21-241: Matrix Algebra - Summer I, 2006

Quiz 2

1. (10 points) Let W be the set of all vectors of the form $\left(\begin{array}{c}s+3 t \\ s-t \\ 2 s-t \\ 4 t\end{array}\right)$, where s and t are arbitrary. Show that W is a subspace of \mathbb{R}^{4}.

Proof. Clearly W is nonempty. Then you may directly prove W is closed under addition and scalar multiplication. But the following method is more convenient. Since

$$
\left(\begin{array}{c}
s+3 t \\
s-t \\
2 s-t \\
4 t
\end{array}\right)=\left(\begin{array}{c}
s \\
s \\
2 s \\
0
\end{array}\right)+\left(\begin{array}{c}
3 t \\
-t \\
-t \\
4 t
\end{array}\right)=s\left(\begin{array}{l}
1 \\
1 \\
2 \\
0
\end{array}\right)+t\left(\begin{array}{c}
3 \\
-1 \\
-1 \\
4
\end{array}\right)=s \mathbf{u}+t \mathbf{v}
$$

where $\mathbf{u}=(1,1,2,0)^{T}, \mathbf{v}=(3,-1,-1,4)^{T}$, we know that $W=\operatorname{span}\{\mathbf{u}, \mathbf{v}\}$, which has to be a subspace of \mathbb{R}^{4}.
2. (10 points) Find a basis for the set of vectors in \mathbb{R}^{3} in the plane $x+2 y+z=0$.

Solution. Any vector in this plane is actually a solution to the homogeneous system $x+2 y+z=0$ (although this system contains only one equation). So we are to find a basis for the kernel of the coefficient matrix $A=\left(\begin{array}{ccc}1 & 2 & 1\end{array}\right)$, which is already in the echelon form. Clearly, y and z are free variables, and $x=-2 y-z$. So the general solution can be written as

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-2 y-z \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-2 y \\
y \\
0
\end{array}\right)+\left(\begin{array}{c}
-z \\
0 \\
z
\end{array}\right)=y\left(\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right)+z\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)
$$

Therefore, $\left\{(-2,1,0)^{T},(-1,0,1)^{T}\right\}$ form a basis of ker A, namely the set of vectors in the plane $x+2 y+z=0$.

