
21-241: Matrix Algebra – Summer I, 2006

Exam 3 Solutions

Note: For all problems in this exam (except No. 3) use the Euclidean dot product and norm on Rn.

1. (18 points) True or False. (Don’t need to justify)

(a) If x is not in a subspace W , then x− projWx is not zero.
Solution. True. If x− projWx = 0, then x = projWx ∈ W .

(b) A matrix whose rows form an orthonormal basis for Rn is an orthogonal matrix.
Solution. True. If A’s rows form an orthonormal basis, so do AT ’s columns. Thus AT is an
orthogonal matrix, which implies (AT )T = (AT )−1 = (A−1)T . So AT = A−1, A is orthogonal.

(c) An indefinite quadratic form is either positive semidefinite or negative semidefinite.
Solution. False. An indefinite quadratic form has both positive and negative pivots. It’s
neither positive semidefinite nor negative semidefinite.

(d) R has only one orthonormal basis.
Solution. False. R has two orthonormal bases, 1 and −1.

(e) A least-squares solution of Ax = b is a vector x̂ such that ‖b−Ax‖ 6 ‖b−Ax̂‖ for all x in Rn.
Solution. False. The inequality sign should be “>”.

(f) Let V be an inner product space and W be an subspace of V , then W = (W⊥)⊥.
Solution. True. (W⊥)⊥ = {v ∈ V |〈v,w〉 = 0,∀w ∈ W⊥} ⊇ W , and dim(W⊥)⊥ = dim V −
dimW⊥ = dim W , So (W⊥)⊥ = W .

2. (18 points) For the quadratic function p (x, y, z) = −x2 − 5y2 − 4z2 − 2xy − 2yz + 2xz + 2x + 4z + 5,
determine if there is a maximum. If so, find the maximizer and the maximum value of the function.

Solution. We consider −p (x, y, z) = x2 + 5y2 + 4z2 + 2xy + 2yz − 2xz − 2x − 4z − 5 instead. −p
can be written as −p(u) = uT Ku− 2uT f + c, where

u =




x
y
z


 , K =




1 1 −1
1 5 1
−1 1 4


 , f =




1
0
2


 , c = −5.

Apply Gaussian to the augmented matrix (K|f):



1 1 −1 1
1 5 1 0
−1 1 4 2


 R2−R1−−−−→

R3+R1




1 1 −1 1
0 4 2 −1
0 2 3 3


 R3− 1

2
R2−−−−−→




1 1 −1 1
0 4 2 −1
0 0 2 7

2




We see that K has all positive pivots, so −p has a minimum, namely p has a maximum. By back
substitution, the maximizer is u∗ = (31

8 ,−9
8 , 7

4)T . The maximum value is p(u∗) = −(c− (u∗)T f) = 99
8 .

Note that here you don’t have to compute p(u∗) using its definition, which may involve a lot of
computational difficulties.
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3. (16 points) Construct an orthonormal basis of R2 for the non-standard inner product 〈x,y〉 = xT

(
3 0
0 5

)
y.

Solution. The given inner product is 〈x,y〉 = (x1 x2)
(

3 0
0 5

)(
y1

y2

)
= 3x1y1+5x2y2. The orthonor-

mal basis is not unique. We construct one starting with v1 = (1, 0)T , v2 = (0, 1)T . By Gram-Schmidt
formula,

w1 = v1 =
(

1
0

)
, ‖w1‖ =

√
3,

w2 = v2 − 〈v2,w1〉
‖w1‖2

w1 =
(

0
1

)
− 0

3

(
1
0

)
=

(
0
1

)
, ‖w2‖ =

√
5.

After normalization, we get an orthonormal basis {u1,u2} as follows:

u1 =
w1

‖w1‖ =

(
1√
3

0

)
, u2 =

w2

‖w2‖ =

(
0
1√
5

)
.

4. (15 points) Show that the matrix




3 0 2
0 4 1
−1 0 1


 is nonsingular. Find its QR factorization.

Solution. Denote the matrix by A. Since det A = 12 − (−8) = 20, A is nonsingular. Denote the
columns of A by v1,v2,v3. By Gram-Schmidt formula,

w1 = v1 =




3
0
−1


 , ‖w1‖ =

√
10,

w2 = v2 − 〈v2,w1〉
‖w1‖2

w1 =




0
4
0


− 0

10




3
0
−1


 =




0
4
0


 , ‖w2‖ = 4,

w3 = v3 − 〈v3,w1〉
‖w1‖2

w1 − 〈v3,w2〉
‖w2‖2

w2 =




2
1
1


− 5

10




3
0
−1


− 4

16




0
4
0


 =




1
2
0
3
2


 , ‖w3‖ =

√
10
2

.

After normalization, we get an orthonormal basis:

u1 =
w1

‖w1‖ =




3√
10

0
− 1√

10


 , u2 =

w2

‖w2‖ =




0
1
0


 , u3 =

w3

‖w3‖ =




1√
10

0
3√
10


 .

Combine u1,u2,u3 into one matrix to construct the orthogonal matrix Q =




3√
10

0 1√
10

0 1 0
− 1√

10
0 3√

10


. Then

the upper triangular matrix

R = QT A =




3√
10

0 1√
10

0 1 0
− 1√

10
0 3√

10







3 0 2
0 4 1
−1 0 1







√
10 0 5√

10

0 4 1
0 0 5√

10


 .
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5. (18 points) (a) Describe all least-squares solutions of the system

x + 2y = 2
x + 2y = 3
x + 2y = 4

Solution. The coefficient matrix A =




1 2
1 2
1 2


, the right hand sides b =




2
3
4


. The least-squares

solutions of the system Ax = b are solutions to the system AT Ax = ATb. Apply Gaussian,

AT (A|b) =
(

1 1 1
2 2 2

) 


1 2 2
1 2 3
1 2 4


 =

(
3 6 9
6 12 18

)
R2−2R1−−−−−→

(
3 6 9
0 0 0

)
.

The general solution is

x̂ =
(

x̂
ŷ

)
=

(
3− 2ŷ

ŷ

)
=

(
3
0

)
+ ŷ

(−2
1

)
,

which form all least-squares solutions to the system Ax = b.

(b) Let b = (2, 3, 4)T . Find the vector v ∈ span {(1, 1, 1)T } such that ‖v− b‖ is minimized.

Solution. Let w = (1, 1, 1)T . The closest point is the orthogonal projection of b onto the subspace
W = span {w}. By the orthogonal projection formula,

projWb =
〈b,w〉
‖w‖2

w =
9
3




1
1
1


 =




3
3
3


 .

6. (15 points) Prove that if ‖Qx‖ = ‖x‖ for all x ∈ Rn, then Q is an orthogonal matrix.

Proof. Since ‖Qx‖ = ‖x‖, we know that for all x ∈ Rn,

p (x) .=
n∑

i=1

x2
i = ‖x‖2 = ‖Qx‖2 = (Qx)T (Qx) = xT QT Qx.

Now p (x) is a quadratic form, its associated symmetric matrix K is the identity matrix. (Why?)
Since QT Q is also symmetric, we can conclude QT Q = K = I, which implies that Q is an orthogonal
matrix.

Bonus. A square matrix A satisfies AT = −A. Show that

(a) (5 points) I −A is always invertible. (2 points for demonstration by an example)
Proof. Suppose x satisfies (I −A)x = 0. Then Ax = Ix = x. Thus,

xTx = (Ax)Tx = xT ATx = xT (−A)x = −xT (Ax) = −xTx.

This shows ‖x‖2 = xTx = 0, namely x = 0. Therefore, the homogeneous system (I − A)x = 0
has only the trivial solution. So I −A is invertible.
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(b) (5 points) Q = (I − A)−1(I + A) is an orthogonal matrix. (2 points for demonstration by an
example)
Proof. We are to show QQT = I.

QQT = (I −A)−1(I + A)((I −A)−1(I + A))T

= (I −A)−1(I + A)(I + A)T ((I −A)−1)T

= (I −A)−1(I + A)(I + AT )((I −A)T )−1

= (I −A)−1(I + A)(I −A)(I −AT )−1

= (I −A)−1(I −A2)(I + A)−1

= (I −A)−1(I −A)(I + A)(I + A)−1

= I.

The third and the second equations from the last are the key steps, showing that I +A and I−A
are commutative under matrix multiplication. Therefore Q is an orthogonal matrix.
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