21-241: Matrix Algebra - Summer I, 2006
 Practice Exam 2

1. Let $\mathbf{v}_{1}=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right), \mathbf{v}_{3}=\left(\begin{array}{l}4 \\ 2 \\ 6\end{array}\right)$, and $\mathbf{w}=\left(\begin{array}{l}3 \\ 1 \\ 2\end{array}\right)$.
(a) Is \mathbf{w} in $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$? How many vectors are in $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$?
(b) How many vectors are in span $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$?
(c) Is \mathbf{w} in the subspace spanned by $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$? Why?

Solution.

(a) No. $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a set containing only three vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$. Apparently, \mathbf{w} equals none of these three, so $\mathbf{w} \notin\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$.
(b) span $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is the set containing ALL possible linear combinations of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$. Particularly, any scalar multiple of \mathbf{v}_{1}, say, $2 \mathbf{v}_{1}, 3 \mathbf{v}_{1}, 4 \mathbf{v}_{1}, \cdots$, are all in the span. This implies span $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ contains infinitely many vectors.
(c) To determine whether \mathbf{w} belongs to $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$, we are to look to write \mathbf{w} as a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$. For this purpose, we need to find three scalars c_{1}, c_{2}, c_{3}, such that $\mathbf{w}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}$. This amounts to solve the system $A \mathbf{c}=\mathbf{w}$ for $\mathbf{c}=\left(c_{1}, c_{2}, c_{3}\right)^{T}$, where matrix $A=\left(\mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{3}\right)$. Note that actually we only need to determine if this system allows a solution. Now apply Gaussian to reduce the augmented matrix in the echelon form:

$$
\left(\begin{array}{ccc|c}
1 & 2 & 4 & 3 \\
0 & 1 & 2 & 1 \\
-1 & 3 & 6 & 2
\end{array}\right) \xrightarrow{R_{3}+R_{1}}\left(\begin{array}{ccc|c}
1 & 2 & 4 & 3 \\
0 & 1 & 2 & 1 \\
0 & 5 & 10 & 5
\end{array}\right) \xrightarrow{R_{3}-5 R_{2}}\left(\begin{array}{ccc|c}
\left.\begin{array}{|ccc}
1 & 2 & 4
\end{array} \right\rvert\, \\
0 & \boxed{1} & 2 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

The bottom row doesn't lead to inconsistency, so the system allows a solution (actually has infinitely many). This shows that \mathbf{w} is in the subspace spanned by $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$.
2. Given subspaces H and K of a vector space V, the sum of H and K, written as $H+K$, is the set of all vectors in V that can be written as the sum of two vectors, one in H and the other in K; that is,

$$
H+K=\{\mathbf{w} \mid \mathbf{w}=\mathbf{u}+\mathbf{v} \text { for some } \mathbf{u} \in H \text { and some } \mathbf{v} \in K\}
$$

(a) Show that $H+K$ is subspace of V.
(b) Show that H is a subspace of $H+K$ and K is a subspace of $H+K$.

Proof.

(a) Since H and K are subspaces of V, the zero vector $\mathbf{0}$ has to belong to them both. Taking $\mathbf{u}=\mathbf{v}=\mathbf{0}$, we have $\mathbf{w}=\mathbf{0}+\mathbf{0}=\mathbf{0}$, which, by definition, belongs to $H+K$. Next, we are to show $H+K$ is closed under both addition and scalar multiplication. Suppose $\mathbf{w}_{1}, \mathbf{w}_{2}$ are two vectors in $H+K$. By definition, they can be written as

$$
\mathbf{w}_{1}=\mathbf{u}_{1}+\mathbf{v}_{1}, \quad \mathbf{w}_{2}=\mathbf{u}_{2}+\mathbf{v}_{2}, \quad \text { for some } \mathbf{u}_{1}, \mathbf{u}_{2} \in H \text { and some } \mathbf{v}_{1}, \mathbf{v}_{2} \in K .
$$

Hence,

$$
\mathbf{w}_{1}+\mathbf{w}_{2}=\left(\mathbf{u}_{1}+\mathbf{v}_{1}\right)+\left(\mathbf{u}_{2}+\mathbf{v}_{2}\right)=\left(\mathbf{u}_{1}+\mathbf{u}_{2}\right)+\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right),
$$

where, $\mathbf{u}_{1}+\mathbf{u}_{2} \in H$ because H is a subspace, thus closed under addition; and $\mathbf{v}_{1}+\mathbf{v}_{2} \in K$ similarly. This shows that $\mathbf{w}_{1}+\mathbf{w}_{2}$ can be written as the sum of two vectors, one in H and the other in K. So, again by definition, $\mathbf{w}_{1}+\mathbf{w}_{2} \in H+K$, namely, $H+K$ is closed under addition. For scalar multiplication, note that given scalar c,

$$
c \mathbf{w}_{1}=c\left(\mathbf{u}_{1}+\mathbf{v}_{1}\right)=c \mathbf{u}_{1}+c \mathbf{v}_{1}
$$

where $c \mathbf{u}_{1} \in H$ because H is closed under scalar multiplication; and $c \mathbf{v}_{1} \in K$ parallelly. Now that $c \mathbf{w}_{1}$ has been written as the sum of two vectors, one in H and the other in K, it's in $H+K$. That is, $H+K$ is closed under scalar multiplication. And we are done.
(b) Since H is a subspace of V, it's nonempty, closed under addition and scalar multiplication. We only need to show that H is a subset of $H+K$. This is derived from the fact that each vector in H can be written as the sum of itself, which belongs to H, and the zero vector, which belongs to K. A similar argument justifies K is a subspace of $H+K$, too.
3. Let \mathbf{x} and \mathbf{y} be linearly independent elements of a vector space V. Show that $\mathbf{u}=a \mathbf{x}+b \mathbf{y}$ and $\mathbf{v}=c \mathbf{x}+d \mathbf{y}$ are linearly independent if and only if $a d-b c \neq 0$. Is the entire collection $\mathbf{x}, \mathbf{y}, \mathbf{u}, \mathbf{v}$ linearly independent?
Proof. Let $A=(\mathbf{x ~ y}), B=(\mathbf{u} \mathbf{v}), C=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$, then

$$
A C=\left(\begin{array}{ll}
\mathbf{x} \mathbf{y}
\end{array}\right)\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)=\left(\begin{array}{ll}
a \mathbf{x}+b \mathbf{y} & c \mathbf{x}+d \mathbf{y}
\end{array}\right)=(\mathbf{u} \mathbf{v})=B
$$

Two key facts we'll use later are that \mathbf{u} and \mathbf{v} (or, \mathbf{x} and \mathbf{y}) are linearly independent if and only if the homogeneous system $B \mathbf{r}=\mathbf{0}$ (or, $A \mathbf{r}=\mathbf{0}$) allows only trivial solution, denoted by Fact 1 (or, Fact 2). Now slow down, carefully think of the following deduction process, and make sure you really understand each step involved.

$$
\begin{aligned}
& \mathbf{u}, \mathbf{v} \text { are linearly independent } \\
\Longleftrightarrow & \\
\Longleftrightarrow & \text { (by Fact } 1 \text {) } \\
\Longleftrightarrow(A C) \mathbf{0} \text { has only trivial solution } & \mathbf{0} \text { has only trivial solution }
\end{aligned} \quad \text { (since } A C=B \text {) } \quad \text { (by associativity) }
$$

The entire collection $\mathbf{x}, \mathbf{y}, \mathbf{u}, \mathbf{v}$ is linearly dependent, since we have four scalars, $a, b,-1,0$, not all zero, such that the linear combination $a \mathbf{x}+b \mathbf{y}+(-1) \mathbf{u}+0 \mathbf{v}=\mathbf{0}$.
4. Find bases for the column space (range) and null space (kernel) of the matrix $A=\left(\begin{array}{cccc}-2 & 4 & -2 & -4 \\ 2 & -6 & -3 & 1 \\ -3 & 8 & 2 & -3\end{array}\right)$.

Solution. To find the basis for column space, we need to find pivot column(s). To find the basis for null space, we need to find general solution to the homogeneous system $A \mathbf{x}=\mathbf{0}$. Both can be achieved
by reducing the matrix in the echelon form.

$$
\left(\begin{array}{cccc}
-2 & 4 & -2 & -4 \\
2 & -6 & -3 & 1 \\
-3 & 8 & 2 & -3
\end{array}\right) \xrightarrow[R_{3}-\frac{3}{2} R_{1}]{R_{2}+R_{1}}\left(\begin{array}{cccc}
-2 & 4 & -2 & -4 \\
0 & -2 & -5 & -3 \\
0 & 2 & 5 & 3
\end{array}\right) \xrightarrow{R_{3}+R_{2}}\left(\begin{array}{cccc}
\begin{array}{|c}
-2 \\
0
\end{array} & 4 & -2 & -4 \\
0 & \frac{-2}{-2} & -5 & -3 \\
0 & 0 & 0
\end{array}\right)
$$

We see that the first two columns are pivot columns, so the first two column of the ORIGINAL MATRIX A, namely, $\left\{(-2,2,-3)^{T},(4,-6,8)^{T}\right\}$, form a basis for $\operatorname{Col} A$. The last two columns are free, and we can easily read the general solution from the echelon form:

$$
x_{2}=-\frac{5}{2} x_{3}-\frac{3}{2} x_{4}, \quad x_{1}=2 x_{2}-x_{3}-2 x_{4}=-6 x_{3}-5 x_{4}, \quad x_{3}, x_{4} \text { free }
$$

Written in vector form,

$$
\mathbf{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
-6 x_{3}-5 x_{4} \\
-\frac{5}{2} x_{3}-\frac{3}{2} x_{4} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
-6 x_{3} \\
-\frac{5}{2} x_{3} \\
x_{3} \\
0
\end{array}\right)+\left(\begin{array}{c}
-5 x_{4} \\
-\frac{3}{2} x_{4} \\
0 \\
x_{4}
\end{array}\right)=x_{3}\left(\begin{array}{c}
-6 \\
\frac{5}{2} \\
1 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{c}
-5 \\
-\frac{3}{2} \\
0 \\
1
\end{array}\right)
$$

Thus, $\left\{\left(-6, \frac{5}{2}, 1,0\right)^{T},\left(-5, \frac{3}{2}, 0,1\right)^{T}\right\}$ form a basis for $\operatorname{Nul} A$.
5. Show that $\left\{\mathbf{u}_{1}=\binom{3}{-5}, \mathbf{u}_{2}=\binom{-4}{6}\right\}$ is a basis for \mathbb{R}^{2}. Let $\mathbf{x}=\binom{2}{-6}$. Find the coordinate vector for \mathbf{x} with respect to this basis.
Solution. First of all, \mathbf{u}_{1} and \mathbf{u}_{2} are linearly independent because they are not multiples of each other. Next, we are to characterize vectors in $\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$. Suppose vector $\mathbf{b} \in \mathbb{R}^{2}$ belongs to $\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$, then the linear system $A \mathbf{y}=\mathbf{b}$ is consistent, where matrix $A=\left(\begin{array}{ll}\mathbf{u}_{1} & \mathbf{u}_{2}\end{array}\right)$. Applying Gaussian to the augmented matrix, we get

$$
\left(\begin{array}{cc|c}
3 & -4 & b_{1} \\
-5 & 6 & b_{2}
\end{array}\right) \xrightarrow{R_{2}+\frac{5}{3} R_{1}}\left(\begin{array}{cc|c}
\boxed{3} & -4 & b_{1} \\
0 & \boxed{-\frac{2}{3}} & b_{2}+\frac{5}{3} b_{1}
\end{array}\right)
$$

The system has a pivot in each row, thus is always consistent for all possible $\mathbf{b} \in \mathbb{R}^{2}$. Therefore, $\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}=\mathbb{R}^{2}$, and $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ form a basis for \mathbb{R}^{2}. To find the coordinate vector for \mathbf{x}, we need find the solution to $A \mathbf{y}=\mathbf{x}$. Replacing b_{1}, b_{2} by $2,-6$ respectively in the echelon form we obtained above, we can write out the solution $\mathbf{y}=(6,4)^{T}$. This is to say, $\mathbf{x}=6 \mathbf{u}_{1}+4 \mathbf{u}_{2}$, so the coordinate vector for \mathbf{x} w.r.t $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is $(6,4)^{T}$.
6. Let V be an inner product space.
(a) Prove that $\langle\mathbf{x}, \mathbf{v}\rangle=0$ for all $\mathbf{v} \in V$ if and only if $\mathbf{x}=\mathbf{0}$.
(b) Prove that $\langle\mathbf{x}, \mathbf{v}\rangle=\langle\mathbf{y}, \mathbf{v}\rangle$ for all $\mathbf{v} \in V$ if and only if $\mathbf{x}=\mathbf{y}$.
(c) Let $\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}$ be a basis for V. Prove that $\left\langle\mathbf{x}, \mathbf{v}_{i}\right\rangle=\left\langle\mathbf{y}, \mathbf{v}_{i}\right\rangle, i=1, \cdots, n$, if and only if $\mathbf{x}=\mathbf{y}$.

Proof.
(a) Suppose $\langle\mathbf{x}, \mathbf{v}\rangle=0$ for all $\mathbf{v} \in V$. Simply let $\mathbf{v}=\mathbf{x}$ and we get $\langle\mathbf{x}, \mathbf{x}\rangle=0$, which implies $\mathbf{x}=0$.
(b) We reduce the equivalence as follows:

$$
\begin{aligned}
& \langle\mathbf{x}, \mathbf{v}\rangle=\langle\mathbf{y}, \mathbf{v}\rangle, \forall \mathbf{v} \in V \\
\Longleftrightarrow & \langle\mathbf{x}, \mathbf{v}\rangle-\langle\mathbf{y}, \mathbf{v}\rangle=0, \forall \mathbf{v} \in V \\
\Longleftrightarrow & \langle\mathbf{x}-\mathbf{y}, \mathbf{v}\rangle=0, \forall \mathbf{v} \in V \\
\Longleftrightarrow & \mathbf{x}-\mathbf{y}=\mathbf{0} \\
\Longleftrightarrow & \mathbf{x}=\mathbf{y}
\end{aligned}
$$

$$
\Longleftrightarrow\langle\mathbf{x}-\mathbf{y}, \mathbf{v}\rangle=0, \forall \mathbf{v} \in V \quad \text { (by bilinearity) }
$$

(c) If $\mathbf{x}=\mathbf{y}$, of course we have $\left\langle\mathbf{x}, \mathbf{v}_{i}\right\rangle=\left\langle\mathbf{y}, \mathbf{v}_{i}\right\rangle, i=1,2, \cdots, n$. Reversely, suppose $\left\langle\mathbf{x}, \mathbf{v}_{i}\right\rangle=\left\langle\mathbf{y}, \mathbf{v}_{i}\right\rangle$, $i=1, \cdots, n$. Since $\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}$ is a basis for V, any vector $\mathbf{v} \in V$ can be written as a linear combination of the n vectors, say, $\mathbf{v}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}$. Linearity of inner product implies

$$
\begin{aligned}
\langle\mathbf{x}, \mathbf{v}\rangle & =\left\langle\mathbf{x}, c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}\right\rangle & & \\
& =c_{1}\left\langle\mathbf{x}, \mathbf{v}_{1}\right\rangle+c_{2}\left\langle\mathbf{x}, \mathbf{v}_{2}\right\rangle+\cdots+c_{n}\left\langle\mathbf{x}, \mathbf{v}_{n}\right\rangle & & \text { (by linearity) } \\
& =c_{1}\left\langle\mathbf{y}, \mathbf{v}_{1}\right\rangle+c_{2}\left\langle\mathbf{y}, \mathbf{v}_{2}\right\rangle+\cdots+c_{n}\left\langle\mathbf{y}, \mathbf{v}_{n}\right\rangle & & \text { (since } \left.\left\langle\mathbf{x}, \mathbf{v}_{i}\right\rangle=\left\langle\mathbf{y}, \mathbf{v}_{i}\right\rangle\right) \\
& =\left\langle\mathbf{y}, c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}\right\rangle & & \text { (by linearity) } \\
& =\langle\mathbf{y}, \mathbf{v}\rangle & &
\end{aligned}
$$

(by part (a))

Since this equality holds for all $\mathbf{v} \in V$, part (b) tells us that $\mathbf{x}=\mathbf{y}$.
7. Prove that

$$
\left(a_{1}+a_{2}+\cdots+a_{n}\right)^{2} \leqslant n\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}\right)
$$

for any real numbers a_{1}, \cdots, a_{n}. When does equality hold?
Proof. Let $\mathbf{u}=\left(a_{1}, a_{2}, \cdots, a_{n}\right)^{T}, \mathbf{v}=(1,1, \cdots, 1)^{T}$. Then,

$$
\mathbf{u} \cdot \mathbf{v}=a_{1}+a_{2}+\cdots+a_{n}, \quad\|\mathbf{u}\|^{2}=a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}, \quad\|\mathbf{v}\|^{2}=n .
$$

By Cauchy-Schwarz inequality, $|\mathbf{u} \cdot \mathbf{v}| \leqslant\|\mathbf{u}\|\|\mathbf{v}\|$. Squaring both sides, we obtain

$$
\left(a_{1}+a_{2}+\cdots+a_{n}\right)^{2} \leqslant n\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}\right) .
$$

This completes the proof.
8. Verify the formula $\|\mathbf{v}\|=\max \left\{\left|v_{1}+v_{2}\right|,\left|v_{1}-v_{2}\right|\right\}$ defines a norm on \mathbb{R}^{2}. Establish the equivalence between this norm and the usual Euclidean norm $\|\cdot\|_{2}$.
Proof. We need verify positivity, homogeneity and triangle inequality one by one.
Positivity: Since $\left|v_{1}+v_{2}\right| \geqslant 0,\left|v_{1}-v_{2}\right| \geqslant 0$, it's clear that $\|\mathbf{v}\| \geqslant 0$. Moreover, $\|\mathbf{v}\|=0$ if and only if $\left|v_{1}+v_{2}\right|=\left|v_{1}-v_{2}\right|=0$, that is, $v_{1}=v_{2}=0$, namely $\mathbf{v}=\mathbf{0}$.
Homogeneity: $\|c \mathbf{v}\|=\max \left\{\left|c v_{1}+c v_{2}\right|,\left|c v_{1}-c v_{2}\right|\right\}=|c| \max \left\{\left|v_{1}+v_{2}\right|,\left|v_{1}-v_{2}\right|\right\}=|c|\|\mathbf{v}\|$.
Triangle Inequality: We need use triangle inequality for absolute value

$$
|a+b| \leqslant|a|+|b|,
$$

and the fact (denoted by Fact 3) that "the maximum of sums is less than or equal to the sum of maximums",

$$
\max \left\{a_{1}+a_{2}, b_{1}+b_{2}\right\} \leqslant \max \left\{a_{1}, b_{1}\right\}+\max \left\{a_{2}, b_{2}\right\} .
$$

Both inequalities are usual. Having them, we can obtain the triangle inequality for norm $\|\cdot\|$:

$$
\begin{aligned}
\|\mathbf{u}+\mathbf{v}\| & =\max \left\{\left|\left(u_{1}+v_{1}\right)+\left(u_{2}+v_{2}\right)\right|,\left|\left(u_{1}+v_{1}\right)-\left(u_{2}+v_{2}\right)\right|\right\} & & \text { (by definition) } \\
& \leqslant \max \left\{\left|u_{1}+u_{2}\right|+\left|v_{1}+v_{2}\right|,\left|u_{1}-u_{2}\right|+\left|v_{1}-v_{2}\right|\right\} & & \text { (by triangle inequality) } \\
& \leqslant \max \left\{\left|u_{1}+u_{2}\right|,\left|u_{1}-u_{2}\right|\right\}+\max \left\{\left|v_{1}+v_{2}\right|,\left|v_{1}-v_{2}\right|\right\} & & \text { (by Fact 3) } \\
& =\|\mathbf{u}\|+\|\mathbf{v}\| . & & \text { (by definition) }
\end{aligned}
$$

We just directly proved $\|\cdot\|$ defines a norm. If we think in another way, it can be verified that

$$
\|\mathbf{v}\|=\max \left\{\left|v_{1}+v_{2}\right|,\left|v_{1}-v_{2}\right|\right\}=\left|v_{1}\right|+\left|v_{2}\right|=\|\mathbf{v}\|_{1}
$$

namely, $\|\cdot\|$ is actually the 1 -norm $\|\cdot\|_{1}$. The proof is not difficult and left to you.
To show the equivalence of two norms, we need to find two POSITIVE constants m, M, such that

$$
m\|\mathbf{v}\|_{2} \leqslant\|\mathbf{v}\| \leqslant M\|\mathbf{v}\|_{2}, \quad \text { for all } \mathbf{v} \in \mathbb{R}^{2}
$$

You may already find it's convenient to compare squares of norms when Euclidean norm is involved. So, let's square:

$$
\begin{aligned}
\|\mathbf{v}\|^{2} & =\left(\max \left\{\left|v_{1}+v_{2}\right|,\left|v_{1}-v_{2}\right|\right\}\right)^{2}=\max \left\{\left|v_{1}+v_{2}\right|^{2},\left|v_{1}-v_{2}\right|^{2}\right\} \\
& =\max \left\{v_{1}^{2}+v_{2}^{2}+2 v_{1} v_{2}, v_{1}^{2}+v_{2}^{2}-2 v_{1} v_{2}\right\}=v_{1}^{2}+v_{2}^{2}+\max \left\{2 v_{1} v_{2},-2 v_{1} v_{2}\right\} \\
& =v_{1}^{2}+v_{2}^{2}+\left|2 v_{1} v_{2}\right| \geqslant v_{1}^{2}+v_{2}^{2}=\|\mathbf{v}\|_{2}^{2} .
\end{aligned}
$$

This allows us letting $m=1$. On the other hand, since $\left|2 v_{1} v_{2}\right| \leqslant v_{1}^{2}+v_{2}^{2}$,

$$
\|\mathbf{v}\|^{2}=v_{1}^{2}+v_{2}^{2}+\left|2 v_{1} v_{2}\right| \leqslant 2\left(v_{1}^{2}+v_{2}^{2}\right)=2\|\mathbf{v}\|_{2}^{2}
$$

Therefore, we can choose $M=\sqrt{2}$. Thus we complete the proof.
9. Prove the matrix $A=\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & -2 \\ 1 & -2 & 14\end{array}\right)$ is positive definite. Find its Cholesky factorization.

Proof. We apply Gaussian to show the matrix has all positive pivots and find the $L D L^{T}$ factorization.

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & -2 \\
1 & -2 & 14
\end{array}\right) \xrightarrow[R_{3}-R_{1}]{R_{2}-R_{1}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & -3 \\
0 & -3 & 13
\end{array}\right) \xrightarrow{R_{3}+3 R_{2}}\left(\begin{array}{ccc}
\hline 1 & 1 & 1 \\
0 & 1 & -3 \\
0 & 0 & \boxed{4}
\end{array}\right) \\
& \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \xrightarrow[R_{3}+R_{1}]{R_{2}+R_{1}}\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right) \xrightarrow{R_{3}-3 R_{2}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & -3 & 1
\end{array}\right)=L
\end{aligned}
$$

Now, we see the matrix is regular and has all positive pivots $1,1,4$, thus is positive definite. Let $D=$ $\operatorname{diag}(1,1,4), S=\operatorname{diag}(1,1,2)$, then we obtain the Cholesky factorization

$$
A=L D L^{T}=L S^{2} L^{T}=L S S^{T} L^{T}=M M^{T}
$$

where $M=L S=\left(\begin{array}{ccc}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & -3 & 2\end{array}\right)$.

