21-241: Matrix Algebra – Summer I, 2006 Exam 3 Solutions

Note: For all problems in this exam (except No. 3) use the Euclidean dot product and norm on \mathbb{R}^n .

- 1. (18 points) True or False. (Don't need to justify)
 - (a) If \mathbf{x} is not in a subspace W, then $\mathbf{x} \operatorname{proj}_W \mathbf{x}$ is not zero. SOLUTION. **True**. If $\mathbf{x} - \operatorname{proj}_W \mathbf{x} = \mathbf{0}$, then $\mathbf{x} = \operatorname{proj}_W \mathbf{x} \in W$.
 - (b) A matrix whose rows form an orthonormal basis for \mathbb{R}^n is an orthogonal matrix. SOLUTION. **True**. If A's rows form an orthonormal basis, so do A^T 's columns. Thus A^T is an orthogonal matrix, which implies $(A^T)^T = (A^T)^{-1} = (A^{-1})^T$. So $A^T = A^{-1}$, A is orthogonal.
 - (c) An indefinite quadratic form is either positive semidefinite or negative semidefinite. SOLUTION. False. An indefinite quadratic form has both positive and negative pivots. It's neither positive semidefinite nor negative semidefinite.
 - (d) ℝ has only one orthonormal basis.
 SOLUTION. False. ℝ has two orthonormal bases, 1 and -1.
 - (e) A least-squares solution of $A\mathbf{x} = \mathbf{b}$ is a vector $\hat{\mathbf{x}}$ such that $\|\mathbf{b} A\mathbf{x}\| \leq \|\mathbf{b} A\hat{\mathbf{x}}\|$ for all \mathbf{x} in \mathbb{R}^n . SOLUTION. **False**. The inequality sign should be " \geq ".
 - (f) Let V be an inner product space and W be an subspace of V, then $W = (W^{\perp})^{\perp}$. SOLUTION. **True**. $(W^{\perp})^{\perp} = \{\mathbf{v} \in V | \langle \mathbf{v}, \mathbf{w} \rangle = 0, \forall \mathbf{w} \in W^{\perp} \} \supseteq W$, and $\dim(W^{\perp})^{\perp} = \dim V - \dim W^{\perp} = \dim W$, So $(W^{\perp})^{\perp} = W$.
- 2. (18 points) For the quadratic function $p(x, y, z) = -x^2 5y^2 4z^2 2xy 2yz + 2xz + 2x + 4z + 5$, determine if there is a maximum. If so, find the maximizer and the maximum value of the function. SOLUTION. We consider $-p(x, y, z) = x^2 + 5y^2 + 4z^2 + 2xy + 2yz - 2xz - 2x - 4z - 5$ instead. -p can be written as $-p(\mathbf{u}) = \mathbf{u}^T K \mathbf{u} - 2\mathbf{u}^T \mathbf{f} + c$, where

$$\mathbf{u} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \qquad K = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 5 & 1 \\ -1 & 1 & 4 \end{pmatrix}, \qquad \mathbf{f} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, \qquad c = -5$$

Apply Gaussian to the augmented matrix $(K|\mathbf{f})$:

$$\begin{pmatrix} 1 & 1 & -1 & | & 1 \\ 1 & 5 & 1 & | & 0 \\ -1 & 1 & 4 & | & 2 \end{pmatrix} \xrightarrow{R_2 - R_1} \begin{pmatrix} 1 & 1 & -1 & | & 1 \\ 0 & 4 & 2 & | & -1 \\ 0 & 2 & 3 & | & 3 \end{pmatrix} \xrightarrow{R_3 - \frac{1}{2}R_2} \begin{pmatrix} |1| & 1 & -1 & | & 1 \\ 0 & |4| & 2 & | & -1 \\ 0 & 0 & |2| & | & \frac{7}{2} \end{pmatrix}$$

We see that K has all positive pivots, so -p has a minimum, namely p has a maximum. By back substitution, the maximizer is $\mathbf{u}^* = (\frac{31}{8}, -\frac{9}{8}, \frac{7}{4})^T$. The maximum value is $p(\mathbf{u}^*) = -(c - (\mathbf{u}^*)^T \mathbf{f}) = \frac{99}{8}$. Note that here you don't have to compute $p(\mathbf{u}^*)$ using its definition, which may involve a lot of computational difficulties.

3. (16 points) Construct an orthonormal basis of \mathbb{R}^2 for the non-standard inner product $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \begin{pmatrix} 3 & 0 \\ 0 & 5 \end{pmatrix} \mathbf{y}$.

SOLUTION. The given inner product is $\langle \mathbf{x}, \mathbf{y} \rangle = (x_1 x_2) \begin{pmatrix} 3 & 0 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = 3x_1y_1 + 5x_2y_2$. The orthonormal basis is not unique. We construct one starting with $\mathbf{v}_1 = (1, 0)^T$, $\mathbf{v}_2 = (0, 1)^T$. By Gram-Schmidt formula,

$$\mathbf{w}_1 = \mathbf{v}_1 = \begin{pmatrix} 1\\0 \end{pmatrix}, \qquad \qquad \|\mathbf{w}_1\| = \sqrt{3},$$
$$\mathbf{w}_2 = \mathbf{v}_2 - \frac{\langle \mathbf{v}_2, \mathbf{w}_1 \rangle}{\|\mathbf{w}_1\|^2} \mathbf{w}_1 = \begin{pmatrix} 0\\1 \end{pmatrix} - \frac{0}{3} \begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} 0\\1 \end{pmatrix}, \qquad \qquad \|\mathbf{w}_2\| = \sqrt{5}.$$

After normalization, we get an orthonormal basis $\{\mathbf{u}_1, \mathbf{u}_2\}$ as follows:

. .

$$\mathbf{u}_1 = \frac{\mathbf{w}_1}{\|\mathbf{w}_1\|} = \begin{pmatrix} \frac{1}{\sqrt{3}} \\ 0 \end{pmatrix}, \qquad \qquad \mathbf{u}_2 = \frac{\mathbf{w}_2}{\|\mathbf{w}_2\|} = \begin{pmatrix} 0 \\ \frac{1}{\sqrt{5}} \end{pmatrix}.$$

4. (15 points) Show that the matrix $\begin{pmatrix} 3 & 0 & 2 \\ 0 & 4 & 1 \\ -1 & 0 & 1 \end{pmatrix}$ is nonsingular. Find its QR factorization.

SOLUTION. Denote the matrix by A. Since det A = 12 - (-8) = 20, A is nonsingular. Denote the columns of A by $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$. By Gram-Schmidt formula,

$$\mathbf{w}_{1} = \mathbf{v}_{1} = \begin{pmatrix} 3 \\ 0 \\ -1 \end{pmatrix}, \qquad \|\mathbf{w}_{1}\| = \sqrt{10}, \\ \mathbf{w}_{2} = \mathbf{v}_{2} - \frac{\langle \mathbf{v}_{2}, \mathbf{w}_{1} \rangle}{\|\mathbf{w}_{1}\|^{2}} \mathbf{w}_{1} = \begin{pmatrix} 0 \\ 4 \\ 0 \end{pmatrix} - \frac{0}{10} \begin{pmatrix} 3 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 4 \\ 0 \end{pmatrix}, \qquad \|\mathbf{w}_{2}\| = 4, \\ \mathbf{w}_{3} = \mathbf{v}_{3} - \frac{\langle \mathbf{v}_{3}, \mathbf{w}_{1} \rangle}{\|\mathbf{w}_{1}\|^{2}} \mathbf{w}_{1} - \frac{\langle \mathbf{v}_{3}, \mathbf{w}_{2} \rangle}{\|\mathbf{w}_{2}\|^{2}} \mathbf{w}_{2} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} - \frac{5}{10} \begin{pmatrix} 3 \\ 0 \\ -1 \end{pmatrix} - \frac{4}{16} \begin{pmatrix} 0 \\ 4 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ 0 \\ \frac{3}{2} \end{pmatrix}, \qquad \|\mathbf{w}_{3}\| = \frac{\sqrt{10}}{2}.$$

After normalization, we get an orthonormal basis:

$$\mathbf{u}_{1} = \frac{\mathbf{w}_{1}}{\|\mathbf{w}_{1}\|} = \begin{pmatrix} \frac{3}{\sqrt{10}} \\ 0 \\ -\frac{1}{\sqrt{10}} \end{pmatrix}, \qquad \mathbf{u}_{2} = \frac{\mathbf{w}_{2}}{\|\mathbf{w}_{2}\|} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \qquad \mathbf{u}_{3} = \frac{\mathbf{w}_{3}}{\|\mathbf{w}_{3}\|} = \begin{pmatrix} \frac{1}{\sqrt{10}} \\ 0 \\ \frac{3}{\sqrt{10}} \end{pmatrix}.$$

Combine $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ into one matrix to construct the orthogonal matrix $Q = \begin{pmatrix} \frac{3}{\sqrt{10}} & 0 & \frac{1}{\sqrt{10}} \\ 0 & 1 & 0 \\ -\frac{1}{\sqrt{10}} & 0 & \frac{3}{\sqrt{10}} \end{pmatrix}$. Then the upper triangular matrix

$$R = Q^T A = \begin{pmatrix} \frac{3}{\sqrt{10}} & 0 & \frac{1}{\sqrt{10}} \\ 0 & 1 & 0 \\ -\frac{1}{\sqrt{10}} & 0 & \frac{3}{\sqrt{10}} \end{pmatrix} \begin{pmatrix} 3 & 0 & 2 \\ 0 & 4 & 1 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{10} & 0 & \frac{5}{\sqrt{10}} \\ 0 & 4 & 1 \\ 0 & 0 & \frac{5}{\sqrt{10}} \end{pmatrix}.$$

5. (18 points) (a) Describe all least-squares solutions of the system

$$x + 2y = 2$$
$$x + 2y = 3$$
$$x + 2y = 4$$

SOLUTION. The coefficient matrix $A = \begin{pmatrix} 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{pmatrix}$, the right hand sides $\mathbf{b} = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$. The least-squares

solutions of the system $A\mathbf{x} = \mathbf{b}$ are solutions to the system $A^T A \mathbf{x} = A^T \mathbf{b}$. Apply Gaussian,

$$A^{T}(A|\mathbf{b}) = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & | & 2 \\ 1 & 2 & | & 3 \\ 1 & 2 & | & 4 \end{pmatrix} = \begin{pmatrix} 3 & 6 & | & 9 \\ 6 & 12 & | & 18 \end{pmatrix} \xrightarrow{R_{2}-2R_{1}} \begin{pmatrix} 3 & 6 & | & 9 \\ 0 & 0 & | & 0 \end{pmatrix}$$

The general solution is

$$\hat{\mathbf{x}} = \begin{pmatrix} \hat{x} \\ \hat{y} \end{pmatrix} = \begin{pmatrix} 3 - 2\hat{y} \\ \hat{y} \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \end{pmatrix} + \hat{y} \begin{pmatrix} -2 \\ 1 \end{pmatrix},$$

which form all least-squares solutions to the system $A\mathbf{x} = \mathbf{b}$.

(b) Let $\mathbf{b} = (2, 3, 4)^T$. Find the vector $\mathbf{v} \in \text{span}\{(1, 1, 1)^T\}$ such that $\|\mathbf{v} - \mathbf{b}\|$ is minimized.

SOLUTION. Let $\mathbf{w} = (1, 1, 1)^T$. The closest point is the orthogonal projection of **b** onto the subspace $W = \text{span} \{\mathbf{w}\}$. By the orthogonal projection formula,

$$\operatorname{proj}_{W} \mathbf{b} = \frac{\langle \mathbf{b}, \mathbf{w} \rangle}{\|\mathbf{w}\|^{2}} \mathbf{w} = \frac{9}{3} \begin{pmatrix} 1\\1\\1 \end{pmatrix} = \begin{pmatrix} 3\\3\\3 \end{pmatrix}.$$

6. (15 points) Prove that if $||Q\mathbf{x}|| = ||\mathbf{x}||$ for all $\mathbf{x} \in \mathbb{R}^n$, then Q is an orthogonal matrix. PROOF. Since $||Q\mathbf{x}|| = ||\mathbf{x}||$, we know that for all $\mathbf{x} \in \mathbb{R}^n$,

$$p(\mathbf{x}) \doteq \sum_{i=1}^{n} x_i^2 = \|\mathbf{x}\|^2 = \|Q\mathbf{x}\|^2 = (Q\mathbf{x})^T (Q\mathbf{x}) = \mathbf{x}^T Q^T Q\mathbf{x}.$$

Now $p(\mathbf{x})$ is a quadratic form, its associated symmetric matrix K is the identity matrix. (Why?) Since $Q^T Q$ is also symmetric, we can conclude $Q^T Q = K = I$, which implies that Q is an orthogonal matrix.

Bonus. A square matrix A satisfies $A^T = -A$. Show that

(a) (5 points) I - A is always invertible. (2 points for demonstration by an example) PROOF. Suppose **x** satisfies $(I - A)\mathbf{x} = \mathbf{0}$. Then $A\mathbf{x} = I\mathbf{x} = \mathbf{x}$. Thus,

$$\mathbf{x}^T \mathbf{x} = (A\mathbf{x})^T \mathbf{x} = \mathbf{x}^T A^T \mathbf{x} = \mathbf{x}^T (-A)\mathbf{x} = -\mathbf{x}^T (A\mathbf{x}) = -\mathbf{x}^T \mathbf{x}.$$

This shows $\|\mathbf{x}\|^2 = \mathbf{x}^T \mathbf{x} = 0$, namely $\mathbf{x} = 0$. Therefore, the homogeneous system $(I - A)\mathbf{x} = \mathbf{0}$ has only the trivial solution. So I - A is invertible.

(b) (5 points) $Q = (I - A)^{-1}(I + A)$ is an orthogonal matrix. (2 points for demonstration by an example)

PROOF. We are to show $QQ^T = I$.

$$QQ^{T} = (I - A)^{-1}(I + A)((I - A)^{-1}(I + A))^{T}$$

= $(I - A)^{-1}(I + A)(I + A)^{T}((I - A)^{-1})^{T}$
= $(I - A)^{-1}(I + A)(I + A^{T})((I - A)^{T})^{-1}$
= $(I - A)^{-1}(I + A)(I - A)(I - A^{T})^{-1}$
= $(I - A)^{-1}(I - A^{2})(I + A)^{-1}$
= $(I - A)^{-1}(I - A)(I + A)(I + A)^{-1}$
= $I.$

The third and the second equations from the last are the key steps, showing that I + A and I - A are commutative under matrix multiplication. Therefore Q is an orthogonal matrix.