21-241: Matrix Algebra - Summer I, 2006 Exam 2 Solutions

1. (18 points) True or False. (Don't need to justify)
(a) The set of all vectors of the form $\left(\begin{array}{c}3 a+b \\ 4 \\ a-5 b\end{array}\right)$, where a, b represent arbitrary real numbers, is a vector space.
Solution. False. The zero vector 0 doesn't belong to the set.
(b) \mathbb{R}^{2} is a subspace of \mathbb{R}^{3}.

Solution. False. \mathbb{R}^{2} is not a subset of \mathbb{R}^{3}.
(c) If U is the echelon form of A, then $\operatorname{Col} U=\operatorname{Col} A$.

Solution. False. A simple counter-example: $A=\binom{1}{1}, U=\binom{1}{0}$.
(d) The kernel of an $m \times n$ matrix is in \mathbb{R}^{m}.

Solution. False. The kernel of an $m \times n$ matrix is in \mathbb{R}^{n}, while the range is in \mathbb{R}^{m}.
(e) A positive definite quadratic form q satisfies $q(\mathbf{x})>0$ for all \mathbf{x} in \mathbb{R}^{n}.

Solution. False. $q(\mathbf{0})=0$.
(f) If A is a square matrix, $\mathbf{u} \in \operatorname{Col} A, \mathbf{v} \in \operatorname{ker} A$, then $\mathbf{u} \perp \mathbf{v}$.

Solution. False. For example, $A=\left(\begin{array}{ll}1 & -1 \\ 1 & -1\end{array}\right), \mathbf{u}=\binom{1}{1} \in \operatorname{Col} A, \mathbf{v}=\binom{2}{2} \in \operatorname{ker} A$. But $\mathbf{u} \cdot \mathbf{v} \neq 0$, so, $\mathbf{u} \nsucceq \mathbf{v}$.
2. (15 points) Find the value(s) of h for which the vectors $\left(\begin{array}{c}1 \\ 5 \\ -3\end{array}\right),\left(\begin{array}{c}-2 \\ -9 \\ 6\end{array}\right),\left(\begin{array}{c}3 \\ h \\ -9\end{array}\right)$ are linearly dependent.

Solution. Let matrix A have the three vectors as its columns. Apply Gaussian to reduce A in the echelon form:

$$
\left(\begin{array}{ccc}
1 & -2 & 3 \\
5 & -9 & h \\
-3 & 6 & -9
\end{array}\right) \xrightarrow[R_{3}+3 R_{1}]{R_{2}-5 R_{1}}\left(\begin{array}{ccc}
\boxed{1} & -2 & 3 \\
0 & \boxed{1} & h-15 \\
0 & 0 & 0
\end{array}\right)
$$

We see that A always has only 2 pivots regardless of the value of h. Therefore, the three vectors are linearly dependent for any real number h.
3. (18 points)
(a) Prove that the only element \mathbf{w} in an inner product space V that is orthogonal to every vector is the zero vector $\mathbf{w}=\mathbf{0}$.
Proof. Since \mathbf{w} is orthogonal to every vector, it's orthogonal to itself, namely $\langle\mathbf{w}, \mathbf{w}\rangle=0$. By positivity, $\mathbf{w}=0$.
(b) Prove that $\|\mathbf{w}\| \leqslant\|\mathbf{v}\|+\|\mathbf{v}+\mathbf{w}\|$ for any $\mathbf{v}, \mathbf{w} \in V$.

Proof. By the triangle inequality,

$$
\|\mathbf{w}\|=\|(\mathbf{v}+\mathbf{w})+(-\mathbf{v})\| \leqslant\|\mathbf{v}+\mathbf{w}\|+\|-\mathbf{v}\|=\|\mathbf{v}\|+\|\mathbf{v}+\mathbf{w}\|
$$

4. (16 points) Show that $\mathbf{v}_{1}=\left(\begin{array}{l}4 \\ 1 \\ 3\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{c}2 \\ -2 \\ -1\end{array}\right)$ and $\mathbf{w}_{1}=\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right), \mathbf{w}_{2}=\left(\begin{array}{c}-6 \\ 2 \\ -1\end{array}\right)$ are two bases for the same two-dimensional subspace $V \in \mathbb{R}^{3}$.
Proof. Let $A=\left(\mathbf{v}_{1} \mathbf{v}_{2}\right), B=\left(\mathbf{w}_{1} \mathbf{w}_{2}\right)$. We are to characterize $\operatorname{Col} A$ and $\operatorname{Col} B$. First consider the system $A \mathbf{x}=\mathbf{b}$, where the right hand side will remain unspecified for the moment. Apply Gaussian to the augmented matrix:

$$
\begin{aligned}
&\left(\begin{array}{cc|c}
4 & 2 & b_{1} \\
1 & -2 & b_{2} \\
3 & -1 & b_{3}
\end{array}\right) \xrightarrow{R_{1} \leftrightarrow R_{2}}\left(\begin{array}{cc|c}
1 & -2 & b_{2} \\
4 & 2 & b_{1} \\
3 & -1 & b_{3}
\end{array}\right) \xrightarrow{R_{3}-3 R_{1}}\left(\begin{array}{cc|c}
1 & -2 & b_{2} \\
0 & 10 & b_{1}-4 b_{2} \\
0 & 5 & b_{3}-3 b_{2}
\end{array}\right) \\
& \xrightarrow{R_{3}-\frac{1}{2} R_{2}}\left(\begin{array}{cc|c}
1 & -2 & \begin{array}{c}
b_{2} \\
0
\end{array} \\
0 & 10 & \left.\begin{array}{c}
b_{1}-4 b_{2} \\
-\frac{1}{2} b_{1}-b_{2}+b_{3}
\end{array}\right)
\end{array}\right.
\end{aligned}
$$

Hence, $\operatorname{Col} A=\left\{\left(b_{1}, b_{2}, b_{3}\right)^{T} \left\lvert\,-\frac{1}{2} b_{1}-b_{2}+b_{3}=0\right.\right\}$, a two-dimensional subspace of \mathbb{R}^{3}. Similarly,

$$
\begin{aligned}
\left(\begin{array}{cc|c}
2 & -6 & b_{1} \\
0 & 2 & b_{2} \\
1 & -1 & b_{3}
\end{array}\right) & \xrightarrow{R_{1} \leftrightarrow R_{3}}\left(\begin{array}{cc|c}
1 & -1 & b_{3} \\
0 & 2 & b_{2} \\
2 & -6 & b_{1}
\end{array}\right) \xrightarrow{R_{3}-2 R_{1}}\left(\begin{array}{cc|c}
1 & -1 & b_{3} \\
0 & 2 & b_{2} \\
0 & -4 & b_{1}-2 b_{3}
\end{array}\right) \\
& \xrightarrow{R_{3}+2 R_{2}}\left(\begin{array}{cc|c}
\hline 1 & -1 & b_{3} \\
0 & \boxed{2} & b_{2} \\
0 & 0 & b_{1}+2 b_{2}-2 b_{3}
\end{array}\right)
\end{aligned}
$$

So, $\operatorname{Col} B=\left\{\left(b_{1}, b_{2}, b_{3}\right)^{T} \mid b_{1}+2 b_{2}-2 b_{3}=0\right\}$. Clearly, $\operatorname{Col} A=\operatorname{Col} B$, denoted by V. Then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ and $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}\right\}$ are two bases for V, which is a two-dimensional subspace of \mathbb{R}^{3}.
5. (15 points) Show that the hyperplane $x+2 y+z-w=0$ is a subspace of \mathbb{R}^{4}. Find the dimension of and a basis for the hyperplane.

Solution. Denote the hyperplane by H. Any vector in H is actually a solution to the homogeneous system

$$
x+2 y+z-w=0
$$

So we are to find a basis for the kernel of the coefficient matrix $A=\left(\begin{array}{cccc}1 & 2 & 1 & -1\end{array}\right)$, which is already in the echelon form. Clearly, y, z, w are free variables, and $x=-2 y-z+w$. So the general solution can be written as

$$
\left(\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right)=\left(\begin{array}{c}
-2 y-z+w \\
y \\
z \\
w
\end{array}\right)=\left(\begin{array}{c}
-2 y \\
y \\
0 \\
0
\end{array}\right)+\left(\begin{array}{c}
-z \\
0 \\
z \\
0
\end{array}\right)+\left(\begin{array}{c}
w \\
0 \\
0 \\
w
\end{array}\right)=y\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right)+z\left(\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right)+w\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right)
$$

Therefore, $H=\operatorname{span}\left\{(-2,1,0,0)^{T},(-1,0,1,0)^{T},(1,0,0,1)^{T}\right\}$. Since any span is a subspace, H is a subspace of \mathbb{R}^{4}. Moreover, the three vectors spanning H form a basis for H, and thus $\operatorname{dim} H=3$.
6. (18 points) Write the quadratic form $q(\mathbf{x})=3 x_{1}^{2}+5 x_{2}^{2}+6 x_{3}^{2}+4 x_{4}^{2}+4 x_{1} x_{2}-2 x_{1} x_{3}-2 x_{2} x_{4}-x_{3} x_{4}$ in the form $q(\mathbf{x})=\mathbf{x}^{T} K \mathbf{x}$ for some symmetric matrix K. Determine if $q(\mathbf{x})$ is positive definite.
Solution. Matrix K can be directly written out from the coefficients of the quadratic form q :

$$
K=\left(\begin{array}{cccc}
3 & 2 & -1 & 0 \\
2 & 5 & 0 & -1 \\
-1 & 0 & 6 & -\frac{1}{2} \\
0 & -1 & -\frac{1}{2} & 4
\end{array}\right)
$$

We apply Gaussian to K :

$$
\begin{aligned}
&\left(\begin{array}{cccc}
3 & 2 & -1 & 0 \\
2 & 5 & 0 & -1 \\
-1 & 0 & 6 & -\frac{1}{2} \\
0 & -1 & -\frac{1}{2} & 4
\end{array}\right) \xrightarrow[R_{3}+\frac{1}{3} R_{1}]{R_{2}-\frac{2}{3} R_{1}}\left(\begin{array}{cccc}
3 & 2 & -1 & 0 \\
0 & \frac{11}{3} & \frac{2}{3} & -1 \\
0 & \frac{2}{3} & \frac{20}{3} & -\frac{1}{2} \\
0 & -1 & -\frac{1}{2} & 4
\end{array}\right) \xrightarrow[R_{4}+\frac{3}{11} R_{2}]{R_{3}-\frac{2}{11} R_{2}}\left(\begin{array}{cccc}
3 & 2 & -1 & 0 \\
0 & \frac{11}{3} & \frac{2}{3} & -1 \\
0 & 0 & \frac{72}{11} & -\frac{7}{22} \\
0 & 0 & -\frac{7}{22} & \frac{41}{11}
\end{array}\right) \\
& \xrightarrow{R_{4}+\frac{7}{144} R_{3}}\left(\begin{array}{ccccc}
3 & 2 & -1 & 0 \\
0 & \frac{11}{3} & \frac{2}{3} & -1 \\
0 & 0 & \frac{72}{11} & -\frac{7}{22} \\
0 & 0 & 0 & \frac{1069}{288}
\end{array}\right)
\end{aligned}
$$

Hence, K is regular and has all positive pivots. Thus K is positive definite, so is $q(\mathbf{x})$.

Bonus. This problem may be much more challenging than the others. Allocate your time wisely.
(7 points) Prove that $(a+2 b+3 c)^{2} \leqslant 6\left(a^{2}+2 b^{2}+3 c^{2}\right)$ for any real numbers a, b, c.
Proof. Let $\mathbf{w}_{1}=(1,1,1)^{T}, \mathbf{w}_{2}=(a, b, c)^{T}$. Using weighted inner product $\langle\mathbf{u}, \mathbf{v}\rangle=u_{1} v_{1}+2 u_{2} v_{2}+$ $3 u_{3} v_{3}$ on \mathbb{R}^{3}, we get

$$
\left\langle\mathbf{w}_{1}, \mathbf{w}_{2}\right\rangle=a+2 b+3 c, \quad\left\|\mathbf{w}_{1}\right\|^{2}=6, \quad\left\|\mathbf{w}_{2}\right\|^{2}=a^{2}+2 b^{2}+3 c^{2}
$$

Apply Cauchy-Schwarz inequality, we obtain:

$$
(a+2 b+3 c)^{2} \leqslant 6\left(a^{2}+2 b^{2}+3 c^{2}\right)
$$

(3 points) Prove the same inequality in a different way.
Proof. We can also prove the inequality by completing squares. Since

$$
\begin{aligned}
& 6\left(a^{2}+2 b^{2}+3 c^{2}\right)-(a+2 b+3 c)^{2} \\
= & 5 a^{2}+8 b^{2}+9 c^{2}-4 a b-12 b c-6 c a \\
= & 2(a-b)^{2}+6(b-c)^{2}+3(c-a)^{2} \geqslant 0,
\end{aligned}
$$

we may obtain $(a+2 b+3 c)^{2} \leqslant 6\left(a^{2}+2 b^{2}+3 c^{2}\right)$. Moreover, it's clear that the equality holds if only and only if $a=b=c$.

