
w′(vj) ≥ w′(vk) for 1 ≤ j < k ≤ n − 2. Let ej denote the unique, as yet unlabeled, edge incident
to vj in T (so, ej = xvj or ej = yvj). As in the proof of Lemma 2.1, we want an extension τ for
which τ(ej) > τ(ek) whenever j < k. This gives us one degree of freedom for the label of edge xy.
To this end, we define a sequence of extensions τi : E → [m] of τ ′ for i = 0, . . . , n− 2 where

τi(e) =


m− i, if e = xy

m− j + 1 if e = ej , j ≤ i
m− j, if e = ej , j > i.

Notice that τi may be obtained from τi−1 by exchanging the labels on xy and ei, essentially
incrementing the vertex sum at vi and potentially decrementing the vertex sum at y. Letting
wi = wτi

, we immediately observe that wi(vj) > wi(vk) for all i whenever j < k. Therefore, we
need only to show that the vertex sum at y is distinct from vertex sums of vertices in V ′ for some
extension τq. We not only show the existence of such an index q, but we find one in which y is,
in some sense, in its “natural position”. To be precise, we pick q such that the order imposed on
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the edges {xy, e1, . . . , en−2} by τq matches the order imposed on the vertices {y, v1, . . . , vn−2} by
wq. In other words, as the label τq(xy) = m− q < τq(ei) for q edges ei ∈ T , we also have exactly q
vertices vi ∈ V ′ whose vertex sum exceeds that of y.

Let I = {i : wi(y) > wi(vi+1)} and let I∗ = I ∪ {n− 2}. Let q be the smallest member of I∗.
If q = 0, then w0(y) > w0(v1) . . . > w0(vn−2). Otherwise,

wq(vq+1) < wq(y) ≤ wq−1(y) ≤ wq−1(vq) = wq(vq)− 1 < wq(vq).

Therefore, τq is an antimagic labeling and G is antimagic, completing the proof of Theorem 1.3.

Corollary 3.2. If ∆(G) = n− 2, then G is antimagic.

Proof. If G is connected, the proof follows from Theorem 1.3. Otherwise, G has an isolated vertex
and a component G′′ on n′′ = n − 1 vertices with ∆(G′′) = n′′ − 1. Then the result follows from
Lemma 2.1.

4 Proof of Theorem 1.4

Let x be a vertex of degree n − 3 and let a, b be the two non-neighbors of x. We divide the proof
into 3 cases, two of which are easily resolved by applying (a slight modification of) the argument in
Theorem 1.3. The proof of the third case follows in a similar vein but is a bit more involved. The
restriction that n ≥ 9 is needed here as we apply a variant of Lemma 3.1 (with k = 3). It is simple
(but time consuming) to verify the theorem for n < 9.
Case 1: There is a vertex y such that a, b ∈ Γ(y).

This follows via a direct application of Theorem 1.3.
Case 2: Γ(a) = {b}.

Assign the label 1 to the edge ab. As the vertex sum at a will be 1, it is guaranteed to be less
than that of other vertices. A slight modification of the argument from Theorem 1.3 can then be
applied to G′ = G \ {a}.
Case 3: Cases 1 and 2 do not hold.

As G is connected, there are two vertices y1 6= b, y2 6= a such that ay1, by2 ∈ E(G). Let T be a
breadth-first spanning tree rooted at x and visiting y1 and y2 first. Observe that the degree sequence
in T is (n−3, 2, 2, 1, . . . , 1). Let G′ = G\T , fix an arbitrary bijection τ ′ : E(G′)→ {1, . . . ,m−n+1},
and retain the largest n− 1 labels for the edges in T . Let w′ = wτ ′ be the induced partial weight
after this initial labeling. Even though T has three non-leaves, the argument in Lemma 3.1 applies
and wτ (x) > wτ (u) for all u ∈ V, u 6= x and all extensions τ : E(G)→ {1, . . . ,m} of τ ′.

Let V ′ = V \ {x, y1, y2} = {v1, . . . , vn−3} where the vertices vj ∈ V ′ are ordered such that
w′(vj) ≥ w′(vj+1). Let ej be the unique edge in T incident to vj . To obtain an antimagic labeling,
we once again look for an extension τ satisfying τ(ej) > τ(ek) whenever j < k. However, this time,
we have two degrees of freedom as we are free to choose the labels on xy1 and xy2. We begin by
defining the following (n− 1)(n− 2) different extensions of τ ′, and apply an argument like the one
used in the proof of Theorem 1.3, although modifications are required in some cases.

Let τi,j : E → {1, . . . ,m}, where i, j ∈ {0, . . . , n− 2}, i 6= j satisfy
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τi,j(e) =



τ ′(e) if e ∈ G′

m− i, if e = xy1

m− j, if e = xy2

m− t+ 1, if e = et; t ≤ min(i, j)
m− t, if e = et; min(i, j) < t < max(i, j) and
m− t− 1, if e = et; t ≥ max(i, j)

Let wij = wτi,j . We first observe that wij(vk) > wij(vl) whenever k < l. Therefore, we need
only find a pair p, q for which wpq (y1) and wpq (y2) are unequal and distinct from wpq (vk) for all
k ∈ {1, . . . , n− 3}. We find an index q by starting from τ0,1 and considering extensions of the form
τ0,j , that is, by shifting the label on xy2 to find a “natural position” for y2. Next, we range over
the first index to find a suitable value for p.

Let J = {j : w0
j (y2) > w0

j (vj)} and J ∗ = J ∪ {n− 2}. Let q be the smallest member of J ∗.
Now let U = V ′ ∪ {y2} = {u1, . . . , un−2} where

uk =


vk, for k < q

y2, for k = q and
vk−1, for k > q.

Observe that, after renaming the vertices, we have w0
q(uk) > w0

q(uk+1) for all 1 ≤ k ≤ n − 3.
Furthermore, under τ0,q, the edge joining a vertex uk to its parent in T receives the label m − k.
Now, with τ0,q as our new starting point, we shift the label on xy1 by considering extensions of the
form τi,q′ where q′ = q for i < q and q′ = q − 1 for i ≥ q. Let I = {i : wiq′(y1) > wiq′(ui+1)} and
I∗ = I ∪ {n− 2}. Let p be the smallest member of I∗. The choice of p guarantees that

wpq′(up) > wpq′(y1) > wpq′(up+1).

However, note that as uq = y2 is not a leaf in T , its weight is incremented not only when i = q
(that is, the label on edge xy2 is incremented) but also when ui = b (the label on edge by2 is
incremented). It is possible, therefore, that wpq′(uq) ≥ wpq′(uq−1). We check for and correct these
instances by consider the following cases: (for brevity’s sake, we have chosen not to segregate the
cases where q′ = 0. Inequalities seemingly referring to u−1 are to be considered void.)

Case A: uq−1 6= b.

Here, τp,q′ itself is an antimagic labeling. Note that, by definition of J , we have w0
q−1(uq−1) ≥

w0
q−1(y2), and, as uq−1 6= b, it follows that w0

q(uq−1) ≥ w0
q(y2) + 2 (the shift increments the

label on eq−1 and decrements that of xy2). Hence, if p < q, we take τ0,q as a reference point
and obtain

wpq (uq−1) ≥ w0
q(uq−1) ≥ w0

q(y2) + 2 ≥ wpq (y2) + 1.

On the other hand, if p ≥ q, taking τ0,q−1 as our starting point, we see

wpq−1(uq−1) = w0
q−1(uq−1) + 2 ≥ w0

q−1(y2) + 2 ≥ wpq−1(y2) + 1.

Case B: uq−1 = b
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We use τ0,q as our reference point. Note that, in this case, we can only guarantee

w0
q(b) ≥ w0

q(y2) + 1.

Further note that the label on by2 is incremented if p ≥ q − 1 and the label on xy2 is
incremented if p ≥ q.
So, if p < q−1, the label on neither of the edges by2 and xy2 is affected and wpq (b) ≥ wpq (y2)+1.

If p = q− 1, both vertex sums are incremented by one and the required inequality still holds.

The remaining case is then p ≥ q. Note here that the labels on both by2 and xy2 have been
incremented and, thus, the vertex sum at b goes up by 1 whereas that of y2 goes up by
2, potentially causing an overlap. If so, that is, if wpq−1(b) = wpq−1(y2), consider instead the
labeling τp,q−2, essentially swapping the labels on by2 and xy2. This swap decreases the vertex
sum at b by 1 and leaves all other vertex sums unchanged, thereby avoiding the conflict (see
Figure 1).
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Figure 1: Illustrative example for shifting. Note that wpq−1(b) = wpq−1(y2).

This completes the proof of Theorem 1.4.
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