21-241: Matrix Algebra — Summer I, 2006
Quiz 1 Solutions

1. (10 points) The trace of n x n matrix A is defined to be the sum of its diagonal entries: trA =

a11 + agg + -+ + anp. Suppose matrix P has size m x n and matrix @ has size n x m. Prove that
tr(PQ) = tr(QP). (If you are not comfortable to deal with symbols m and n, prove the statement for
m = 2, n = 3, at the price of 1 point off.)
SOLUTION. Matrix P(Q has size m x m, matrix QP has size n x n. Both of them are square, so their
traces are well defined. Let A = PQ, B = QP. We only care about the diagonal entries of A and B.
By the rule of matrix multiplication, a;;, the i-th diagonal entry of A, is the vector product of the i-th
row of P and the i-th column of @), so
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Therefore, by definition of trace,

m m n
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A similar argument tells us that b;;, the j-th diagonal entry of B, equals

D1
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: i=1
pmj
and so,
n n m
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Now, apparently, tr(A) = tr(B), i.e., tr(PQ) = tr(QP). O
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2. (10 points) Find two different permuted LU factorizations of the matrix

SOLUTION.

Factorization 1:
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So, we have

Factorization 2:
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