
21-241: Matrix Algebra – Summer I, 2006

Practice Exam 1

1. If A =
(

1 −2
−2 5

)
and AB =

( −1 2 −1
6 −9 3

)
, determine the first and second columns of B.

Solution. Since A has size 2×2 and AB has size 2×3, B has size 2×3. Suppose B =
(

a c ∗
b d ∗

)
.

By the rule of matrix multiplication,

AB =
(

a− 2b c− 2d ∗
−2a + 5b −2c + 5d ∗

)
.

Therefore, we have the following linear system:

a− 2b = −1
−2a + 5b = 6

c− 2d = 2
−2c + 5d = −9

Solving the system, we get a = 7, b = 4, c = −8, d = −5. So the first and second columns of B are(
7
4

)
and

( −8
−5

)
.

2. Two matrices A and B are said to be similar, denoted A ∼ B, if there exists an invertible matrix P
such that B = P−1AP . Prove:
(a) A ∼ A.
(b) If A ∼ B, then B ∼ A.
(c) If A ∼ B and B ∼ C, then A ∼ C.

Proof. (a) Taking P as the identity matrix I, we have A = I−1AI. So A ∼ A.

(b) Since A ∼ B, there exists an invertible matrix P such that B = P−1AP . Notice that Q = P−1 is
also invertible, and A = Q−1BQ. So B ∼ A.

(c) Since A ∼ B and B ∼ C, there exist invertible matrices P and Q such that B = P−1AP ,
C = Q−1BQ. Notice that PQ is also invertible, and C = Q−1BQ = Q−1P−1APQ = (PQ)−1A(PQ).
So A ∼ C.

3. (a) Explain why the inverse of a permutation matrix equals its transpose: P−1 = P T .
(b) If A−1 = AT , is A necessarily a permutation matrix? Give a proof or a counterexample to support
your conclusion.

Solution. (a) A permutation matrix is the product of a sequence of interchange elementary matrices.
Suppose P = E1E2 · · ·En, each Ei interchanges some two rows of the identity matrix. It’s obvious
that Ei is symmetric, so ET

i = Ei. Also, we have E2
i = I because applying the same interchange trice

returns to the identity. Therefore,

PP T = (E1E2 · · ·En)(E1E2 · · ·En)T = (E1E2 · · ·En)(ET
n ET

n−1 · · ·ET
1 )

= (E1E2 · · ·En)(EnEn−1 · · ·E1) = E1 · · ·En−1E
2
nEn−1 · · ·E1

= E1 · · ·En−1En−1 · · ·E1 = · · · = I,
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which implies P−1 = P T .

(b) No. Let A =
(

0 −1
−1 0

)
. Then A−1 = AT = A. But A is not a permutation matrix, because it

can’t be obtained by interchanging rows of the identity matrix. (If we look at −1 as a 1 × 1 matrix,
it’s just an even simpler counterexample.)

4. Suppose A, B, and X are n× n matrices with A, X, and A−AX invertible, and suppose

(A−AX)−1 = X−1B. (1)

(a) Is B invertible? Explain why.
(b) Solve (1) for X. If you need to invert a matrix, explain why that matrix is invertible.

Solution. (a) Yes. From (1) we get B = X(A− AX)−1, the product of two invertible matrices X
and (A−AX)−1. So B is invertible.

(b) Since (A−AX)−1, X−1 and B are invertible, from (1) we have

A−AX = ((A−AX)−1)−1 = (X−1B)−1 = B−1X,

or,
A = (A + B−1)X. (2)

Since X is invertible, A + B−1 = AX−1, which is the product of two invertible matrices A and X−1.
Therefore, A + B−1 is invertible, and thus, from (2), we have X = (A + B−1)−1A.

5. Find the determinant of the following Vandermonde matrix:

A =




1 1 1 1
a b c d
a2 b2 c2 d2

a3 b3 c3 d3




Solution. We reduce AT to an upper triangular matrix by elementary row operations.

AT =




1 a a2 a3

1 b b2 b3

1 c c2 c3

1 d d2 d3




R2−R1

R3−R1−−−−→
R4−R1




1 a a2 a3

0 b− a b2 − a2 b3 − a3

0 c− a c2 − a2 c3 − a3

0 d− a d2 − a2 d3 − a3




R2/(b−a)

R3/(c−a)−−−−−−→
R4/(d−a)




1 a a2 a3

0 1 b + a b2 + ba + a2

0 1 c + a c2 + ca + a2

0 1 d + a d2 + da + a2




R3−R2−−−−→
R4−R2




1 a a2 a3

0 1 b + a b2 + ba + a2

0 0 c− b c2 − b2 + ca− ba
0 0 d− b d2 − b2 + da− ba




R3/(c−b)−−−−−−→
R4/(d−b)




1 a a2 a3

0 1 b + a b2 + ba + a2

0 0 1 c + b + a
0 0 1 d + b + a




R4−R3−−−−→




1 a a2 a3

0 1 b + a b2 + ba + a2

0 0 1 c + b + a
0 0 0 d− c




Therefore, det A = det AT = (b− a)(c− a)(d− a)(c− b)(d− b)(d− c).
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6. When does the follow system have (i) a unique solution? (ii) no solution? (iii) infinitely many solutions?

x + 3y − 2z = 2
y + z = −5

x + 2y − 3z = a

−2x− 8y + 4z = b

Solution. We reduce the augmented matrix to echelon form.



1 3 −2 2
0 1 1 −5
1 2 −3 a
−2 −8 4 b




R3−R1−−−−−→
R4+2R1




1 3 −2 2
0 1 1 −5
0 −1 −1 a− 2
0 −2 0 b + 4




R3+R2−−−−−→
R4+2R2




1 3 −2 2
0 1 1 −5
0 0 0 a− 7
0 0 2 b− 6




R3↔R4−−−−−→




1 3 −2 2
0 1 1 −5
0 0 2 b− 6
0 0 0 a− 7




Now we see each column contains a pivot, so the system can’t have infinitely many solutions. When
a − 7 = 0, or a = 7, the system is consistent and has a unique solution. When a 6= 7, the system is
inconsistent and has no solution.

7. If A =
(

1 2 3
4 5 6

)
, show that K = AAT is well-defined, symmetric matrix. Find the LDLT

factorization of K.

Solution. A has size 2 × 3, and AT has size 3 × 2. So K = AAT is well-defined. K is symmetric
because KT = (AAT )T = (AT )T AT = AAT = K. Symmetry can also be seen by direct computation:

K = AAT =
(

1 2 3
4 5 6

) 


1 4
2 5
3 6


 =

(
14 32
32 77

)

To find the LDLT factorization, we apply Gaussian method to K:
(

14 32
32 77

)
R2−(16/7)R1−−−−−−−−→

(
14 32
0 27/7

)
= U,

(
1 0
0 1

)
−→

(
1 0

16/7 1

)
= L,

and D =
(

14 0
0 27/7

)
, the diagonal part of U . Thus the LDLT factorization of K is

(
14 32
32 77

)
=

(
1 0

16/7 1

)(
14 0
0 27/7

)(
1 0

16/7 1

)T

.
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8. Use the Gauss-Jordan method to find the inverse of the following complex matrix:



0 1 −i
i 0 −1
−1 i 1




Solution.



0 1 −i 1 0 0
i 0 −1 0 1 0
−1 i 1 0 0 1


 R1↔R3−−−−−→



−1 i 1 0 0 1
i 0 −1 0 1 0
0 1 −i 1 0 0


 R1×(−1)−−−−−→




1 −i −1 0 0 −1
i 0 −1 0 1 0
0 1 −i 1 0 0




R2−iR1−−−−−→



1 −i −1 0 0 −1
0 −1 i− 1 0 1 i
0 1 −i 1 0 0


 R2×(−1)−−−−−→




1 −i −1 0 0 −1
0 1 1− i 0 −1 −i
0 1 −i 1 0 0




R1+iR2−−−−−→
R3−R2




1 0 i 0 −i 0
0 1 1− i 0 −1 −i
0 0 −1 1 1 i


 R3×(−1)−−−−−→




1 0 i 0 −i 0
0 1 1− i 0 −1 −i
0 0 1 −1 −1 −i




R1−iR3−−−−−−−−→
R2−(1−i)R3




1 0 0 i 0 −1
0 1 0 1− i −i 1
0 0 1 −1 −1 −i




So, 


0 1 −i
i 0 −1
−1 i 1



−1

=




i 0 −1
1− i −i 1
−1 −1 −i


 .
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