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Abstract

We continue to study the backward optimal transport problem with
backward martingale constraint introduced in [9]. Unlike in [9] where
the problem is investigated from the primal side, here we approach
the problem from a dual perspective. We establish existence of dual
optimizers and absence of a duality gap. Moreover, we show that
a first order condition of the dual problem is given precisely by the
martingale property of a special transport map. For future reference,
we also establish continuity of the value function with respect to the
2-Wasserstein metric.

1 Introduction

In [9], motivated by the classical Kyle(1985) model [10], we study the fol-
lowing optimal transport problem:

minimize

∫
c(x, y)dγ over γ ∈ Γ(ν), (1)

where c = c(x, y) is the covariance-type cost function

c(x, y) = (x1 − y1)(x2 − y2), x, y ∈ R2,

ν is a given probability measure on R2, and Γ(ν) is the family of proba-
bility measures γ = γ(dx, dy) on R2 × R2 that have ν as their y-marginal:
γ(R2, dy) = ν(dy), and make a martingale out of the canonical process
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(X,Y): Eγ(Y |X) = X. This problem differs from the standard single-period
martingale optimal transport problem studied in [3],[4], [6], and [7], among
others, as the initial marginal µ(dx) = γ(dx,R2) is part of the solution. In
[9], we establish existence of solutions and provide equivalent characteriza-
tions of optimality in terms of the geometry of their supports. For more
details and references, we refer to this paper.

Problem (1) is a convex optimization problem , as the objective function
is linear and the constraint space is convex. In this sense, it can be regarded
as a primal formulation, who admits the following dual formulation:

maximize

∫
φG(y) dν, G ∈M, (2)

where M is the family of maximal monotone subsets of R2, and the function
φG is given by

φG(y) = inf
x∈G

c(x, y), y ∈ R2.

Unlike in [9] where our main focus is on problem (1), the goal of this paper
is to establish a complete duality theory (i.e., existence of dual optimizers
and absence of a duality gap) in this setup.

Duality principle is a common phenomenon in the study of the opti-
mal transport. In the classical unconstrained case, the Kantorovich duality
theorem establishes a strong duality relation for lower semi-continuous cost
functions, as well as existence of primal and dual optimizers provided that
the value function is finite (see, for instance, [12, Theorem 5.10]). In the
case with an additional martingale constraint, a complete duality theory is
obtained in [4] for general measurable cost functions.

Our main results are Theorem 2.1 and Theorem 3.1. In Theorem 2.1, we
show that the dual problem (2) admits a solution. Our arguments rely on
the local compactness of the space of non-empty compact sets equipped with
the Hausdorff metric. In Theorem 3.1, we prove a strong duality relation,
which was obtained in [9] as an immediate corollary of the geometric char-
acterizations of solutions of the primal problem (1) (i.e., [9, Theorem 2.2]).
Here, our proof instead use a well-known minimax principle due to Aubin
and Ekeland [2, Theorem 6.2.7].

Furthermore, in the case where the measure ν is regular, we obtain a first
order condition associated with the dual problem (2), which turns out to be
the martingale property of a particular transport map constructed in [9]. We
also prove continuity of the value function with respect to the 2-Wasserstein
metric, which will be used frequently in our study for the multi-period case.
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2 Dual Problem

We follow closely the notations in [9]. We shall write a point in R4 = R2×R2

as (x, y), where x = (x1, x2) and y = (y1, y2) belong to R2. We denote by
X (resp. Y ) the cannonical projections of R2 × R2 Onto the x- (resp. y-)
coordinates. A set G ⊂ R2 is called monotone if

c(x, y) ≥ 0, x, y ∈ R2,

where c = c(x, y) is the covariacne-type function given by

c(x, y) = (x1 − y1)(x2 − y2), x, y ∈ G.

We call a monotone set maximal if it is not a proper subset of another
monotone set, and denote by M the collection of maximal monotone sets in
R2.

We denote by P2(R2) the family of Borel probability measures on R2

with finite second moment. For ν ∈ P2(R2), we denote by Γ(ν) the family
of probability measures γ = γ(dx, dy) ∈ P2(R2 × R2) that have ν as their
y-marginal and under which the canonical process (X,Y ) becomes a 1-step
martingale:

Γ(ν) ,
{
γ ∈ P2(R2 × R2) : γ(R2, dy) = ν(dy) and Eγ(Y |X) = X

}
.

The backward martingale transport problem, introduced in [9], is to

minimize

∫
c(x, y) dγ over γ ∈ Γ(ν). (3)

This is the problem in its primal formulation, whose dual formulation is to

maximize

∫
φG dν over G ∈M, (4)

where the function φG is given by

φG(y) = inf
x∈G

c(x, y), y ∈ R2.

In this section, we seek to (1) establish existence of dual maximizer,
without refering to problem (3); and (2) obtain martingale property of the
map defined in Theorem 4.3 of [9] as the first order condition of the dual
problem (4). Our arguments for existence rely on local compactness of the
space of non-empty compact sets equipped with the Hausdorff metric, which
will be discussed in the sequel.
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2.1 Existence of Dual Optimizer

2.1.1 Some preliminaries

Let (X, d) be a metric space and let C(X) be the space of closed subsets of
X:

C(X) , {A ⊂ X : X is closed} .

For x ∈ X and A ∈ C(X), we write d(x,A) = min
y∈A

d(x, y). A sequence

(An) ⊂ C(X) is said to be Wijsman convergent to a set A ∈ C(X), denoted

An
W−→ A, if for each x ∈ X,

d(x,An)→ d(x,A).

For A,B ∈ C(X), the Hausdorff distance between A and B is defined by

δH(A,B) , max{sup
x∈A

d(x,B), sup
y∈B

d(y,A)}.

Notice that
δH(A,B) = sup

x∈X
|d(x,A)− d(x,B)|.

In this sense, Hausdorff convergence is to uniform convergence as Wijsman
convergence is to pointwise convergence.

When restricting our attention to K(X), be the space of non-empty
compact subsets of X:

K(X) , {A ⊂ X : A is non-empty and compact} .

the Hausdorff distance δH becomes a metric. It is well-known that (K(X), δH)
is a compact Polish space if (X, d) is so (see, for instance, [11, Proposi-
tion 2.4.15 and Proposition 2.4.17]). In particular, when X is compact,
convergence in Hausdorff distance is equivalent to the so-called Kuratowski
convergence. Namely, a sequence (An) ⊂ K(X) is said to converge to a set
A in Kuratowski sense, denoted An

κ−→ A, if

(1) every cluster point of a sequence (xn) with xn ∈ An belongs to A, and

(2) for all x ∈ A, there are xn ∈ An such that xn → x.
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2.1.2 Main Results and Proofs

We are now ready to prove the following theorem:

Theorem 2.1. There is a solution to problem (4).

We divide the proof into some lemmas.

Lemma 2.2. Let (Gn) be a sequence of maximal monotone subsets of R2

and let G ⊂ R2 be non-empty. Suppose Gn
W−→ G. Then G is also a maximal

monotone set.

Proof. Let x, y ∈ G. For each n, we can find xn, yn ∈ Gn such that

d(x,Gn) = d(x, xn) and d(y,Gn) = d(y, yn).

As (Gn) is Wijsman convergent to G, we deduce that xn → x and yn → y.
Thus,

c(x, y) = lim
n→∞

c(xn, yn) ≥ 0.

This shows that G is a monotone set.
Next, suppose G is not maximal. Then there exist x ∈ R2 \G such that

G∪ {x} is monotone. As Gn
W−→ G, we can assume that there exist positive

numbers r and R such that

r ≤ d(x,Gn) ≤ R, for all n.

Since each Gn is a maximal monotone set, it intersects with the diagnal set
D(x) ,

{
z = (z1, z2) ∈ R2 : z1 − x1 = x2 − z2

}
at a unique point xn. In

particular, (xn) is a bounded sequence and thus admits a subsequence, not
relabelled, that converges to some point x′ ∈ D(x). As lim sup

n
d(Gn, x

′) ≤

lim
n→∞

d(xn, x
′) = 0, we deduce that

x′ ∈ G ∩D(x) = {x}.

This gives us a contradiction.

A sequence (An) ⊂ R2 is said to escape to infinity if for any R > 0, there
is n ∈ N such that An ∩BR = ∅, where BR is the closed ball centered at the
origin with radius R.

Lemma 2.3. Let (Gn) ⊂M be a maximising sequence for problem (4):

lim
n→∞

∫
φGn dν = inf

G∈M

∫
φG dν.

Then (Gn) dose not escape to infinity.
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Proof. Suppose not. For each k ∈ N, we can find nk large enough such that
Gnk ∩ B2k = ∅. Note that if y ∈ Bk and if G is a maximal monotone set
such that G ∩B2k = ∅, then

φG(y) = inf
x∈G

c(x, y) ≤ −k
2

2
.

Therefore, we have∫
φGnk (y) dν ≤

∫
φGnk (y)1{y∈Bk} dν

≤ −k
2

2
ν(Bk)→ −∞, k →∞.

This is a contradiction.

Lemma 2.4. Let (Gn) and G be maximal monotone sets in R2. Suppose

that Gn
W−→ G. Then, for every y,

lim sup
n

φGn(y) ≤ φG(y). (5)

Proof. Fix y ∈ R2 and assume that φG(y) > −∞. By extracting a subse-
quence, not relabelled, we may assume that

lim sup
n

φGn(y) = lim
n→∞

φGn(y).

For each k ∈ N, find xk ∈ G such that φG(y) ≤ c(xk, y) ≤ φG(y) + 1
k . As

Gn
W−→ G, we can find xnk ∈ Gnk such that

|xnk − xk| ≤ 1

k(1 + |xk|+ |y|)
, k ∈ N.

It follows that

φG(y) ≥ −|c(xk, y)− c(xnk , y)|+ c(xnk , y)− 1

k

≥ c(xnk , y)− 3

k
≥ φGnk (y)− 3

k
.

This readily implies (5). The case where φG(y) = −∞ is similar.
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Proof of Theorem 2.1. We proceed by a diagonalization argument. Let (Gn)
be a maximising sequence for the dual problem. From Lemma 2.3, we know
there exists R > 0 such that

Gn ∩BR 6= ∅, ∀n ∈ N.

From our discussion in section 2.1.1, we know the space (K(BR+1), δH) is
a compact metric space. Thus, there is a subsequence (s1(n)) ⊂ N and a
non-empty compact set Ĝ1 such that

BR+1 ∩Gs1(n)
δH−−→ Ĝ1.

Next, as (K(BR+2), δH) is a compact metric space, we can extract a
further subsequence (s2(n)) ⊂ (s1(n)) and find a non-empty compact set Ĝ2

such that
BR+2 ∩Gs2(n)

δH−−→ Ĝ2.

In particular, we have Ĝ2 ∩BR+1 = Ĝ1.
We can continue this procedure to obtain

• a nested sequence of indices: · · · ⊂ (sk(n)) ⊂ (sk−1(n)) ⊂ · · · ⊂
(s1(n)), and

• a sequence of non-empty compact sets (Ĝk) with Ĝk ⊂ BR+k for each
k,

such that

BR+k ∩Gsk(n)
δH−−→ Ĝk

Ĝk+1 ∩BR+k = Ĝk, k ∈ N.

Hereafter, we write Gn in place of Gsn(n) for simplicity. Define Ĝ =⋃∞
k=1 Ĝk. For any k, we have

BR+k ∩Gn
δH−−→ BR+k ∩ Ĝ, as n→∞

In particular, (Gn) is Wijsman convergent to Ĝ. We then deduce from
Lemma 2.3 that Ĝ is a maximal monotone set.

As φ
Ĝ

and φGn are non-positive, the result now follows from Lemma 2.4
and the reverse Fatou lemma.
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Remark 2.5. An unpleasant fact of problem (4) is that the objective is non-
linear and the admissible set M is non-convex. To remedy the situation,
[9] considers the family ΦM that contains functions dominated by element
of M. More precisely, φ ∈ ΦM if and only if there is G ∈ M such that
φ ≤ φG. In this relaxed formulation, the problem becomes linear and the
constraint set becomes convex. In particualr, existence of optimizer can be
obtained through Komlos lemma (see, for instance, [5, Lemma A1.1]) and a
characterization of ΦM (see [9, Lemma 2.1]).

2.2 Martingale Property as First Order Condition

This section is compliment to section 4 of [9]. We start by introducing the
notion of optimal map. Let Y = (Y1, Y2) be 2-dimensional random variable
having a finite second moment: Y ∈ L2 = L2(Ω,F ,P). As usual, we identify
random variables that differ only on a set of measure zero. The optimal map
problem is to

minimize E (c(X,Y )) over X ∈ X (Y ) (6)

for the same cost function c(x, y) = (x1 − y1)(x2 − y2) and the constraint

X (Y ) ,
{
X = (X1, X2) ∈ L2 : X is Y -measurable and E (Y |X) = X

}
.

We denote ν = Law(Y ) and observe that Law(X,Y ) ∈ Γ(ν) for every X ∈
X (Y ). Thus, optimal plan problem (3) may be viewed as a Kantorovich-type
relaxation of optimal map problem (6).

We follow notations used in section 4 of [9] related to a function φ = φG,
where G ∈ M. In particular, Dc , (Dc

1, D
c
2) stands for the differential

operator associated with the cost function c = c(x, y):

Dc
1φ(y) , y1 −

∂φ

∂y2
(y), Dc

2φ(y) , y2 −
∂φ

∂y1
(y), y ∈ dom∇φ,

where dom∇φ is the set of points where φ is differentiable. We denote by
EG = EG1 ∪EG2 the union of the vertical and horizontal line segments of G:

EGi (t) = {x = (x1, x2) ∈ G : xi = t} , t ∈ R,
T Gi =

{
t ∈ R : EGi (t) has more than one point

}
,

EGi =
⋃
t∈T Gi

EGi (t), i = 1, 2,
(7)
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Clearly, the sets (T Gi ) are countable at most. Define a map by

X = Y 1{Y ∈E} +Dcφ(Y )1{Y 6∈E}. (8)

The goal of this section is to obtain the martingale property of (X,Y ):
E (Y |X) = X, as the first order condition of the dual problem (4). We need
some more notations. Define

ArgG(y) , arg min
x∈G

c(x, y) = {x ∈ G : φG(y) = c(x, y)} ,

dom ArgG ,
{
y ∈ R2 : ArgG(y) 6= ∅

}
,

d̂om ArgG , {y ∈ dom ArgG : ArgG(y) is a singleton} .

For y ∈ domφ, we call a sequence (xn) ⊂ G a minimizing sequence of
y if φ(y) = limn c(x

n, y). We denote by S the collection of points y in
dom ArgG \G that have an unbounded minimizing sequence. Hereafter, we
shall simply write

Arg = ArgG, Ei = EGi , Ei(t) = EGi (t), Ti = T Gi .

as the set G is fixed.

Lemma 2.6. The set S is contained in ∂ domφ and has at most two ele-
ments.

Proof. If y ∈ int domφ, then the lines {z : z1 = y1} and {z : z2 = y2}
intersect G at x1 and x2, and any minimizing sequence of y will be contained
in the segment of G bounded by x1 and x2. Thus, S ⊂ ∂ domφ.

From Lemma B.2 of [9], we have that int domφ = (a1, b1)×(a2, b2), where
−∞ ≤ ai < bi ≤ ∞ and (ai, bi) is the interior of the projection of G on the
xi-coordinate. Without loss of generality we can assume that a1 > −∞. Let
y0, y1 ∈ S be distinct and assume that y0

1 = y1
1 = a1, y0

2 < y1
2 ≤ b2. Let

xi ∈ Arg(yi), i = 0, 1. Note that

φ(y1) ≤ c(x0, y1) = (x0
1 − y1

1)(x0
2 − y1

2)

= (x0
1 − y0

1)(x0
2 − y0

2) + (x0
1 − y0

1)(y0
2 − y1

2)

< c(x0, y0) = φ(y0)

If (zn) is an unbounded minimizing sequence of y1, then

lim
n→∞

zn1 = a1 and lim
n→∞

zn2 = −∞.
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It follows that

φ(y0) ≤ lim sup
n→∞

c(zn, y0)

= lim sup
n→∞

{
(zn1 − y1

1)(zn2 − y1
2) + (zn1 − y1

1)(y1
2 − y0

2)
}

= lim
n→∞

c(zn, y1) = φ(y1),

and we obtain a contradiction.

Let D be the family of graphs of strictly decreasing functions h = h(t)
defined on closed intervals of R such that both h and its inverse h−1 are
Lipschitz functions:

1

K
(t− s) ≤ h(s)− h(t) ≤ K(t− s), s < t,

for some constant K = K(h) > 0.

Definition 2.7. A Borel probability measure µ on R2 is D-regular if µ(D) =
0, D ∈ D.

The standing assumption of this section is that ν = Law(Y ) is D-regular.
We now state the main result:

Theorem 2.8. X given by (8) is a martingale map: for i = 1, 2,∫
h(Dcφ(y))(Dc

iφ(y)− yi) dν = 0, h ∈ Cb(R2).

Proof. From [9, Theorem 2.2], we have ν(dom Arg) = 1. By [9, Theo-
rem B.12],

dom Arg = E ∪D ∪ (d̂om Arg ∩ dom∇φ),

where D =
⋃∞
n=1Dn, Dn ∈ D. Let ∂E be the set of relative boundary points

of each line segments that constitute E:

∂E =

2⋃
i=1

⋃
t∈Ti

∂Ei(t).

Clearly, ∂E is at most countable. In view of [9, Lemma B.8], the set of points

y ∈ d̂om Arg ∩ dom∇φ such that Dcφ(y) ∈ ∂E is a countable union of sets
in D, and thus has ν measure zero. Thus, we may assume Dcφ(y) ∈ G \ E
if y ∈ d̂om Arg ∩ dom∇φ.

Let h be a bounded continuous function on G. For each n ∈ N, let
hn ∈ Cb(R2) be such that
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(1) hn = 0 outside Bn+ 1
n

.

(2) hn = h in G \ (E ∪
⋃
x∈∂E B 1

n
(x)).

(3) hn = 0 on E.

Clearly, hn converges pointwise to h1{G\E}.
For ε > 0, n ∈ N, define

φn,ε(y) = inf{c(x, y) + εhn(x)(x1 − y1)}.

Note that φn,ε(y) = infx∈Gn,ε c(x, y), where Gn,ε = {(x1, x2 + εhn(x)) : x ∈
G}. Consider the following two cases.

Fix n ∈ N. Let y ∈ d̂om Arg∩dom∇φ. In this case, Arg(y) is a singleton
with the unique element x0 = Dcφ(y). For each ε > 0, we can find xn,ε ∈ G
such that

φn,ε(y) + ε2 ≥ c(xn,ε, y) + εhn(xn,ε)(xn,ε1 − y1) ≥ φ(y) + εhn(xn,ε)(xn,ε1 − y1).

On the other hand,

φn,ε(y) ≤ c(x0, y) + εhn(x0)(x0
1 − y1) = φ(y) + εhn(x0)(x0

1 − y1).

Together, we have limε→0 φn,ε = (y) = limε→0 c(x
n,ε, y) = φ(y), and

−ε+ hn(xn,ε)(xn,ε1 − y1) ≤ 1

ε
(φn,ε(y)− φ(y)) ≤ hn(x0)(x0

1 − y1).

In view of Lemma 2.6, we may assume that (xn,ε)ε>0 is bounded. As y ∈
d̂om Arg, we have limε→0 x

n,ε = x0 along a subsequence. By dominated
convergence theorem, we have

lim
ε→0

∫
Ec

1

ε
(φn,ε(y)− φ(y)) dν =

∫
Ec
hn(Dcφ(y))(Dc

1φ(y)− y1) dν. (9)

Next, let y ∈ E. By [9, Lemma B.1], φ(y) = 0. For each ε > 0, we can
find xn,ε ∈ G such that

φn,ε(y)− εhn(xn,ε)(xn,ε1 − y1) + ε2 ≥ c(xn,ε, y) ≥ φ(y) = 0.

Taking ε → 0, we have limε→0 c(x
n,ε, y) = 0. If (xn,ε)ε>0 is bounded, then

along a subsequence, xn,ε → xn ∈ E as ε goes to zero. If (xn,ε)ε>0 is
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unbounded, then there is εn > 0 such that xn,ε ∈ E∩∂ domφ for 0 < ε < εn.
Combining these two possibilities, we deduce that

lim
ε→∞

1

ε
φn,ε(y) = lim

ε→∞
hn(xn,ε)(xn,ε1 − y1) = 0.

Apply dominated convergence theorem, we have

lim
ε→∞

1

ε

∫
E
φn,ε(y) dν = 0. (10)

Now, by optimality of φ, we have∫
φdν ≥

∫
φn,ε dν =

∫
E
φn,ε dν +

∫
Ec
φn,ε dν

In view of (9) and (10), we have∫
Ec
hn(Dcφ(y))(Dc

1φ(y)− y1) dν = lim
ε→0

∫
Ec

1

ε
(φn,ε(y)− φ(y)) dν

≤ − lim
ε→∞

1

ε

∫
E
φn,ε(y) dν = 0

Replacing h by −h, we obtain∫
Ec
hn(Dcφ(y))(Dc

1φ(y)− y1) dν = 0, n ∈ N.

The result now follows by sending n to infinity and applying the dominated
convergence theorem.

3 Duality: A Minimax Argument

This section is devoted to establishing the following strong duality relation:

Theorem 3.1. Let ν ∈ P2(R2). Then

min
γ∈Γ(ν)

∫
c(x, y) dγ = max

G∈M

∫
φG(y) dν. (11)

In [9], this relation is obtained as an immediate corollary of the first
order condition of the primal problem (3). Here, our proof relies on a well-
know minimax principle due to Aubin and Ekeland (see, for instance, [2,
Chapter 6.2.7]). We state the theorem here for convenience of the readers.
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Theorem 3.2. Let X be a convex subset of a topological vector space, and
Y be a convex subset of a vector space. Assume f : X ×Y → R satisfies the
following conditions:

1. For every y ∈ Y , the map x 7→ f(x, y) is lower semi-continuous and
convex.

2. There exists y0 such that x 7→ f(x, y0) is inf-compact. That is, the set
{x ∈ X : f(x, y0) ≤ a} is relatively compact for each a ∈ R.

3. For every x ∈ X, the map y 7→ f(x, y) is convex.

Then, we have
inf
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

inf
x∈X

f(x, y).

We start with some notations. We denote by projx (resp. projy) the
projection of R2 × R2 onto its x-coordinates (resp. y-coordinates). For a
measuable map T : R2 → R2 and a probability measure µ ∈ P2(R2), the
push forward of µ by T is given by

T#µ(A) = µ(T−1(A)), A ∈ B(R2).

For ν ∈ P2(R2), the support of ν, denote by supp ν, is the smallest closed
set that has ν-measure 1. We denote by Π(ν) the family of probability
measures on R2×R2 with y-marginal given by ν, and by Πc(ν) the elements
of Π(ν) that have compactly supported x-marginal. If E ⊂ R2 is measurable,
we denote by ΠE(ν) the elements of Π(ν) whose x-marginal has support
contained in E. In summary,

Π(ν) =
{
γ ∈ P2(R2 × R2) : γ(R2, dy) = ν(dy)

}
Πc(ν) = {γ ∈ Π(ν) : supp{(projx)#π} is compact}
ΠE(ν) = {γ ∈ Π(ν) : supp{(projx)#π} ⊂ E} .

For a measurable function h : R2 → R2, we write

ψh(y) , inf
x∈R2
{c(x, y) + 〈h(x), y − x〉}, y ∈ R2,

where 〈x, y〉 =
∑2

i=1 xiyi denotes the scalar product of R2. We also define a
functional F : Πc(ν)× C(R2,R2)→ R by

F(π, h) ,
∫
c(x, y) + 〈h(x), y − x〉 dπ.

13



where C(R2,R2) (resp. Cb(R2,R2) ) denotes the space of continuous (resp.
bounded continuous) functions on R2 with values in R2 .

We divide the proof of Theorem 3.1 into a few lemmas.

Lemma 3.3. For π ∈ Πc(ν), we have

sup
h∈Cb(R2,R2)

F(π, h) = sup
h∈Cν,ψ(R2,R2)

F(π, h),

where Cν,ψ(R2,R2) =
{
h ∈ C(R2,R2) : ψh is ν-integrable

}
.

Proof. First, as π ∈ Πc(ν), the inequality

sup
h∈Cb(R2,R2)

F(π, h) ≥ sup
h∈Cν,ψ(R2,R2)

F(π, h)

holds trivially. On the other hand, let Br be a ball centered at the origin
with radius r > 0, that contains the support of the x-marginal of π. For
h ∈ Cb(R2,R2), define

ĥ(x) , h(x)1{x∈Br} +
[
h(
rx

|x|
)− x+

rx

|x|
]
1{x∈R2\Br}.

Then, ĥ is a continuous function such that ψ
ĥ

is ν-integrable. In particular,

F(π, h) = F(π, ĥ) and the result follows.

Lemma 3.4. For h ∈ Cν,ψ(R2,R2), the map π 7→ F(π, h) is lower semi-
continuous on Π(ν) under the weak convergence of measures.

Proof. We will use the notation a∧ b to denote the minimum between a and
b. Let (πn) be a sequence in Π(ν), π ∈ Π(ν) and suppose that πn converges
weakly to π. We compute

F(π, h)−
∫
ψh(y)dν =

∫ [
c(x, y) + 〈h(x), y − x〉 − ψh(y)

]
dπ

= lim
m→∞

∫ (
c(x, y) + 〈h(x), y − x〉 − ψh(y)

)
∧mdπ

= lim
m→∞

lim
n→∞

∫ (
c(x, y) + 〈h(x), y − x〉 − ψh(y)

)
∧mdπn

≤ lim inf
n

∫ (
c(x, y) + 〈h(x), y − x〉 − ψh(y)

)
dπ

= lim inf
n
F(πn, h)−

∫
ψh(y)dν,

where we have used the monotone convergence theorem in the third line.
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We proceed to the proof of Theorem (3.2).

Proof of Theorem (3.2). Recall the functional F : Πc(ν)×C(R2,R2)→ R is
given by

F(π, h) ,
∫
c(x, y) + 〈h(x), y − x〉 dπ.

Clearly, it is linear in both of its arguments.
Note that both Πc(ν) and Cν,ψ(R2,R2) are convex sets. With the choice

of h0(x) = −x, we may apply the inequality −1
8a

2 − 8b2 ≤ 2ab to obtain

{π ∈ Πc(ν) : F(π, h0) ≤ a} ⊂
{
π ∈ Π(ν) :

∫
|x|2dπ ≤ 32

(
a+

∫
|y|2dν

)}
Under the weak convergence of measures, the set on the right-hand-side is
closed and tight, and thus compact by Prokhorov Theorem. Thus, the map
π 7→ F(π, h0) is inf-compact. By Lemma 3.4, the map π 7→ F(π, h) is lower
semi-continuous on Π(ν) under the weak convergence of measures, for each
h ∈ Cν,ψ(R2,R2). Therefore, we are in the position to apply Theorem 3.2
and obtain

inf
π∈Πc(ν)

sup
h∈Cν,ψ(R2,R2)

F(π, h) = sup
h∈Cν,ψ(R2,R2)

inf
π∈Πc(ν)

F(π, h). (12)

The martingale property of a probability measure π ∈ P2(R2×R2) (i.e.,
Eπ(Y |X) = X) is equivalent to

sup
h∈Cb(R2,R2)

∫
〈h(x), y − x〉 dπ = 0.

We then deduce from Lemma 3.3, and (12) that

inf
π∈Γ(ν)

∫
c(x, y) dπ = inf

π∈Π(ν)

{∫
c(x, y)dπ + sup

h∈Cb(R2,R2)

∫
〈h(x), y − x〉 dπ

}
≤ inf

π∈Πc(ν)
sup

h∈Cν,ψ(R2,R2)

F(π, h)

= sup
h∈Cν,ψ(R2,R2)

inf
π∈Πc(ν)

F(π, h)

For h ∈ Cν,ψ(R2,R2), Lemma A.1 shows that

inf
π∈Πc(ν)

F(π, h) ≤ lim sup
n

inf
π∈ΠBn (ν)

F(π, h)

= lim sup
n

∫
inf
x∈Bn

{c(x, y) + 〈h(x), y − x〉} dν

=

∫
ψh(y) dν,
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where in the last line we use the monotone convergence theorem. All in all,
we have shown that

inf
π∈Γ(ν)

∫
c(x, y) dπ ≤ sup

h∈Cν,ψ(R2,R2)

∫
ψh(y) dν ≤ sup

h∈C(R2,R2)

∫
ψh(y) dν

To finish the proof, it suffices to observe that, for h ∈ C(R2,R2), the
function ψh belongs to the class ΦM . Indeed, for any t ∈ [0, 1] and y0, y1 ∈
R2, we can take x = (1− t)y0 + ty1 in the infimum of ψh to obtain

(1− t)ψh(y0) + tψh(y1) ≤ t(1− t)c(y0, y1).

The result now follows from [9, Lemma 2.1].

4 Continuity of Value Function

In this final section, we establish continuity of the value function:

V (ν) , max
G∈M

∫
φG(y) dν = min

γ∈Γ(ν)

∫
c(x, y) dγ,

under the Wasserstein distance:

W2(µ, ν) , inf
π∈Π(µ,ν)

{∫
|x− y|2 dπ

} 1
2

,

where Π(µ, ν) is the family of probability measures on R2 × R2 with x-
marginal µ and y-marginal ν. We recall the following equivalent characteri-
zations of convergence in W2 (see [1, Theorem 2.7 and Proposition 2.4]): for
νn, ν in P2(R2),

• νn
W2−−→ ν;

• νn → ν weakly and
∫
|x|2 dνn →

∫
|x|2 dν;

•
∫
f(x) dνn →

∫
f(x) dν for every continuous function f = f(x) with

quadratic growth:

|f(x)| ≤ K(1 + |x|2), x ∈ R2.

This time, we will adopt the primal formulation and write J(γ) =∫
c(x, y) dγ. As a result,

V (ν) = min
γ∈Γ(ν)

J(γ).
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Theorem 4.1. Let (νn) ⊂ P2(R2) be a sequence of probability measures and
let ν ∈ P2(R2). Suppose νn converges to ν under W2. Then

lim
n→∞

V (νn) = V (ν).

Proof. Let (νnk) ⊂ (νn) be a subsequence such that the limit lim
k→∞

V (νnk)

exists. For each k, let γnk ∈ Γ(νnk) be an optimal plan. By Jensen’s
inequality, martingale property, and the W2-convergence of (νnk), we have∫

|x|2 + |y|2 dγnk ≤ 2 sup
k

∫
|y|2 dνnk <∞. (13)

It follows that the sequence (γnk) is tight. Along a further subsequence, not
relabelled, we have γnk converges weakly to some probability measure γ.

Clearly, γ has y-marginal given by ν. By Skorodhod representation
theorem (see [13, Theorem 17.3], there are random variables (Xnk , Y nk),
k ∈ N, and (X,Y ), defined on the probability space ([0, 1],B([0, 1]), λ), with
values in R2 × R2, such that

1. (Xnk , Y nk)→ (X,Y ), λ-almost everywhere, and

2. the laws of (Xnk , Y nk) and (X,Y ) under λ are given by γnk and γ,
respectively.

Here, λ is the Lebesgue measure on the interval [0, 1]. From (13), we deduce
that the sequence (Xnk , Y nk) is uniformly integrable. Therefore, for any
bounded continuous function h ∈ Cb(R2,R2), we have∫

〈h(x), y − x〉 dγ = Eλ(〈h(X), Y −X〉)

= lim
k→∞

Eλ(〈h(Xnk), Y nk −Xnk〉) = 0.

Hence, γ ∈ Γ(ν).
Next, we show that γ is an optimal plan. Consider the set

C =

{(
(x0, y0), (x1, y1)

)
∈ R4 × R4

∣∣∣∣ (1− t)c(x0, y0) + tc(x1, y1)
≤ t(1− t)c(y0, y1), ∀t ∈ [0, 1]

}
.

By [9, Theorem 2.2], we deduce from optimality of each γnk that supp γnk ⊗ γnk ⊂
C. Continuity of c = c(x, y) implies the set C is closed. As γnk ⊗ γnk con-
verges weakly to γ ⊗ γ, we have

γ ⊗ γ(C) ≥ lim sup
k

γnk ⊗ γnk(C) = 1.
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This shows that γ is optimal.
Now, as νnk converges to ν under W2, we have limk→∞ Eλ(|Y nk |2) =

Eλ(|Y |2). It follows that Y nk converges to Y in L2. On the other hand, let

Wnk = Eλ(Y nk − Y |Xnk)

Znk = Eλ(Y |Xnk).

By Jensen’s inequality, Wnk converges to 0 in L2, and in particular, λ-almost
everywhere along a further subsequence. Therefore, as k →∞,

Znk = Xnk −Wnk → X, λ-a.e. (14)

It is easy to see that the family of random variables (|Znk |2) is uniformly
integrable. Together with (14), this implies that Znk converges to X in L2.
We then deduce that Xnk converges to X in L2, which in turn implies

γnk
W2−−→ γ, as k →∞.

As c = c(x, y) is a continuous function with quadratic growth, we conclude
that

lim
k→∞

V (νnk) = lim
k→∞

J(γnk) = J(γ) = V (ν).

The result now follows from arbitrariness of (νnk).

A A measurable selection result

We denote by Σ1
1 the family of analytic sets in Rd, and write σ(Σ1

1) to
represent the σ-algebra generated by Σ1

1. A subset A ∈ Rd is called univer-
sally measurable if it is µ-measurable for any Borel probability measure µ.
Given a set C ⊂ Rd × Rd, we recall a uniformization of C is a function s
with domain D = projx(C), such that s(x) ∈ Cx for every x ∈ D, where
Cx , {y : (x, y) ∈ C} is the x-section of C.

Lemma A.1. Let ν ∈ P2(Rd), E ⊂ Rd be a closed set, and f : Rd×Rd → R
be a Borel measurable function such that the partial minimization

y 7→ inf
x∈E

f(x, y)

is Borel measurable. Then,

inf
π∈Π(E,ν)

∫
f(x, y) dπ =

∫
inf
x∈E

f(x, y) dν,

where Π(E, ν) = {π ∈ Π(ν) : (projx)#π ⊂ E}.
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Proof. Let ε > 0. Define a function φ by φ(y) = infx∈E f(x, y). By assump-
tion, φ is Borel. Therefore, the set

Bε =
{

(x, y) ∈ E × Rd : f(x, y) ≤ φ(y) + ε
}

is a Borel set such that no y-section of empty. By the Uniformization The-
orem of Von Neumann and Jankov (see [8, Theorem 18.1]), there exits a
uniformization function sε of Bε that is σ(Σ1

1)-measurable. By the Lusin’s
Theorem (see [8, Theorem 29.7]), sε is universally measurable. In particular,
it is ν-measurable.

Now, define a probability measurable πε by

πε(A) = ν((sε, I)−1(A)), A ∈ B(Rd × Rd),

where I is the identity function on Rd. Clearly, πε has y-marginal given by
ν, and x-marginal given by µ = (sε)#ν. In particular, µ(E) = 1. Therefore,
suppµ ⊂ E. We then deduce that

inf
π∈Π(E,ν)

∫
f(x, y) dπ ≤

∫
f(x, y) dπε ≤

∫
φ(y) dν + ε.

The result now follows as ε > 0 is arbitrary.

References

[1] Luigi Ambrosio and Nicola Gigli. A User’s Guide to Optimal Transport,
pages 1–155. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[2] J.P. Aubin and I. Ekeland. Applied Nonlinear Analysis. Dover Books
on Mathematics Series. Dover Publications, 2006.

[3] Mathias Beiglbck and Nicolas Juillet. On a problem of optimal trans-
port under marginal martingale constraints. Ann. Probab., 44(1):42–
106, 01 2016.

[4] Mathias Beiglbck, Marcel Nutz, and Nizar Touzi. Complete duality for
martingale optimal transport on the line. Ann. Probab., 45(5):3038–
3074, 09 2017.

[5] Freddy Delbaen and Walter Schachermayer. A General Version of the
Fundamental Theorem of Asset Pricing (1994), pages 149–205. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2006.

19



[6] Nassif Ghoussoub, Young-Heon Kim, and Tongseok Lim. Structure
of optimal martingale transport plans in general dimensions. Ann.
Probab., 47(1):109–164, 01 2019.

[7] Pierre Henry-Labordère and Nizar Touzi. An explicit martingale ver-
sion of the one-dimensional brenier theorem. Finance and Stochastics,
20(3):635–668, Jul 2016.

[8] A. Kechris. Classical Descriptive Set Theory. Graduate Texts in Math-
ematics. Springer New York, 2012.

[9] Dmitry Kramkov and Yan Xu. An optimal transport problem with
backward martingale constraints motivated by insider trading. arXiv
e-prints, page arXiv:1906.03309, Jun 2019.

[10] Albert S. Kyle. Continuous auctions and insider trading. Econometrica,
53(6):1315–1335, 1985.

[11] S.M. Srivastava. A Course on Borel Sets. Graduate Texts in Mathe-
matics. Springer New York, 1998.

[12] C. Villani. Optimal Transport: Old and New. Grundlehren der mathe-
matischen Wissenschaften. Springer Berlin Heidelberg.

[13] David Williams. Probability with Martingales. Cambridge University
Press, 1991.

20


	Introduction
	Dual Problem
	Existence of Dual Optimizer
	Some preliminaries
	Main Results and Proofs

	Martingale Property as First Order Condition

	Duality: A Minimax Argument
	Continuity of Value Function
	 A measurable selection result

