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Summary

Tensegrity structures were first constructed by
the artist Kenneth Snelson in 1948. This type
of structure was named and popularized by
Buckminster Fuller as possible architectural
constructs. Since the mid-seventies, general-
ized versions of these constructs, namely struc-
tures some of whose elements cannot sustain
compression, have been studied by both engi-
neers and mathematicians. With I. J. Oppen-
heim [1, 2, 3], the author has begun a study of
the structures which are of the type built by
Snelson. Here we present some results which
help to characterize the equilibria of such con-
structs, and discuss a technique for describing
the evolution of the positions.

1 Introduction

Following sculptures created by Snelson in
1948, in 1961 Buckminster Fuller patented a
class of cable-bar structures which he called
tensegrity structures [4, 5|. These consisted
of arrangements with bars in compression,
no two connected directly, with structural
integrity maintained by the tension in the
cables. Hence “tension-integrity”, com-
pressed to “tensegrity”. These structures,
remarkable to Fuller for enclosing large vol-
umes of space with minimal weight, are
not as well known as his corresponding
shell constructions, but offer interest both
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Figure 1: T-3 Structure (Not in Equilib-
rium)



mathematically and as minimal weight en-
gineering constructions. (See [6] and [7].)
The Snelson-style constructions still are the
most useful as examples, since they are min-
imalist, in a sense which we make precise
below. The simplest three-dimensional ver-
sion of such a structure is the base-anchored
T-3 (following a classification of [8]) shown
in Figure 1.

2 Geometry & Mechan-
ics

Physically, a tensegrity structure is a pin-
connected truss in which elements may be
either bars or cables. Mathematically, we
can describe the structure as a bi-graph S
together with a specification of a set of edge-
lengths. The graph consists in a set of
edges £ and a set of nodes N. The edges
are divided into two sets, of bars and ca-

bles:
(1)

Ife € £ isan edge we may find it convenient
to denote its end-nodes generically as

E=BUC.

€as €y € N. (2)
To complete the prescription of the
structure we assign a set of edge-lengths

(3)

representing the squares of the lengths of all
edges.

A placement of the graph S is an as-
signment of nodes to points in R3. It is most
convenient to describe the placement as a
vector in a product space:

Fe (R3)N. (4)

Soon we will confine ourselves to the special
case in which the structures are pinned to

A€ R,

ground, which means that, as for our exam-
ple, three non-collinear nodes are restricted
to fixed positions.

Placements will be required to respect
prescribed edge-lengths. We quantify this
by introducing the (squared) length-map

A (®)Y SR
AD). = 5llf, ~ B )

Given A, a placement p is admissible if

Ao(P) = (6a)
A(p) < (6b)

We abbreviate this as

Ab, Vb € B and
A., Vee C.

A <A (7)
A motion of S is a piece-wise-smooth
one-parameter family of placements. The
derivative of a motion is an instance of an

velocity
Te (R3)N, (8)

which assigns a velocity vector in R? to each
node of the structure. When we restrict our-
selves to the case in which three nodes are
pinned to ground, some of these vectors will
be restricted to be zero.

If g(t) is a motion initiating at P, then
the rate of change of the length function at
time 0 is given by

@O = (B, ~F)- @, ). O

Generalizing this, we assign to any place-
ment and any velocity the (rate-of) stretch-
ing vector

(Za;a - ﬁew) ' (’l_;ea - 6@0) . (10)
This represents the rate of lengthening of
the edge e times the length of the edge. This
relation is simplified to

(11)

w.(p)- U



when we introduce the edge vector

- 0 -

ﬁea _ﬁe‘u
S (R3>N. (12)

— —
Db., — D,

L 0
Here, as suggested by the notation, the non-
zero entries occur in the e, and e, slots,
respectively.

Each edge vector is a linear function of
P and we may write

.= B.p (13)
for each e in £. The transformations B, are
symmetric, positive, and
B? =2B, (14)

A final convenient notation: we con-
struct the geometrical matrix, also called
the rigidity matrix, IT : R® — (R3)N, by us-
ing the edge vectors as columns. Then the
totality of the relations (11) is given as I1" @.

For the remainder of the paper, we shall
simplify the kinematics by restricting place-
ments in a way which eliminates the pos-
sibility of rigid-body motion. In particular,
for T-3, with nodal labels as in Figure 1, p,,
Pp, and P, are taken to be fixed in non-
collinear positions. We can then formally
truncate the nodal set N to {a,b,c}, and
correspondingly truncate the placement and
velocity space, reducing II to nine columns,
each of dimension nine. (Of course P4, Pz,
and Py still appear in I1.) See [9] for a dis-
cussion of the unrestricted case.

3 Rigidity & Stability

There may be motions g(t) away from p
which are compatible with the length re-
striction

A(G(1) < A(P). (15)
We would call such a ¢ an admissible mo-
tion. The velocities of admissible motions

belong to the (closed, convex) cone of ad-
missible velocities, or flexures:

(#1175 <0}, (16)
where < has the same interpretation as in
(7).

Finally, we define the fundamental
kinematic notions of the theory:

Definition 3.1 A placement p is rigid if
it admits no flexures.

Definition 3.2 A placement p is stable if
it admits no admissible motions.

It is clear that any rigid placement is
stable; the converse fails in general. A con-
dition which ensures that the converse im-
plication hold is maximal independence of
collections of edge vectors [10]:

Theorem 3.3 (Roth & Whiteley) If p
is such that for each A C £ the set of edge
vectors {m.|e € A} has span the mawi-
mal possible dimension (amongst all place-
ments), then P is stable if and only if it is
rigid.

4 Forces & Stresses

We represent a set of applied forces acting
on the structure as a vector of nodal forces:

o N
fe (R
Since the base points are not collinear, any

applied force is balanced by reaction forces
on them.

(17)



Each edge may carry a force; we mea-
sure their magnitudes in a convenient way

by the stress vector
w € RE, (18)

w, is the force carried by the edge e divided
by the length of e. It is taken to be positive
if the force is a tension, so that it generates

a force on the node e, as
—We (ﬁea - ﬁew> : (19)

The totality of the edge-forces acting on a
node is then the corresponding entry in the

sum
— Zweﬂ'e
e

and (detailed) balance of external and
edge-forces is expressed as

o
f= Zweﬂ'e.
e

(20)

(21)

Recognizing that cables can carry only
tension, we call a stress a proper stress if

w. >0 for all cables ¢ (22)

and call it strict if each inequality is strict.
An external force j? balanced by a stress
vector is called resolvable. A stress vec-
tor w is a prestress if it resolves 0. It is
important to note that by (21) a prestress
represents a linear dependency amongst the
set {m.} of edge vectors.
By the definition of the geometric ma-
trix, (21) is
f=lw. (23)

Thus we can say that the range of 11 is the
set of all resolvable forces, and its nullspace
is the set of all prestresses.

A classical definition of mechanical
rigidity, formulated by Maxwell [11] for all-
bar trusses, is

Definition 4.1 A placement of S is stati-
cally rigid if each applied force is properly
resolvable.

The following was proved for bar-
trusses by Maxwell, and generalized to
tensegrity structures in [10]

Theorem 4.2 (Roth & Whiteley)
Rigidity is equivalent to statical rigidity.

The following result from [12], ¢f. [13],
is of central importance:

Theorem 4.3 (Whiteley) Given a place-
ment of S and c, € C, there is an admissible
velocity with non-zero stretching in the edge
co if and only if every proper prestress has
we, = 0.

5 Stability & Rank-

deficiency

The T-3 structure is an example of what we
choose to call a Snelson structure, namely
an anchored structure for which
#E < 3H#N. (24)
Stable structures with this property are
minimal in the sense that they do not have
unnecessary edges; Snelson’s towers have
this property.
Let us consider the possibilities for such
a structure. If IT, whose size is #E x 3 #N,
is of full rank then its null-space is trivial,
i.e., it admits only zero prestress. In this
case, by Theorem 4.3, it admits a shorten-
ing velocity, which, by Theorem 3.3 contin-
ues to an admissible motion, and it is not
stable. Hence, in a stable placement the ge-
ometric matrix must be rank-deficient. By
the theorem on rank and nullity and (24) it
also must admit a non-trivial left-null-space,
that is, the placement is flexible.

Proposition 5.1 A stable placement for a
Snelson structure has a rank-deficient geo-
metric matriz and admits flexure.



It is possible to strengthen this result for T-
3: one can show [9] that stable placements
yield geometric matrices of rank-deficiency
exactly one.

Thus, to describe stable placements we
are led to consider the rank-deficiency
manifolds:

P = {P|rank(ll(p)) = #E —r}(25)
1<r<#E, (26)
¥ = UP.- (27)

Since B is the set of zeros of the smooth
function det I1(p), it has dimension at most
3#N — 1. Similarly, 3, is an open subman-
ifold of P, etc.

We wish to characterize the tangent
spaces of the manifolds 3,.. Each is the in-
verse image under the linear mapping

I : § [m(P) ... 7u(P)] € R¥V*E, (28)

of a particular manifold of matrices. Let us
introduce a generic notation:

M, ={D € R |rank(D) = s}. (29)
We continue to write D in terms of its col-
umn vectors, staying with our notation

D =[m - -my. (30)

The set M, is just an open set in the set of
all n x k matrices (the Stiefel manifold), but
each of the smaller ones is a differentiable
manifold of reduced dimension (generalized
Stiefel manifolds). These were introduced
by Milnor [14, 15], but since they do not
seem to be well known, we will derive the
formulae which we need. The simplest case,
when the rank is k£ — 1, is a model for the
other calculations:

Lemma 5.2 M;_, is a differentiable man-
ifold of dimension (k—1)(n+1). Its tangent
space at D consists of all n x k matrices or-
thogonal to

TRw (31)

where w is a non-zero vector in the null
space of D and U ranges over all vectors in
the null space of DT.

Proof. A matrix D = [mry... ] is in the
manifold if its column vectors have span of
dimension k£ — 1 but

AN AT =0. (32)

Consider a path on the manifold passing
through D; taking the derivative of (32) at
D delivers

k
SmiA AN ATE=0,  (33)
i=1

where «y, the derivative of 7r;(+), appears in
the ith place in the list. One of the vectors
7r; can be expressed as a linear combination
of the others. To save notation, let us sup-
pose it is the kth:

k—1
Tk = Z HiT5,

J

(34)

so that the null-vector w has entries
[—p1, ..y —pin, 1]. Then

k k-1
> wimi A A A AT =0. (35)
i

Note that each exterior product is zero, due
to repeated entries, except when ¢ = j or
t = k. Thus we have

TN N1 N\ o+

k—1
Z,uiﬂ'l/\.../\ozi/\.../\ﬂ'i:() (36)

or

(71'1 VANPIAN 7T]€,1) N ax+
k—1

ST—(mi A A1) A (ies) = 0.(37)

i

But this says that

k—1
(TL Ao ATTR—y) A (ak — ZW%) =



(mi A ... A1) A (Aw) =0, (38)
where A = [a ... a] is the derivative along
the path. (38) means that Aw is in the span
of the other vectors, i.e.,, in the range of D,
which can be expressed as saying that

V- Aw=A-(T®w)=0 (39)
for all vectors ¥ in the null space of D'.
The proof extends, with only an increase
in combinatorial complexity, to each of the
manifolds M, by considering the smaller
submatrices and considering the wedge
products of s-lists of column vectors. We
obtain

Lemma 5.3 M, is a differentiable mani-
fold of dimension s(n+k — s). Its tangent
space at D consists of all A orthogonal to

w®T (40)
where w ranges over all vectors in the the
null space of D and U ranges over all vectors
in the null space of D.

Now it is a simple matter to specialize
this to our manifolds by a retraction from
the space of matrices.

Theorem 5.4 The set B, is a differen-
tiable manifold in (R3)N, with tangent space
normal to the span of

> w.B.7, (41)

where w ranges over all prestresses and U
ranges over all flexes.

6 Computations

Computation of the stable placements for
a given tensegrity structure is an awkward
process, involving finding the locations on
the appropriate manifold. One means is to

use parameterizations or LaGrangian coor-
dinates (cf. eg.,[16] and [17]). We take a
more direct route in doing calculations for
T-3, using the above characterization of the
tangent spaces of the manifold B, where its
stable placements lie.

By starting at an easily established
placement, such as the symmetric one, we
march along the manifold by solving nu-
merically a differential equation based on
the above calculations. We choose edges in
pairs, for example e; and ez, to adjust in
length. If we wish to shorten e; by an in-
crement 0, we calculate

n = ZweBJJ’, (42)
(&
at the current placement (there is only one
prestress and one flexure), and then solve
the linear equation

=
oy A B = L |, (43)
0
for the rate of change of placement. Us-

ing an RK-4 scheme to execute the step,
one arrives at a point nearly on the mani-
fold. Working in Maple, it is easy at the end
of this step to search locally to find a cor-
rected placement where det IT is (machine-)
precisely zero before beginning the next it-
eration in the process. A few examples of

the resulting output are shown in Figures
2—4.
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Figure 3: T-3 Structure, Step 40

Position 80

Figure 4: T-3 Structure, Step 80



