21-241: Matrix Algebra - Summer I, 2006
 Quiz 1 Solutions

1. (10 points) The trace of $n \times n$ matrix A is defined to be the sum of its diagonal entries: $\operatorname{tr} A=$ $a_{11}+a_{22}+\cdots+a_{n n}$. Suppose matrix P has size $m \times n$ and matrix Q has size $n \times m$. Prove that $\operatorname{tr}(P Q)=\operatorname{tr}(Q P)$. (If you are not comfortable to deal with symbols m and n, prove the statement for $m=2, n=3$, at the price of 1 point off.)

Solution. Matrix $P Q$ has size $m \times m$, matrix $Q P$ has size $n \times n$. Both of them are square, so their traces are well defined. Let $A=P Q, B=Q P$. We only care about the diagonal entries of A and B. By the rule of matrix multiplication, $a_{i i}$, the i-th diagonal entry of A, is the vector product of the i-th row of P and the i-th column of Q, so

$$
a_{i i}=\left(\begin{array}{llll}
p_{i 1} & p_{i 2} & \cdots & p_{i n}
\end{array}\right)\left(\begin{array}{r}
q_{1 i} \\
q_{2 i} \\
\vdots \\
q_{n i}
\end{array}\right)=\sum_{j=1}^{n} p_{i j} q_{j i} \quad \forall i=1,2, \cdots, m .
$$

Therefore, by definition of trace,

$$
\operatorname{tr}(A)=\sum_{i=1}^{m} a_{i i}=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} p_{i j} q_{j i}\right)=\sum_{\substack{i=1,2, \cdots, m \\ j=1,2, \cdots, n}} p_{i j} q_{j i} .
$$

A similar argument tells us that $b_{j j}$, the j-th diagonal entry of B, equals

$$
b_{j j}=\left(\begin{array}{llll}
q_{j 1} & q_{j 2} & \cdots & q_{j m}
\end{array}\right)\left(\begin{array}{r}
p_{1 j} \\
p_{2 j} \\
\vdots \\
p_{m j}
\end{array}\right)=\sum_{i=1}^{m} q_{j i} p_{i j} \quad \forall j=1,2, \cdots, n,
$$

and so,

$$
\operatorname{tr}(B)=\sum_{j=1}^{n} b_{j j}=\sum_{j=1}^{n}\left(\sum_{i=1}^{m} q_{j i} p_{i j}\right)=\sum_{\substack{i=1,2, \cdots, m \\ j=1,2, \cdots, n}} q_{j i} p_{i j} .
$$

Now, apparently, $\operatorname{tr}(A)=\operatorname{tr}(B)$, i.e., $\operatorname{tr}(P Q)=\operatorname{tr}(Q P)$.
2. (10 points) Find two different permuted $L U$ factorizations of the matrix

$$
A=\left(\begin{array}{rrr}
1 & 2 & -1 \\
-2 & -4 & 3 \\
0 & 1 & 5
\end{array}\right)
$$

Solution.

Factorization 1:

$$
\begin{array}{rlrl}
\left(\begin{array}{rrr}
1 & 2 & -1 \\
-2 & -4 & 3 \\
0 & 1 & 5
\end{array}\right) & \xrightarrow{R_{2}+2 R_{1}}\left(\begin{array}{rrr}
1 & 2 & -1 \\
0 & 0 & 1 \\
0 & 1 & 5
\end{array}\right) & \xrightarrow{R_{2} \leftrightarrow R_{3}}\left(\begin{array}{rrr}
1 & 2 & -1 \\
0 & 1 & 5 \\
0 & 0 & 1
\end{array}\right)=U_{1} \\
\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) & -\longrightarrow\left(\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) & \longrightarrow\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) & \longrightarrow\left(\begin{array}{rrr}
1 \\
0 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right)=L_{1} \\
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) & & \longrightarrow\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)=P_{1} .
\end{array}
$$

So, we have

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{rrr}
1 & 2 & -1 \\
-2 & -4 & 3 \\
0 & 1 & 5
\end{array}\right)=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 2 & -1 \\
0 & 1 & 5 \\
0 & 0 & 1
\end{array}\right)
$$

Factorization 2:

$$
\begin{aligned}
& \left(\begin{array}{rrr}
1 & 2 & -1 \\
-2 & -4 & 3 \\
0 & 1 & 5
\end{array}\right) \xrightarrow{R_{1} \leftrightarrow R_{2}}\left(\begin{array}{rrr}
-2 & -4 & 3 \\
1 & 2 & -1 \\
0 & 1 & 5
\end{array}\right) \xrightarrow{R_{2}+\frac{1}{2} R_{1}}\left(\begin{array}{rrr}
-2 & -4 & 3 \\
0 & 0 & \frac{1}{2} \\
0 & 1 & 5
\end{array}\right) \xrightarrow{R_{2} \leftrightarrow R_{3}}\left(\begin{array}{rrr}
-2 & -4 & 3 \\
0 & 1 & 5 \\
0 & 0 & \frac{1}{2}
\end{array}\right)=U_{2}, \\
& \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \longrightarrow\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \longrightarrow\left(\begin{array}{rrr}
1 & 0 & 0 \\
-\frac{1}{2} & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \longrightarrow\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
-\frac{1}{2} & 0 & 1
\end{array}\right)=L_{2}, \\
& \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad-\longrightarrow\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \longrightarrow\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \longrightarrow\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \quad=P_{2} .
\end{aligned}
$$

So, we have

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{rrr}
1 & 2 & -1 \\
-2 & -4 & 3 \\
0 & 1 & 5
\end{array}\right)=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
-\frac{1}{2} & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
-2 & -4 & 3 \\
0 & 1 & 5 \\
0 & 0 & \frac{1}{2}
\end{array}\right) .
$$

