21-241: Matrix Algebra - Summer I, 2006
 Quiz 5 Solutions

1. (15 points) Let $A=\left(\begin{array}{ccc}4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1\end{array}\right)$.
(a) Find the characteristic polynomial of A.

Solution.

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left(\begin{array}{ccc}
4-\lambda & 0 & 1 \\
-2 & 1-\lambda & 0 \\
-2 & 0 & 1-\lambda
\end{array}\right) \\
& =(1-\lambda) \operatorname{det}\left(\begin{array}{cc}
4-\lambda & 1 \\
-2 & 1-\lambda
\end{array}\right) \quad \text { (cofactor expansion across the second column) } \\
& =(1-\lambda)[(4-\lambda)(1-\lambda)+2] \\
& =-\lambda^{3}+6 \lambda^{2}-11 \lambda+6 .
\end{aligned}
$$

(b) It's known that 1 is an eigenvalue of A. Find a basis for the eigenspace corresponding to 1 .

Solution. The eigenspace corresponding to 1 is the kernel of $A-I$.

$$
A-I=\left(\begin{array}{ccc}
3 & 0 & 1 \\
-2 & 0 & 0 \\
-2 & 0 & 0
\end{array}\right) \xrightarrow[R_{3}+\frac{2}{3} R_{1}]{R_{2}+\frac{2}{3} R_{1}}\left(\begin{array}{ccc}
3 & 0 & 1 \\
0 & 0 & \frac{2}{3} \\
0 & 0 & \frac{2}{3}
\end{array}\right) \xrightarrow{R_{3}-R_{2}}\left(\begin{array}{ccc}
\boxed{3} & 0 & 1 \\
0 & 0 & \begin{array}{|c}
\frac{2}{3} \\
0
\end{array} \\
0 & 0
\end{array}\right)
$$

Therefore $x_{3}=0, x_{1}=-\frac{1}{3} x_{3}=0, x_{2}$ is free. The general element in $\operatorname{ker}(A-I)$ is

$$
\mathbf{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
0 \\
x_{2} \\
0
\end{array}\right)=x_{2}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) .
$$

Thus $(0,1,0)^{T}$ is a basis for the eigenspace corresponding to 1 .
(c) Find all eigenvalues of A. What are their multiplicities?

Solution. Since 1 is an eigenvalue, $(\lambda-1)$ is a factor of the characteristic polynomial. Thus,

$$
\operatorname{det}(A-\lambda I)=-\lambda^{3}+6 \lambda^{2}-11 \lambda+6=-(\lambda-1)\left(\lambda^{2}-5 \lambda+6\right)=-(\lambda-1)(\lambda-2)(\lambda-3) .
$$

Therefore, A has three simple eigenvalues 1,2 and 3 .
2. (5 points) Let λ be an eigenvalue of an invertible matrix A. Show that λ^{-1} is an eigenvalue of A^{-1}. Proof. Since λ is an eigenvalue of A, there exists a nonzero vector \mathbf{v} such that

$$
A \mathbf{v}=\lambda \mathbf{v} .
$$

Since A is invertible, A^{-1} exists and $\lambda \neq 0$. Multiplying both sides of the above equation by $\lambda^{-1} A^{-1}$, we get

$$
\lambda^{-1} \mathbf{v}=A^{-1} \mathbf{v} .
$$

This shows that λ^{-1} is an eigenvalue of A^{-1} and \mathbf{v} is an eigenvector corresponding to λ^{-1}.

