21-241: Matrix Algebra - Summer I, 2006 Exam 3 Solutions

Note: For all problems in this exam (except No. 3) use the Euclidean dot product and norm on \mathbb{R}^{n}.

1. (18 points) True or False. (Don't need to justify)
(a) If \mathbf{x} is not in a subspace W, then $\mathbf{x}-\operatorname{proj}_{W} \mathbf{x}$ is not zero.

Solution. True. If $\mathbf{x}-\operatorname{proj}_{W} \mathbf{x}=\mathbf{0}$, then $\mathbf{x}=\operatorname{proj}_{W} \mathbf{x} \in W$.
(b) A matrix whose rows form an orthonormal basis for \mathbb{R}^{n} is an orthogonal matrix.

Solution. True. If A 's rows form an orthonormal basis, so do A^{T}, s columns. Thus A^{T} is an orthogonal matrix, which implies $\left(A^{T}\right)^{T}=\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$. So $A^{T}=A^{-1}, A$ is orthogonal.
(c) An indefinite quadratic form is either positive semidefinite or negative semidefinite.

Solution. False. An indefinite quadratic form has both positive and negative pivots. It's neither positive semidefinite nor negative semidefinite.
(d) \mathbb{R} has only one orthonormal basis.

Solution. False. \mathbb{R} has two orthonormal bases, 1 and -1 .
(e) A least-squares solution of $A \mathbf{x}=\mathbf{b}$ is a vector $\hat{\mathbf{x}}$ such that $\|\mathbf{b}-A \mathbf{x}\| \leqslant\|\mathbf{b}-A \hat{\mathbf{x}}\|$ for all \mathbf{x} in \mathbb{R}^{n}. Solution. False. The inequality sign should be " \geqslant ".
(f) Let V be an inner product space and W be an subspace of V, then $W=\left(W^{\perp}\right)^{\perp}$.

Solution. True. $\left(W^{\perp}\right)^{\perp}=\left\{\mathbf{v} \in V \mid\langle\mathbf{v}, \mathbf{w}\rangle=0, \forall \mathbf{w} \in W^{\perp}\right\} \supseteq W$, and $\operatorname{dim}\left(W^{\perp}\right)^{\perp}=\operatorname{dim} V-$ $\operatorname{dim} W^{\perp}=\operatorname{dim} W$, So $\left(W^{\perp}\right)^{\perp}=W$.
2. (18 points) For the quadratic function $p(x, y, z)=-x^{2}-5 y^{2}-4 z^{2}-2 x y-2 y z+2 x z+2 x+4 z+5$, determine if there is a maximum. If so, find the maximizer and the maximum value of the function.
Solution. We consider $-p(x, y, z)=x^{2}+5 y^{2}+4 z^{2}+2 x y+2 y z-2 x z-2 x-4 z-5$ instead. $-p$ can be written as $-p(\mathbf{u})=\mathbf{u}^{T} K \mathbf{u}-2 \mathbf{u}^{T} \mathbf{f}+c$, where

$$
\mathbf{u}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right), \quad K=\left(\begin{array}{ccc}
1 & 1 & -1 \\
1 & 5 & 1 \\
-1 & 1 & 4
\end{array}\right), \quad \quad \mathbf{f}=\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right), \quad c=-5 .
$$

Apply Gaussian to the augmented matrix ($K \mid \mathbf{f}$):

$$
\left(\begin{array}{ccc|c}
1 & 1 & -1 & 1 \\
1 & 5 & 1 & 0 \\
-1 & 1 & 4 & 2
\end{array}\right) \xrightarrow[R_{3}+R_{1}]{R_{2}-R_{1}}\left(\begin{array}{ccc|c}
1 & 1 & -1 & 1 \\
0 & 4 & 2 & -1 \\
0 & 2 & 3 & 3
\end{array}\right) \xrightarrow{R_{3}-\frac{1}{2} R_{2}}\left(\begin{array}{ccc|c}
\hline 1 & 1 & -1 & 1 \\
0 & \boxed{4} & 2 & -1 \\
0 & 0 & 2 & \frac{7}{2}
\end{array}\right)
$$

We see that K has all positive pivots, so $-p$ has a minimum, namely p has a maximum. By back substitution, the maximizer is $\mathbf{u}^{*}=\left(\frac{31}{8},-\frac{9}{8}, \frac{7}{4}\right)^{T}$. The maximum value is $p\left(\mathbf{u}^{*}\right)=-\left(c-\left(\mathbf{u}^{*}\right)^{T} \mathbf{f}\right)=\frac{99}{8}$. Note that here you don't have to compute $p\left(\mathbf{u}^{*}\right)$ using its definition, which may involve a lot of computational difficulties.
3. (16 points) Construct an orthonormal basis of \mathbb{R}^{2} for the non-standard inner product $\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{T}\left(\begin{array}{ll}3 & 0 \\ 0 & 5\end{array}\right) \mathbf{y}$. Solution. The given inner product is $\langle\mathbf{x}, \mathbf{y}\rangle=\left(x_{1} x_{2}\right)\left(\begin{array}{ll}3 & 0 \\ 0 & 5\end{array}\right)\binom{y_{1}}{y_{2}}=3 x_{1} y_{1}+5 x_{2} y_{2}$. The orthonormal basis is not unique. We construct one starting with $\mathbf{v}_{1}=(1,0)^{T}, \mathbf{v}_{2}=(0,1)^{T}$. By Gram-Schmidt formula,

$$
\begin{array}{ll}
\mathbf{w}_{1}=\mathbf{v}_{1}=\binom{1}{0} & \left\|\mathbf{w}_{1}\right\|=\sqrt{3} \\
\mathbf{w}_{2}=\mathbf{v}_{2}-\frac{\left\langle\mathbf{v}_{2}, \mathbf{w}_{1}\right\rangle}{\left\|\mathbf{w}_{1}\right\|^{2}} \mathbf{w}_{1}=\binom{0}{1}-\frac{0}{3}\binom{1}{0}=\binom{0}{1}, & \left\|\mathbf{w}_{2}\right\|=\sqrt{5}
\end{array}
$$

After normalization, we get an orthonormal basis $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ as follows:

$$
\mathbf{u}_{1}=\frac{\mathbf{w}_{1}}{\left\|\mathbf{w}_{1}\right\|}=\binom{\frac{1}{\sqrt{3}}}{0}, \quad \quad \mathbf{u}_{2}=\frac{\mathbf{w}_{2}}{\left\|\mathbf{w}_{2}\right\|}=\binom{0}{\frac{1}{\sqrt{5}}}
$$

4. (15 points) Show that the matrix $\left(\begin{array}{ccc}3 & 0 & 2 \\ 0 & 4 & 1 \\ -1 & 0 & 1\end{array}\right)$ is nonsingular. Find its $Q R$ factorization.

Solution. Denote the matrix by A. Since $\operatorname{det} A=12-(-8)=20, A$ is nonsingular. Denote the columns of A by $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$. By Gram-Schmidt formula,

$$
\begin{array}{ll}
\mathbf{w}_{1}=\mathbf{v}_{1}=\left(\begin{array}{c}
3 \\
0 \\
-1
\end{array}\right), & \left\|\mathbf{w}_{1}\right\|=\sqrt{10} \\
\mathbf{w}_{2}=\mathbf{v}_{2}-\frac{\left\langle\mathbf{v}_{2}, \mathbf{w}_{1}\right\rangle}{\left\|\mathbf{w}_{1}\right\|^{2}} \mathbf{w}_{1}=\left(\begin{array}{c}
0 \\
4 \\
0
\end{array}\right)-\frac{0}{10}\left(\begin{array}{c}
3 \\
0 \\
-1
\end{array}\right)=\left(\begin{array}{c}
0 \\
4 \\
0
\end{array}\right), & \left\|\mathbf{w}_{2}\right\|=4, \\
\mathbf{w}_{3}=\mathbf{v}_{3}-\frac{\left\langle\mathbf{v}_{3}, \mathbf{w}_{1}\right\rangle}{\left\|\mathbf{w}_{1}\right\|^{2}} \mathbf{w}_{1}-\frac{\left\langle\mathbf{v}_{3}, \mathbf{w}_{2}\right\rangle}{\left\|\mathbf{w}_{2}\right\|^{2}} \mathbf{w}_{2}=\left(\begin{array}{c}
2 \\
1 \\
1
\end{array}\right)-\frac{5}{10}\left(\begin{array}{c}
3 \\
0 \\
-1
\end{array}\right)-\frac{4}{16}\left(\begin{array}{l}
0 \\
4 \\
0
\end{array}\right)=\left(\begin{array}{c}
\frac{1}{2} \\
0 \\
\frac{3}{2}
\end{array}\right), & \left\|\mathbf{w}_{3}\right\|=\frac{\sqrt{10}}{2} .
\end{array}
$$

After normalization, we get an orthonormal basis:

$$
\mathbf{u}_{1}=\frac{\mathbf{w}_{1}}{\left\|\mathbf{w}_{1}\right\|}=\left(\begin{array}{c}
\frac{3}{\sqrt{10}} \\
0 \\
-\frac{1}{\sqrt{10}}
\end{array}\right), \quad \mathbf{u}_{2}=\frac{\mathbf{w}_{2}}{\left\|\mathbf{w}_{2}\right\|}=\left(\begin{array}{c}
0 \\
1 \\
0
\end{array}\right), \quad \mathbf{u}_{3}=\frac{\mathbf{w}_{3}}{\left\|\mathbf{w}_{3}\right\|}=\left(\begin{array}{c}
\frac{1}{\sqrt{10}} \\
0 \\
\frac{3}{\sqrt{10}}
\end{array}\right)
$$

Combine $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ into one matrix to construct the orthogonal matrix $Q=\left(\begin{array}{ccc}\frac{3}{\sqrt{10}} & 0 & \frac{1}{\sqrt{10}} \\ 0 & 1 & 0 \\ -\frac{1}{\sqrt{10}} & 0 & \frac{3}{\sqrt{10}}\end{array}\right)$. Then the upper triangular matrix

$$
R=Q^{T} A=\left(\begin{array}{ccc}
\frac{3}{\sqrt{10}} & 0 & \frac{1}{\sqrt{10}} \\
0 & 1 & 0 \\
-\frac{1}{\sqrt{10}} & 0 & \frac{3}{\sqrt{10}}
\end{array}\right)\left(\begin{array}{ccc}
3 & 0 & 2 \\
0 & 4 & 1 \\
-1 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
\sqrt{10} & 0 & \frac{5}{\sqrt{10}} \\
0 & 4 & 1 \\
0 & 0 & \frac{5}{\sqrt{10}}
\end{array}\right)
$$

5. (18 points) (a) Describe all least-squares solutions of the system

$$
\begin{aligned}
& x+2 y=2 \\
& x+2 y=3 \\
& x+2 y=4
\end{aligned}
$$

Solution. The coefficient matrix $A=\left(\begin{array}{ll}1 & 2 \\ 1 & 2 \\ 1 & 2\end{array}\right)$, the right hand sides $\mathbf{b}=\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right)$. The least-squares solutions of the system $A \mathbf{x}=\mathbf{b}$ are solutions to the system $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$. Apply Gaussian,

$$
A^{T}(A \mid \mathbf{b})=\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2
\end{array}\right)\left(\begin{array}{cc|c}
1 & 2 & 2 \\
1 & 2 & 3 \\
1 & 2 & 4
\end{array}\right)=\left(\begin{array}{cc|c}
3 & 6 & 9 \\
6 & 12 & 18
\end{array}\right) \xrightarrow{R_{2}-2 R_{1}}\left(\begin{array}{ll|l}
3 & 6 & 9 \\
0 & 0 & 0
\end{array}\right)
$$

The general solution is

$$
\hat{\mathbf{x}}=\binom{\hat{x}}{\hat{y}}=\binom{3-2 \hat{y}}{\hat{y}}=\binom{3}{0}+\hat{y}\binom{-2}{1}
$$

which form all least-squares solutions to the system $A \mathbf{x}=\mathbf{b}$.
(b) Let $\mathbf{b}=(2,3,4)^{T}$. Find the vector $\mathbf{v} \in \operatorname{span}\left\{(1,1,1)^{T}\right\}$ such that $\|\mathbf{v}-\mathbf{b}\|$ is minimized.

Solution. Let $\mathbf{w}=(1,1,1)^{T}$. The closest point is the orthogonal projection of \mathbf{b} onto the subspace $W=\operatorname{span}\{\mathbf{w}\}$. By the orthogonal projection formula,

$$
\operatorname{proj}_{W} \mathbf{b}=\frac{\langle\mathbf{b}, \mathbf{w}\rangle}{\|\mathbf{w}\|^{2}} \mathbf{w}=\frac{9}{3}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
3 \\
3 \\
3
\end{array}\right)
$$

6. (15 points) Prove that if $\|Q \mathbf{x}\|=\|\mathbf{x}\|$ for all $\mathbf{x} \in \mathbb{R}^{n}$, then Q is an orthogonal matrix.

Proof. Since $\|Q \mathbf{x}\|=\|\mathbf{x}\|$, we know that for all $\mathbf{x} \in \mathbb{R}^{n}$,

$$
p(\mathbf{x}) \doteq \sum_{i=1}^{n} x_{i}^{2}=\|\mathbf{x}\|^{2}=\|Q \mathbf{x}\|^{2}=(Q \mathbf{x})^{T}(Q \mathbf{x})=\mathbf{x}^{T} Q^{T} Q \mathbf{x}
$$

Now $p(\mathbf{x})$ is a quadratic form, its associated symmetric matrix K is the identity matrix. (Why?) Since $Q^{T} Q$ is also symmetric, we can conclude $Q^{T} Q=K=I$, which implies that Q is an orthogonal matrix.

Bonus. A square matrix A satisfies $A^{T}=-A$. Show that
(a) (5 points) $I-A$ is always invertible. (2 points for demonstration by an example)

Proof. Suppose \mathbf{x} satisfies $(I-A) \mathbf{x}=\mathbf{0}$. Then $A \mathbf{x}=I \mathbf{x}=\mathbf{x}$. Thus,

$$
\mathbf{x}^{T} \mathbf{x}=(A \mathbf{x})^{T} \mathbf{x}=\mathbf{x}^{T} A^{T} \mathbf{x}=\mathbf{x}^{T}(-A) \mathbf{x}=-\mathbf{x}^{T}(A \mathbf{x})=-\mathbf{x}^{T} \mathbf{x}
$$

This shows $\|\mathbf{x}\|^{2}=\mathbf{x}^{T} \mathbf{x}=0$, namely $\mathbf{x}=0$. Therefore, the homogeneous system $(I-A) \mathbf{x}=\mathbf{0}$ has only the trivial solution. So $I-A$ is invertible.
(b) (5 points) $Q=(I-A)^{-1}(I+A)$ is an orthogonal matrix. (2 points for demonstration by an example)
Proof. We are to show $Q Q^{T}=I$.

$$
\begin{aligned}
Q Q^{T} & =(I-A)^{-1}(I+A)\left((I-A)^{-1}(I+A)\right)^{T} \\
& =(I-A)^{-1}(I+A)(I+A)^{T}\left((I-A)^{-1}\right)^{T} \\
& =(I-A)^{-1}(I+A)\left(I+A^{T}\right)\left((I-A)^{T}\right)^{-1} \\
& =(I-A)^{-1}(I+A)(I-A)\left(I-A^{T}\right)^{-1} \\
& =(I-A)^{-1}\left(I-A^{2}\right)(I+A)^{-1} \\
& =(I-A)^{-1}(I-A)(I+A)(I+A)^{-1} \\
& =I .
\end{aligned}
$$

The third and the second equations from the last are the key steps, showing that $I+A$ and $I-A$ are commutative under matrix multiplication. Therefore Q is an orthogonal matrix.

