21-241: Matrix Algebra — Summer I, 2006
Practice Exam 2

1 2 4 3
1. Let vi = 0 ,vo=1[ 1 |, vy=]| 2 J],andw= | 1
-1 3 6 2

(a) Is w in {vy, vg, v3}7 How many vectors are in {vy, vg, v3}?
(b) How many vectors are in span {vy, va, v3}?

(c) Is w in the subspace spanned by {vi,va,v3}? Why?
SOLUTION.

(a) No. {v1,va,v3} is a set containing only three vectors vi, vo, vs. Apparently, w equals none of
these three, so w ¢ {vi,va,vs}.

(b) span{vi,vg,vs} is the set containing ALL possible linear combinations of vy, v, vs. Particularly,
any scalar multiple of vy, say, 2vi,3vy,4vy, -+, are all in the span. This implies span {vy, vo, v}
contains infinitely many vectors.

(c) To determine whether w belongs to span{vi,ve,vs}, we are to look to write w as a linear
combination of vi, vo, v3. For this purpose, we need to find three scalars ci, cg, c3, such that
W = ¢1V] + c2va + c3vs. This amounts to solve the system Ac = w for ¢ = (¢q, ca, 03)T, where
matrix A = (v vy v3). Note that actually we only need to determine if this system allows a
solution. Now apply Gaussian to reduce the augmented matrix in the echelon form:

3

S 2 413
1] ===1 0 211
5 0 010

o=

The bottom row doesn’t lead to inconsistency, so the system allows a solution (actually has
infinitely many). This shows that w is in the subspace spanned by {vi,va,vs}. O

2. Given subspaces H and K of a vector space V', the sum of H and K, written as H + K, is the set of
all vectors in V that can be written as the sum of two vectors, one in H and the other in K; that is,

H+ K = {w|w =u+v for some u € H and some v € K}

(a) Show that H + K is subspace of V.
(b) Show that H is a subspace of H + K and K is a subspace of H + K.

PRrOOF.

(a) Since H and K are subspaces of V, the zero vector 0 has to belong to them both. Taking
u=v =0, we have w = 0+ 0 = 0, which, by definition, belongs to H + K. Next, we are to show
H + K is closed under both addition and scalar multiplication. Suppose w1, wo are two vectors
in H + K. By definition, they can be written as

Wi =u; +Vi, Wy=1uy+ vy, forsomeu;,us € H and some vq,vy € K.

Hence,
w1 +wo = (u; +vy) + (ug +va) = (ug + ug) + (v + va),
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where, u; + us € H because H is a subspace, thus closed under addition; and v + vy € K
similarly. This shows that w; 4+ w9 can be written as the sum of two vectors, one in H and the
other in K. So, again by definition, w; + wo € H 4+ K, namely, H + K is closed under addition.
For scalar multiplication, note that given scalar c,

ewy = c(ug + v1) = cug + cvy,

where cu; € H because H is closed under scalar multiplication; and c¢vy € K parallelly. Now
that cwy has been written as the sum of two vectors, one in H and the other in K, it’sin H + K.
That is, H + K is closed under scalar multiplication. And we are done.

(b) Since H is a subspace of V, it’s nonempty, closed under addition and scalar multiplication. We
only need to show that H is a subset of H + K. This is derived from the fact that each vector
in H can be written as the sum of itself, which belongs to H, and the zero vector, which belongs
to K. A similar argument justifies K is a subspace of H 4+ K, too. O

3. Let x and y be linearly independent elements of a vector space V. Show that u = ax + by and
v = ¢x + dy are linearly independent if and only if ad — bc # 0. Is the entire collection x, y, u,v
linearly independent?

PrROOF. Let A=(xy),B=(uv),C= (Z ;),then

ACz(xy)(Z Cci):(ax—i-by cx+dy)=(uv)=B.

Two key facts we’ll use later are that u and v (or, x and y) are linearly independent if and only if
the homogeneous system Br = 0 (or, Ar = 0) allows only trivial solution, denoted by Fact 1 (or,
Fact 2). Now slow down, carefully think of the following deduction process, and make sure you really
understand each step involved.

u, v are linearly independent
by Fact 1)
since AC = B)

by associativity)

<= Br = 0 has only trivial solution
<= (AC)r = 0 has only trivial solution
<= A(Cr) = 0 has only trivial solution

—~ ~ ~

<=Cr = 0 has only trivial solution by Fact 2, replace r by Cr)
<=(C is nonsingular
<= detC #0

<—ad —bc#0

The entire collection x, y, u,v is linearly dependent, since we have four scalars, a, b, —1, 0, not all zero,
such that the linear combination ax + by + (—1)u+ 0v = 0. O

-2 4 -2 -4

4. Find bases for the column space (range) and null space (kernel) of the matrix A = 2 -6 -3 1
-3 8 2 -3
SOLUTION. To find the basis for column space, we need to find pivot column(s). To find the basis for
null space, we need to find general solution to the homogeneous system Ax = 0. Both can be achieved
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by reducing the matrix in the echelon form.

-2 4 -2 —4 -2 4 -2 —4 4 -2 —4
2 6 -3 1 |- o -2 5 -3 | B ~5 -3
-3 8 2 -3 ) fs3h 0 2 5 3 0 0 0 0

We see that the first two columns are pivot columns, so the first two column of the ORIGINAL
MATRIX A, namely, {(—2,2,-3)T, (4,—6,8)T}, form a basis for Col A. The last two columns are
free, and we can easily read the general solution from the echelon form:

9 3
To = —ixg — §$4, 1 = 229 — 23 — 2x4 = —6x3 — by, 3,74 free

Written in vector form,

I —61‘3 — 51‘4 —61‘3 —51‘4 —6 -5
5 3 5 3 5 3
| T2 | | T2 %4 | | T2 —a2t4 | _ 2 2
x T3 I3 T3 * 0 3 1 T 0
T4 T4 0 Ty 0 1
Thus, {(—6, %, 1,0)T, (-5, %,O, 1)T} form a basis for Nul A. O

5. Show that{ul = ( _35 ) ,Ug = ( _64 )} is a basis for R%. Let x = < —26 ) Find the coordinate
vector for x with respect to this basis.

SOLUTION. First of all, u; and us are linearly independent because they are not multiples of each
other. Next, we are to characterize vectors in span {uj,us}. Suppose vector b € R? belongs to
span {uj, uz}, then the linear system Ay = b is consistent, where matrix A = (u; ug). Applying
Gaussian to the augmented matrix, we get
b1
by + 3b1 >

3 —4|b Ro+3R; —4
_—

-5 6 | by 0 |-
The system has a pivot in each row, thus is always consistent for all possible b € R2. Therefore,
span {uj,uz} = R2, and {uj,uy} form a basis for R2. To find the coordinate vector for x, we need
find the solution to Ay = x. Replacing b1, by by 2, —6 respectively in the echelon form we obtained
above, we can write out the solution y = (6,4)”. This is to say, x = 6u; + 4us, so the coordinate
vector for x w.r.t {uj,us} is (6,4)7. O

win

6. Let V be an inner product space.

(a) Prove that (x,v) =0 for all v € V if and only if x = 0.
(b) Prove that (x,v) = (y,v) for all v € V if and only if x =y.
(c¢) Let vq,---,v, be a basis for V. Prove that (x,v;) = (y,v;), i =1,--- ,n, if and only if x = y.

PRroor.

(a) Suppose (x,v) =0 for all v € V. Simply let v = x and we get (x,x) = 0, which implies x = 0.
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(b) We reduce the equivalence as follows:

—=x-y,v)=0VveV (by bilinearity)
<—x—-y=0 (by part (a))
=x=y
(c¢) If x =y, of course we have (x,v;) = (y,v;), i = 1,2,--- ,n. Reversely, suppose (x,v;) = (y, v;),
1 =1,---,n. Since vy,---,Vvy, is a basis for V, any vector v € V can be written as a linear

combination of the n vectors, say, v = c1vi +cova+- - -+ ¢, Vv,. Linearity of inner product implies

(x,Vv) = (X,c1V1 + cava + - - + V)

= c1(x,v1) + ca(X, Vo) + - + cp (X, Vy) (by linearity)
= <Y7 V1> + 62<y7 V2> + 4+ Cn<Ya Vn> (Since (Xv Vi> = <ya VZ>)
= (y,c1vi +cava+ -+ Vi) (by linearity)
= <y7 V>
Since this equality holds for all v € V, part (b) tells us that x = y. O

7. Prove that
(a1 +as+ - +an)? <n(af +a3+ - +a2)

for any real numbers a1, --- ,a,. When does equality hold?
PrOOF. Let u= (ay,as, - ,a,)", v=(1,1,---,1)T. Then,
u-v=ayta+---+a, |uf=d+da3+---+d, |v|*=n.

By Cauchy-Schwarz inequality, |u - v| < ||lul| ||v]|. Squaring both sides, we obtain

(a1 +az+- +an)? <nlaf +a3+ - +a).

This completes the proof. ]
8. Verify the formula ||v| = max{|v; + va|, |v; — v2|} defines a norm on R?. Establish the equivalence
between this norm and the usual Euclidean norm || - ||2.

PROOF. We need verify positivity, homogeneity and triangle inequality one by one.

Positivity: Since |v; +v2| > 0, |[vg —v2| > 0, it’s clear that ||v|| > 0. Moreover, ||v|| = 0 if and only
if |vg 4+ vo| = |vg — va| = 0, that is, v1 = vo = 0, namely v = 0.

Homogeneity: ||cv| = max{|cv; + cva|, |cv1 — cva|} = |e| max{|vy + val, |[v1 — va|} = |c] ||V]]-

Triangle Inequality: We need use triangle inequality for absolute value
la+ 0] < |a| + 0],

and the fact (denoted by Fact 3) that “the maximum of sums is less than or equal to the sum of
maximums”,
max{a; + az, b1 + by} < max{aj,b;} + max{asg, ba}.
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Both inequalities are usual. Having them, we can obtain the triangle inequality for norm || - ||:

[u+v| =max{|(u1 + v1) + (u2 + ve)|, [(u1 + v1) — (u2 + v2)[}
< max{|uy + ua| + |v1 + val, |ur — ug| + |v1 — vo|}

by definition)
by triangle inequality)

< max{|u + ual, |u; — uz2|} + max{|v; + val,|vi — vel|} by Fact 3)

~—~ Y~ N

= [Ju|| + ||v]] by definition)
We just directly proved || - || defines a norm. If we think in another way, it can be verified that
V]l = max{[v1 + val, [v1 — va} = |va| + |va| = [[V]1,
namely, || - || is actually the 1-norm || - ||;. The proof is not difficult and left to you.

To show the equivalence of two norms, we need to find two POSITIVE constants m, M, such that
m|[v]2 < ||v]| < M||v|j2, for all v e RZ%

You may already find it’s convenient to compare squares of norms when Euclidean norm is involved.
So, let’s square:

IV = (max{]or + s, |or = v2]})* = max{lor +vaf?, |or —vaf*}
= max{v? 4+ v3 + 2v1v9, v} + V3 — 20102} = v} + v + max{2vve, —2v1v2}

= i + vy + [20109] > v + 03 = ||v[l3.
This allows us letting m = 1. On the other hand, since [2vivs| < v? + v3,

IVI[? = vf + 03 + [2v102] < 2(0F +03) = 2|v]3.

Therefore, we can choose M = v/2. Thus we complete the proof. O
1 1 1
9. Prove the matrix A= | 1 2 —2 | is positive definite. Find its Cholesky factorization.
1 -2 14

PRrROOF. We apply Gaussian to show the matrix has all positive pivots and find the LDL™ factorization.

11 1 11 1 1] 1 1
12 -2 |l 1 g | BBy ] -3
1 -2 14 ) " o -3 13 0 0
100 100 1 0 0
010 | ZE (110 | 2201 1 0]=L
00 1) ™ {1 01 1 -3 1

Now, we see the matrix is regular and has all positive pivots 1,1,4, thus is positive definite. Let D =
diag(1,1,4), S = diag(1,1,2), then we obtain the Cholesky factorization

A=LDL" = LS?L" = LSSTLT = MM,

). O

0
1

where M = LS = ( A

=
NOO



