21-241: Matrix Algebra - Summer I, 2006
 Quiz 3 Solutions

1. (10 points) Classify the quadratic form $q(\mathbf{x})=x_{1}^{2}+3 x_{2}^{2}+4 x_{3}^{2}+x_{4}^{2}+2 x_{1} x_{2}-4 x_{1} x_{4}+8 x_{2} x_{3}+9 x_{3} x_{4}$.

Solution. The associated matrix $K=\left(\begin{array}{cccc}1 & 1 & 0 & -2 \\ 1 & 3 & 4 & 0 \\ 0 & 4 & 4 & \frac{9}{2} \\ -2 & 0 & \frac{9}{2} & 1\end{array}\right)$. Applying Gaussian to K, we see that

$$
\left(\begin{array}{cccc}
1 & 1 & 0 & -2 \\
1 & 3 & 4 & 0 \\
0 & 4 & 4 & \frac{9}{2} \\
-2 & 0 & \frac{9}{2} & 1
\end{array}\right) \xrightarrow[R_{4}+2 R_{1}]{R_{2}-R_{1}}\left(\begin{array}{cccc}
1 & 1 & 0 & -2 \\
0 & 2 & 4 & 2 \\
0 & 4 & 4 & \frac{9}{2} \\
0 & 2 & \frac{9}{2} & -3
\end{array}\right) \xrightarrow[R_{4}-R_{2}]{R_{3}-2 R_{2}}\left(\begin{array}{cccc}
1 & 1 & 0 & -2 \\
0 & 2 & 4 & 2 \\
0 & 0 & \frac{-4}{2} & \frac{1}{2} \\
0 & 0 & \frac{1}{2} & -5
\end{array}\right) .
$$

Hence, K has both positive and negative pivots. Thus the quadratic form q is indefinite.
2. (10 points) Let $q(x, y, z)=x^{2}+y^{2}+y z+z^{2}+x+y-z+4$. Determine if q has a minimum. If so, find the minimizer and the minimum value for q.
Solution. The quadratic form $q(x, y, z)$ can be written as

$$
q(\mathbf{u})=\mathbf{u}^{T} K \mathbf{u}-2 \mathbf{u}^{T} \mathbf{f}+c,
$$

where $\mathbf{u}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right), K=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & \frac{1}{2} \\ 0 & \frac{1}{2} & 1\end{array}\right), \mathbf{f}=\left(\begin{array}{c}-\frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2}\end{array}\right), c=4$. Applying Gaussian to the augmented matrix ($K \mid \mathbf{f}$), we get

$$
\left(\begin{array}{ccc|c}
1 & 0 & 0 & -\frac{1}{2} \\
0 & 1 & \frac{1}{2} & -\frac{1}{2} \\
0 & \frac{1}{2} & 1 & \frac{1}{2}
\end{array}\right) \xrightarrow{R_{3}-\frac{1}{2} R_{2}}\left(\begin{array}{ccc|c}
\hline 1 & 0 & 0 & -\frac{1}{2} \\
0 & 1 & \frac{1}{2} & -\frac{1}{2} \\
0 & 0 & \frac{3}{4} & \frac{3}{4}
\end{array}\right),
$$

all three pivots are positive. Therefore, q has a minimum, the minimizer \mathbf{u}^{*} is the unique solution to the system $K \mathbf{u}=\mathbf{f}$. By back substitution, we obtain $\mathbf{u}^{*}=\left(-\frac{1}{2},-1,1\right)^{T}$. Thus the minimum value is $q\left(\mathbf{u}^{*}\right)=c-\mathbf{u}^{* T} \mathbf{f}=\frac{11}{4}$.

