Vibration of an Elastic Tensegrity Structure

I. J. Oppenheim * W. O. Williams T

1 Introduction

Following sculptures first created by Snelson in 1948, in 1961 Buckminster
Fuller patented a class of cable-bar structures which he called tensegrity
structures [Ful76, Sne73]. These consisted of arrangements of bars and ca-~
bles, with the bars not connected to one another, so that structural integrity
was maintained by the tension in the cables. Hence “tension-integrity”,
compressed to “tensegrity”. A notable example is Snelson’s Needle Tower
at the Hirshhorn Gallery in Washington, DC. Later work of both engi-
neers (see, eg., [Cal78, Cal82, PC86, CP91, Kuz84]) and mathematicians
([Con80, RW&1, Con8&2, Whi&7, CW96]) generalized the term ”tensegrity
structure” to include any pin-connected structural framework in which some
of the elements are tension-only cables or compression-only struts. The sim-
plest three-dimensional example of this type of structure is shown in Fig.
1. This example possesses the distinguishing characteristics of tensegrity
structures: It is a form-finding structure, an under-constrained structural
system, prestressible while displaying an infinitesimal flexure even when the
constituent elements are undeformable. It forms only at nodal geometries
in which the statics matrix becomes rank deficient.

Since tensegrity structures have been proposed to be used in various con-
structions where weight is at premium, it is of importance to consider their
dynamical response in the vicinity of their equilibrium positions. Usually
they are constructed with (essentially) rigid rods and (more) elastic cables,
so presuming that the pin-connections at the nodes are efficient, the elas-
tic response and intrinsic damping of the cables determine the vibrational
behavior of such a structure. However, these structures, by the nature of
their construction must show an infinitesimal flexibility in the equilibrium
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Figure 1: Simple Tensegrity Structure
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position, and it is easy to suspect that this will lead to a less efficient mobi-
lization of the cable’s damping than would be true in a more conventional
structure. In [OWO00b] we have noted this fact, and presented some numer-
ical calculations and a sketch, for a two-dimensional example structure, of
the computations which verify it. This note gives the underlying computa-
tions for the structure of Fig. 1, quantifying the claims both analytically
and numerically.

2 The Model

The problem will be examined for the tensegrity structure as pictured in Fig.
1, further simplified by assumptions of symmetry and uniformity. The struc-
ture is taken as a right regular prism, in which the end faces are equilateral
triangles, perpendicular to the axis joining their centroids. The unique equi-
librium position then is known to require a 57 /6 relative rotation between
the triangles.

We have examined the response to external loading of this structure in
[OWO00a], and we will follow the notations and calculations which we used
there. The nodes A, B, and C' are pinned to ground, the legs Aa, Bb,
and Cc are inextensible bars, the elements ab, bc, and ca are inextensible
cables, while the cross-cables Ac, Ba, and Cb are taken to be linearly elastic,
but with damping. Considering only the cross-cables as elastic simplifies the
calculations, but captures the essence of the elastic response of such systems.

We assume that

e The triangles ABC' and abc are congruent equilateral triangles.
e The legs have the same length.

e The cross-cables are identical in length and in elastic modulus and
damping coefficient.

e The mass of the system is localized in three equal masses at each of
the nodes a, b, and c.

As a result of these simplifications the motion of the system can be described
by a single parameter. We choose 6, the angle of rotation of the upper
triangle about its centroid measured from the position of equilibrium.

We can use the calculations in [OWO0O0b]: if the radius of the circumcircle
of the base and upper triangles is a and the length of the rigid legs is L,
then we find that the length of the cross-cables A is given as

A0)% = L2 — 2v/3a® cos 6, (2.1)
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and the height h of the upper triangle as

h(0)? = L? — a®(2 + V3 cos O + sin 0). (2.2)

Note that from (2.1) it is implicitly assumed that L > /2v/3a.
If we assume that the cross-cables are linearly elastic, with a spring
constant of k, then the elastic energy stored in the three totals to
3 2
©(0) = 5w (AO) = An)7, (2.3)
where Ay is the natural length of the cable. The kinetic energy is given
as 5 5
Kwﬁ):§m£wﬁ+§m@ﬁ, (2.4)
accounting for the complementary rotational and vertical parts.

The final element is the damping. We assume that the damping force
is isolated in the cross-cables and that it is linear in the rate of change of
length of each cable. The total rate of dissipation of energy by these forces,
then, is

A(f) = 37 (V)2 (2.5)
The equation of motion is obtained from the above as

OK . OK . do . .
£0+W9+@0+A(6):0‘ (2.6)

We may divide the common term 6 from the equation and expand some
terms to arrive at a non-linear second-order equation which governs the
vibrations of the system:

2
9 a‘ . o, 5T s
ma 1—|—msm(g+9) 0+
N 5 2 5 :
+W;l—(; sin(%—l—ﬁ) Cos(g—ﬁ—@)—l—%siﬁ(%—i-@) 0+
4 . A=A
+37%sin200+\/§f@a2 )\QNsin0:0 (2.7)

The equation is rather complicated, but its essential behavior can be seen
by looking at the leading terms in an expansion:

0+a(M0)—AN)0+B6°+76%0=0. (2.8)
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The term « (A(0) — Ay) is the initial elastic modulus. If the cross-cables
are slack in the equilibrium position then this term is zero and the elastic
response is cubic, modulated by 3, which always is positive. For us, the
most important point is that the damping, with coefficient 7, is modulated
by 6?2 ( sin? 0 in the full equation (2.7)). This leads, as we make more precise
in Section 4, to a strongly reduced damping effect.

By considering a quadrature for the solution of (2.8) with « and 7 zero,
one can show (¢f.[Sto50]) that the product of the period and the amplitude of
that solution is a constant, so that the period is inversely proportional to the
amplitude. We shall see below that the solutions of (2.7) show corresponding
period-lengthening with decay. (Of course the exact inverse proportionality
of the special case does not apply even in the general case of (2.8).)

3 Numerical Calculations

In order to visualize the behavior of the system (2.7), we set parameters to
nominal but consistent values:

a=1,L=\6+V3,m=1,y=40,6=100, Ay =\/6—+3. (3.1)

The last condition ensures that the cross-cables are unstressed at equilib-
rium. A plot of a numerical solution of an initial value problem for the
equation with these values is shown in Figure 2.

Notice the two significant phenomena: the period increases as the am-
plitude decays, and the decay is relatively slow. The decay is highlighted
by plotting the change in energy of the system in Figure 3. In the same
plot, we show the energy of the system, as altered by replacing the sin? @
damping by a linear damping based on an average value of sin? @ over the
interval between zero and the starting value of #. Finally, in an insert we
show a fit of the energy function to e(0)/(1 + At)?, which is the estimate
arrived at in the next section.

To illustrate the effect of pre-stress in the cables, we leave all parameters
as before, except that Ay is reduced to a value which corresponds to a
1% strain in the cross-cables in the equilibrium position. The oscillation
due to the same initial displacement is shown in Figure 4. Of course the
frequency increases due to the prestress. Similar period-lenghtening and
decay of amplitude occur, although both are less pronounced than in the
previous case.

The reduced efficiency of damping is illustrated first in Figure 5 by con-
trasting the response for the given system and one with linear damping
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introduced as before. Second, in Figure 6 we make the same sort of energy-
decay comparison as for the previous case, along with a fit of a curve of the
form e(0)/(1 + At) per our estimates in the next section.

4 Dissipation Calculations

To substantiate the relative slowness of the decay of the vibrations, we will
estimate the energy of the system as it evolves in time. The total energy
of the system is K (6(¢),0(t)) + ®(0(t)), where these are given by (2.4,2.3).

The base stored energy is
3
2(0) = 55X ). (1.1)
where Ao = A(0) is the extension of the cables due to prestrain. We will
consider the evolution of the transient energy
e = K(0,0)+®(0) — d(0)

— ;ma292+gmh2+gﬁ [(A—)\N)Q—(/\O—AN)Q} (4.2)

through the energy equation (2.6):

) dX s -
é=—3v (@)2 6% (4.3)

Our main estimates are

Proposition 4.1 For solutions of (4.3) within the feasible range
—5<000)< %)

e if N(0) > Ay (prestressed equilibrium) there is a constant p such that

e(0)
e(t) > . (4.4)
1+ 7(/\0f>w) e(0)t
e if \(0) = Ay (slack equilibrium) there is a constant v such that
ety > — 0 (4.5)

(1+v+/e(0)t)2

Thus the decay is at best like 1/t% as t increases, in contrast to the exponen-
tial decay characteristic of linearly damped systems.



June 9, 2000 Vibrations of T2.5 Page 7

To verify these estimates, note that from (4.2)

Q2
3ma® ;,

62, (4.6)

ez
and
S 3K
e > 2
- 2
Equation (4.6) yields an estimate for §2. We use (4.7) to obtain an estimate
for (d\/d)>.
In the feasible range,

[(/\ A2 (do /\N)2] - (4.7)

A> o > Ay, (4.8)

and we use (2.1) to see that

dA B 3a*sin?0  3at

2 .2
(@) = T S )\—02 sin“ 0. (4.9)
To bound the last term, note that its derivative with respect to 6 is
6a* 6a*
ig cosfsinf < % sinf , (4.10)
Ao Ao

and similarly that, in the feasible range,

d V3a?sin N V3a?

— (A=) = > sin 6. (4.11)
d6 \/L2 —2v/3a% cos 0 VI? — 3a?
Hence A
d d 1 3a
— A=) > — | == sin?6 |, 4.12
AT, (AAOQSm ) (4.12)
where A = 21/3a%VL? — 3a2/\>.
Since each of the functions is zero when 6 = 0,
1 3a* 1 dx
A=) > = — sin?0 > = (=) 4.13
which we rewrite as
1 dX,
—An) — (Ao —Av) > = (=2)2. .
(- An)— (o~ ) 2 5 () (414)

Henceforth, we consider two cases. First, if A\g > Ay (prestressed case),
we use (4.14) to deduce that
(@)2 < 4 A=A = (o= An)?
-~ (A= An) + (Ao — An)
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A

< 200 — ) [(A=An)? = (Mo = An)?]. (4.15)

Thus, from (4.7),
dA A

2
N e
(dg) - 3/@()\0 — /\N)
Substituting this and (4.6) into the energy equation (4.3) yields

e. (4.16)

. 24y 2 K 2
> — =———¢€". 4.17
€= 3xma? ()\0 — >\N) © ()\0 — )\N) € ( )

Integration of this equation yields the first bound for the transient energy.
In the second case, if there is no prestress, A\(0) = Ay, and we find from
(4.14)

(@)2 < AA = No). (4.18)

and (4.7) leads immediately to

Sy gA\/?)zK\/E. (4.19)

This can be substituted into the energy equation together with (4.6) to

obtain
ez A g (4.20)

> —2ve?, (4.21)

or
which we integrate to obtain the second estimate.

5 Angular Damping

In order to obtain more efficient damping in the system, one can introduce
a linear damping term by enhancing the natural damping in the pin con-
nections of the frame. For example, we introduce a damping which resists
the rate-of-angulation of the legs to the upper cables as follows. The angle
« which the legs make to the zy-plane is given through the equation

h? a?
sinfa = —=1— —

73 = 72 (2 + V3 cosf +sin )
= 1-2p%(1 —cos¢) (5.1)
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where ¢ is the total angle of rotation, 6+ ‘%”, and p = a/L. We suppose that
the damping mechanism is to be applied between the leg and the nearest
upper cable, and one can show that the angle 7 between these elements
obeys

cosT = cosa cos (¢/2) . (5.2)

From (5.1) and (5.2) it follows that
_ p COS ¢ J
V1=p*(1—cos®9)

If we assume that the damping is linear in 7, the energy dissipates at a rate
3T (7)? and so the additional term in (2.7) is

7‘-:

(5.3)

p? cos? ¢
1—p? (1 —cos?¢)
The linear approximation to this near § = 0 is

2 201 _ 2 _
AR CT TSP (5.5)
4—=p? (4—p?)?

which confirms the linear nature of the damping, and ensures exponential
decay of solutions of the equation.

3T 0. (5.4)

3T

6 Conclusions

We have demonstrated that the natural geometric flexibility inherent to a
tensegrity structure at equilibrium leads to inefficient mobilization of the
natural damping in the elastic cables of the structure, leading to a much
slower rate of decay of amplitude of vibration than might be expected (order
at best 1/t? as opposed to exponential decay). This effect, readily apparent
in models, could be a serious drawback in practical usages.

To control the effective damping, it seems that augmenting the natural
damping would be inefficient. However a natural mode of damping, by en-
suring damping of the angular motion between the structural elements leads
to linearly damped equations and hence exponential decay of free vibrations.
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Figure 2: Theta versus time for no prestress
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Figure 3: FEnergy decay. Upper curve is for the given system, lower is
equivalent linearly damped system. Inset: fit to data of e(0)/(1 + At)?
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Figure 4: Theta versus time with prestress
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Figure 5: Theta versus time for equivalent inearly damped system with
prestress, contrasted with naturally damped system.
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Figure 6: Energy decay with 1% prestrain. Upper curve is for the given
system, lower is equivalent linearly damped system. Inset: fit to data of

e(0)/(1 + At)
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