21-241: Matrix Algebra - Summer I, 2006

Practice Exam 4 Solutions

1. Let $A=\left(\begin{array}{ccc}1 & -3 & -7 \\ 0 & -2 & -6 \\ 0 & 2 & 5\end{array}\right)$.
(a) Find the characteristic polynomial of A.

Solution.

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left(\begin{array}{ccc}
1-\lambda & -3 & -7 \\
0 & -2-\lambda & -6 \\
0 & 2 & 5-\lambda
\end{array}\right)=(1-\lambda) \operatorname{det}\left(\begin{array}{cc}
-2-\lambda & -6 \\
2 & 5-\lambda
\end{array}\right) \\
& =(1-\lambda)[(-2-\lambda)(5-\lambda)-(-6) 2] \\
& =-\lambda^{3}+4 \lambda^{2}-5 \lambda+2 .
\end{aligned}
$$

(b) Find all eigenvalues and their multiplicities of A.

Solution. Since $\operatorname{det}(A-\lambda I)=-\lambda^{3}+4 \lambda^{2}-5 \lambda+2=-(\lambda-1)^{2}(\lambda-2), A$ has two distinct eigenvalues: $\lambda_{1}=1$ with multiplicity $2, \lambda_{2}=2$ with multiplicity 1 .
(c) For each eigenvalue, find a basis for the corresponding eigenspace. Determine which eigenvalues are complete.
Solution. To find a basis for $V_{\lambda_{1}}$, we are to solve the system $\left(A-\lambda_{1} I\right) \mathbf{x}=\mathbf{0}$.

$$
A-\lambda_{1} I=\left(\begin{array}{ccc}
0 & -3 & -7 \\
0 & -3 & -6 \\
0 & 2 & 4
\end{array}\right) \xrightarrow[R_{3}+\frac{2}{3} R_{1}]{R_{2}-R_{1}}\left(\begin{array}{ccc}
0 & -3 & -7 \\
0 & 0 & 1 \\
0 & 0 & -\frac{2}{3}
\end{array}\right) \xrightarrow{R_{3}+\frac{2}{3} R_{2}}\left(\begin{array}{ccc}
0 & -3 & -7 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Thus the general solution is

$$
\mathbf{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
x_{1} \\
0 \\
0
\end{array}\right)=x_{1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

So $(1,0,0)^{T}$ is a basis for $V_{\lambda_{1}}$. Since $\operatorname{dim} V_{\lambda_{1}}=1$, less than the multiplicity, λ_{1} is not complete. Similarly, we solve the system $\left(A-\lambda_{2} I\right) \mathbf{x}=\mathbf{0}$.

$$
A-\lambda_{2} I=\left(\begin{array}{ccc}
-1 & -3 & -7 \\
0 & -4 & -6 \\
0 & 2 & 3
\end{array}\right) \xrightarrow{R_{3}+\frac{1}{2} R_{2}}\left(\begin{array}{ccc}
\boxed{-1} & -3 & -7 \\
0 & \boxed{-4} & -6 \\
0 & 0 & 0
\end{array}\right) .
$$

Thus the general solution is

$$
\mathbf{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
-\frac{5}{2} x_{3} \\
-\frac{3}{2} x_{3} \\
x_{3}
\end{array}\right)=\frac{x_{1}}{2}\left(\begin{array}{c}
-5 \\
-3 \\
2
\end{array}\right) .
$$

So $(-5,-3,2)^{T}$ is a basis for $V_{\lambda_{2}}$. Since $\operatorname{dim} V_{\lambda_{2}}=1$, equal to the multiplicity, λ_{2} is complete.
(d) Is A complete? diagonalizable?

Solution. Since A has an incomplete eigenvalue, it's not complete, thus not diagonalizable.
2. Write down a real matrix that has
(a) eigenvalues $-1,3$ and corresponding eigenvectors $\binom{-1}{2},\binom{1}{1}$.

Solution. Since $\binom{-1}{2},\binom{1}{1}$ are linearly independent (why?), they form an eigenvector basis for \mathbb{R}^{2}. Thus the matrix, denoted by A, is diagonalizable. Let $S=\left(\begin{array}{cc}-1 & 1 \\ 2 & 1\end{array}\right), \Lambda=\left(\begin{array}{cc}-1 & 0 \\ 0 & 3\end{array}\right)$. Then,

$$
A=S \Lambda S^{-1}=\left(\begin{array}{cc}
-1 & 1 \\
2 & 1
\end{array}\right)\left(\begin{array}{cc}
-1 & 0 \\
0 & 3
\end{array}\right)\left(\begin{array}{cc}
-\frac{1}{3} & \frac{1}{3} \\
\frac{2}{3} & \frac{1}{3}
\end{array}\right)=\left(\begin{array}{cc}
\frac{5}{3} & \frac{4}{3} \\
\frac{8}{3} & \frac{1}{3}
\end{array}\right) .
$$

(b) an eigenvalue $-1+2 \mathrm{i}$ and corresponding eigenvector $\binom{1+\mathrm{i}}{3 \mathrm{i}}$.

Solution. Since the wanted matrix, denoted by A, is real, the complex conjugate of $-1+2 \mathrm{i}$, namely $-1-2 \mathrm{i}$, must also be an eigenvalue of A. Moreover, the complex conjugate of $\binom{1+\mathrm{i}}{3 \mathrm{i}}$, namely $\binom{1-\mathrm{i}}{-3 \mathrm{i}}$, must be an eigenvector corresponding to $-1-2 \mathrm{i}$. Since $\binom{1+\mathrm{i}}{3 \mathrm{i}},\binom{1-\mathrm{i}}{-3 \mathrm{i}}$ are linearly independent, A allows an eigenvector basis for \mathbb{C}^{2}.
Let $S=\left(\begin{array}{cc}1+\mathrm{i} & 1-\mathrm{i} \\ 3 \mathrm{i} & -3 \mathrm{i}\end{array}\right), \Lambda=\left(\begin{array}{cc}-1+2 \mathrm{i} & 0 \\ 0 & -1-2 \mathrm{i}\end{array}\right)$. Then,

$$
A=S \Lambda S^{-1}=\left(\begin{array}{cc}
1+\mathrm{i} & 1-\mathrm{i} \\
3 \mathrm{i} & -3 \mathrm{i}
\end{array}\right)\left(\begin{array}{cc}
-1+2 \mathrm{i} & 0 \\
0 & -1-2 \mathrm{i}
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{2} & -\frac{1}{6}-\frac{1}{6} \mathrm{i} \\
\frac{1}{2} & -\frac{1}{6}+\frac{1}{6} \mathrm{i}
\end{array}\right)=\left(\begin{array}{cc}
-3 & \frac{4}{3} \\
-6 & 1
\end{array}\right) .
$$

3. Show that λ is an eigenvalue of A if and only if λ is an eigenvalue of A^{T}.

Proof. If λ is an eigenvalue of A, then $\operatorname{det}(A-\lambda I)=0$. Thus,

$$
\operatorname{det}\left(A^{T}-\lambda I\right)=\operatorname{det}\left(A^{T}-\lambda I^{T}\right)=\operatorname{det}(A-\lambda I)^{T}=\operatorname{det}(A-\lambda I)=0 .
$$

This implies that λ is an eigenvalue of A^{T}.
4. Find the minimum and maximum value of the rational function $\frac{2 x^{2}+x y+3 x z+2 y^{2}+2 z^{2}}{x^{2}+y^{2}+z^{2}}$.

Solution. Let $\mathbf{v}=(x, y, z)^{T}$, then

$$
\frac{2 x^{2}+x y+3 x z+2 y^{2}+2 z^{2}}{x^{2}+y^{2}+z^{2}}=\frac{\mathbf{v}^{T} K \mathbf{v}}{\|\mathbf{v}\|^{2}}
$$

where $K=\left(\begin{array}{ccc}2 & \frac{1}{2} & \frac{3}{2} \\ \frac{1}{2} & 2 & 0 \\ \frac{3}{2} & 0 & 2\end{array}\right)$. By the optimization principles for eigenvalues,

$$
\max \left\{\left.\frac{\mathbf{v}^{T} K \mathbf{v}}{\|\mathbf{v}\|^{2}} \right\rvert\, \mathbf{v} \neq \mathbf{0}\right\}=\lambda_{1}, \quad \min \left\{\left.\frac{\mathbf{v}^{T} K \mathbf{v}}{\|\mathbf{v}\|^{2}} \right\rvert\, \mathbf{v} \neq \mathbf{0}\right\}=\lambda_{3}
$$

where λ_{1} and λ_{3} are respectively the largest and smallest eigenvalues of K. The characteristic equation of K is

$$
\begin{aligned}
\operatorname{det}(K-\lambda I) & =\operatorname{det}\left(\begin{array}{ccc}
2-\lambda & \frac{1}{2} & \frac{3}{2} \\
\frac{1}{2} & 2-\lambda & 0 \\
\frac{3}{2} & 0 & 2-\lambda
\end{array}\right) \\
& =\frac{3}{2} \operatorname{det}\left(\begin{array}{cc}
\frac{1}{2} & \frac{3}{2} \\
2-\lambda & 0
\end{array}\right)+(2-\lambda) \operatorname{det}\left(\begin{array}{cc}
2-\lambda & \frac{1}{2} \\
\frac{1}{2} & 2-\lambda
\end{array}\right) \\
& =\frac{3}{2}\left[0-\frac{3}{2}(2-\lambda)\right]+(2-\lambda)\left[(2-\lambda)^{2}-\left(\frac{1}{2}\right)^{2}\right] \\
& =-(\lambda-2)\left[(\lambda-2)^{2}-\frac{5}{2}\right] \\
& =-(\lambda-2)\left(\lambda-2-\sqrt{\frac{5}{2}}\right)\left(\lambda-2+\sqrt{\frac{5}{2}}\right)=0 .
\end{aligned}
$$

Therefore, $\lambda_{1}=2+\sqrt{\frac{5}{2}}, \lambda_{3}=2-\sqrt{\frac{5}{2}}$. So, the maximum value of the function is $2+\sqrt{\frac{5}{2}}$ and the minimum value of the function is $2-\sqrt{\frac{5}{2}}$.

