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Abstract. Tensegrity structures are under-constrained, three-dimensional, self-
stressing structural systems. They demonstrate an infinitesimal flex and when loaded
they display a nonlinear geometric stiffening. In earlier work many examples of the
resulting force-displacement relationship have been demonstrated numerically, and
some aspects of the force-displacement relationship have been derived analytically.
In this article an energy formulation is presented for the case of a simple but repre-
sentative tensegrity structure, yielding an exact solution for the force-displacement
relationship. The solution makes understandable the different appearance of the
force-displacement relationship when comparing a system at zero prestress to one at
high prestress, or when comparing a system with almost-inextensible members to one
with highly extensible members. The exact solution also is offered as a benchmark
against which numerical solutions should be tested. Furthermore, the formulation
and the solution reveal conditions of asymmetry of response that have not been
noted previously.
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1. Introduction

1.1. A BASIC TENSEGRITY STRUCTURE

Following the pattern of sculptures by Kenneth Snelson in 1948, in
1961 Buckminster Fuller patented a class of cable-bar assemblages
which he called tensegrity structures. Figure 1 pictures a well-known
example of such a structure constructed with three bars and six cables.
Tensegrity structures have attracted interest recently because of their
potential advantages as lightweight structures, as variable geometry
trusses, as shape adaptive structures, and as deployable structures. The
structure pictured represents fully the distinctive features of tensegrity
structures.

It is a form-finding structure, an under-constrained structural sys-
tem, prestressible while displaying an infinitesimal flexure even when
the constituent elements are undeformable. It forms only at nodal
geometries in which the statics matrix becomes rank deficient. The
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Figure 1. Simple Tensegrity Structure

mechanics of the structure at that equilibrium geometry, in the absence
of external loads, is treated in various sources and will not be repeated
here. The general principles of the equilibrium mechanics [1, 10, 9, 14]
are based on the properties of the statics matrix and apply only in an
infinitesimal neighborhood of the equilibrium geometry. Those prin-
ciples have been discussed in application to this particular tensegrity
structure [7], an equilibrium analysis of this same structure can be
found within a comprehensive text on under-constrained structures [5],
and this same example has been treated in a recent article [4] that
addresses questions of nonlinear response and control.

If constructed with 9 rigid bars, at a generic nodal geometry, a truss
with the topology of Figure 1 would be a statically determinate rigid
body. It would neither admit a prestress nor admit any nodal movement
whatsoever. As a consequence, if any bar were replaced by a cable, the
position would become unstable. However, at a tensegrity geometry
such a structure admits a prestress and also displays an infinitesimal
flexure, that is, a infinitesimal nodal displacement which does not re-
quire lengths of the structural elements to change. The prestress places
six of the bars in tension, allowing them to be replaced by cables, as
shown in Figure 1, without affecting either the infinitesimal flexibility
or the stability. Greater (finite) nodal movement then is observed to re-
quire some cable elongation but no cable shortening, thereby explaining
physically why the equilibrium position is a stable one.

In an actual tensegrity structure constructed with almost-inextensible
members (such as steel cables) the infinitesimal flex is plainly evident
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(and consists in a simultaneous rotation and elevation change of the
upper triangle). Following the nomenclature of [5], nodal loadings in
the direction of the infinitesimal flex are termed perturbation loads,
and nodal loadings orthogonal thereto are termed equilibrium loads.
While equilibrium loads can be resolved directly by statics, resolution of
perturbation loads requires nodal displacements, mobilizing the (non-
linear) geometric stiffening. The main contribution of this article is
the derivation and examination of an exact solution for the geometric
stiffening, the nonlinear force-displacement relationship displayed by
the tensegrity structure when subject to perturbational loadings.

In the case just described the geometric stiffening effect is pro-
nounced. In the close vicinity of the equilibrium geometry the struc-
ture is quite soft, but the stiffness increases dramatically with finite,
but relatively small, displacement. However, we note that many lab-
oratory examples are purposely constructed using highly extensible
members such as rubber cords, because such assemblies allow both
graceful form-finding and easy demonstration of shape changing. In
such cases it may be difficult, from casual observation, to distinguish
the infinitesimal flex and its nonlinear geometric stiffening from the
large nodal displacements resulting from elastic effects. Nonetheless,
analyzing any response to nodal forces requires the inclusion of the
nonlinear geometric stiffening effect.

Characterization of tensegrity positions of an arbitrary assemblage
of bars and cables is a difficult problem (cf. [14]). Here we shall be con-
cerned with the behavior of our structure from an established tensegrity
position.

1.2. THE TENSEGRITY POSITION AND MOTIONS

The problem will be examined for a tensegrity structure as pictured in
Figure 1, further simplified by assumptions of symmetry and unifor-
mity. The structure is taken as a right regular prism, in which the end
faces are equilateral triangles, perpendicular to the axis joining their
centroids. The tensegrity position, shown in [2] to be globally unique,
then is known to require a 57 /6 relative rotation between the triangles.

The three bars are assumed to be rigid, and the three cables com-
prising the edges of the end face inextensible, while the three diagonal
cables are linearly elastic with equal moduli. Any applied force will be
required to be symmetric about the axis of the prism. The result of these
simplifications is that the triangular faces remain parallel and centered
on the z-axis, so that all nodal displacements can be described by the
angle of relative rotation or by the concomitant vertical displacement.
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The infinitesimal flexure of the system is an infinitesimal rotation of
the upper triangle about its axis.

1.3. FORCE-DISPLACEMENT RELATIONS: PREVIOUS WORK

It has been observed that the initial stiffness in the direction of the
infinitesimal flex depends upon the prestress; that if the system is
assembled without prestress then the initial stiffness would be zero,
whereas prestress creates an initial stiffness proportionate in magni-
tude. It is also understood that the stiffness increases as the structure
is displaced along the direction of flex. This effect is of practical in-
terest. In some instances the variation in stiffness with displacement
is a feature that may prove useful in controlling the compliance of
a structure and in controlling vibration (cf. [8]). Therefore, several
investigators have addressed the question of generating the nonlin-
ear force-displacement relationship resulting when such a structure is
subjected to perturbation loads.

In principle, performing such analyses numerically should be fairly
straightforward. Systematic methods have been outlined [5, 9] for doing
so in general. Skelton and coworkers in [12, 13] present extensive results
for structures with multi-stage topology. Within that work they arrive
at equations of motion relating nodal forces and nodal displacements
by using a Lagrangian formulation and show, in [11], numerically gen-
erated plots, recording such force-displacement relationships. Similar
numerical analysis is contained in work recently described by Murakami
[6] and by Motro and others [4] describing multi-stage variants of struc-
tures based upon the topology depicted in Figure 1. The authors [7]
have shown results obtained using a commercial finite element analy-
sis package, applied to a structure with almost-inextensible members.
Those numerical results show the initial stiffening effect of prestress
and then the dramatic geometric stiffening effect with displacement.

2. Kinematics, Elasticity and Equilibrium

We consider the structure shown in Figure 1. The nodes A, B, and C
are pinned to ground, the legs Aa, Bb, and C'¢ are inextensible bars,
the elements ab, bc, and ca are inextensible cables, while the cross-
cables Ac, Ba, and Cb are taken to be linearly elastic. Considering
only the cross-cables as elastic simplifies the calculations, but captures
the essence of the elastic response of such systems.

Because of the inextensibility, the upper triangle moves as a rigid
body, and hence its position is easily described by the location of one
point and a rotation matrix. We assume here that
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— The triangles ABC and abc are congruent equilateral triangles.
— The legs have the same length, L.
— The cross-cables are identical in length and in elastic modulus.

As we will see, this complete symmetry leads to simple calculations.

We set the origin of coordinates at the centroid of the lower triangle,
and locate its three vertices by the vectors py4, pp, and p¢ in the
x — y plane; for definiteness, we take pa = ai, to be directed in the
z-coordinate direction. We take x to be the vector locating the centroid
of the upper triangle, so that the locations of the upper points are given
as

Po =X+ Qpa,
py=x+Qps, (2.1)
p. =x+Qpc,

where @ is the rotation matrix. Because of the symmetry of our system
we have that @ is a rotation of angle ¢ (counterclockwise) about the
z-axis, and x = hk. Thus, for example,

Po = hk +acospi—asingj. (2.2)

The feasible range of ¢ is from —m/3, where the cross-cables interfere,
to m, where the legs interfere.
Now the constraint that the legs are of fixed length L becomes

(Pa—DPa)?> = (hk+a(cosp —1)i—asingj)>=L>  (2.3)

or
h? = L? — 2a*(1 — cos ¢). (2.4)

Next, we calculate the length A\ of each cross-cable from
A = (p. —pa)® = (hk + Qpc — pa)’, (2.5)

and since pc = a (—% i+ @J) we arrive at

A = h% 424 + a*(cos ¢ — V/3sin P)
= I? 4+ a?(3cos ¢ — V3sin ), (2.6)

where we have used (2.4). For later use, we calculate the derivatives:

AN = a%(—3sin ¢ — V3 cos ), (2.7)
AN = a%(V3sing — 3cos p) — 2(\)2. (2.8)



If £ is the spring constant, and Ay is the natural length of the
cross-cables, then the total elastic energy is

U6) = 2k (A~ M) (2.9

(when A > Ap; otherwise it is zero). The applied moment or torque
associated to a rotation ¢ is then the derivative of the energy with
respect to ¢:

M(¢) =U'(¢) = 3k(A — An)N (9), (2.10)

and the equilibria of the unloaded system occur when this is equal to
zero. This occurs when A = Ay or when X = 0. The latter occurs at

0 o7
¢p=—— or ¢:F' (2.11)
We note that an increment in ¢ from either position results in an
infinitesimal flexure, which neither lengthens nor shortens any bar or
cable.
Continuing,

U"(¢) = 3kA(¢)? — 3k(A — An) N () (2.12)

’

and it is easy to see that the point ¢ = —7 /6 always yields a maximum
of energy, so that we can disregard it. !

On the other hand ¢ = 57/6, the classical tensegrity placement for
the symmetric structure, yields

5%

U//
( 6

) = 31<;X(5%)2 = 3V3ka*(1 - AA—N)- (2.13)
0

Here we have introduced the equilibrium length of the cross-cables:

o = A(%”) — /12— 2v3a2. (2.14)

If Ag < Ay, then the cables would be fully slack in this placement, and
it follows that the position is unstable [3]; henceforth, we assume that
Ao > An. If Ag > A, the second derivative of the energy is positive,
and we confirm that the tensegrity placement is a local minimum of
the energy (and a minimum of the cross-cable length \).

The point where A\ = Ay, if it is attainable and if it is not the
tensegrity placement, corresponds to a position in which the structure
has zero prestress and the cables may be further shortened by rotation.

! In fact, one can show that this position would require compression in the edges
of the upper triangle, and hence it is not a tensegrity position.
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This is unstable [3]. On the other hand, if A = Ay coincides with the
tensegrity placement, the cable cannot be further shortened by rotation.
Both second and third derivatives of the energy are zero in this case,
but the fourth derivative is positive, and hence this again is a local
minimum of energy, confirming its stability. This corresponds to the
case of zero pre-stress in the tensegrity placement.

3. Response to Applied Loads

To continue in a symmetric geometry, we can consider only symmetric
loadings. For convenience, we re-express all functions in terms of the
angular deflection # away from the equilibrium placement:

0 =0+ (3.1)

We find

A0 = \/ L2 — 2v/3a2 cos ¥, (3.2)
and

M (0) = 3v/3ka? [1 - %] sin 6. (3.3)

Note that M (0) is anti-symmetric about 6 = 0.

3.1. AppPLIED TORQUE

Counsider first an applied torque, generated, for example, by equal tan-
gential loads applied at each vertex. The derivative of the torque-angle
relation (3.3) is

A A
M'(0) = 3V3 ka? (1 - TN> cosf + 9ka’ ()%) sin? 4, (3.4)
and thus the initial modulus of the elastic response is

M'(0) = 3v3 ka? (1 - %) = 3v/3a (HAO/\*OAN» . (35)

Note that the modulus is a linear function of the prestress
k(X0 — An), (3.6)

so that, in particular, the initial modulus is zero if there is no prestress.
The second derivative of the relation is

_9xvad (sin(0)’ | 3An a?VBsin(0) cos(0)

M) = 2A(0)5/2 2A(0)3/2




= (1 ~ %) sin(6) (3.7)

which is zero at 8 = 0 regardless of the value of the prestress.

Figures 34 show plots of M(0) for a structure with L/a = 18/7
for various choices of prestress (prestrains, (Ag — Anx)/An, from 0% to
300%). Figure 3 shows the response over a small range of rotations
for zero prestress and for a small prestress (prestrain of 0.2%). Fig-
ure 4 shows the response under several prestresses over the feasible
range —77/6 < @ < 7/6. Note, in particular, that the curvature for
small positive 0 is negative for small prestresses, but positive for large
prestresses, and for the latter the response appears much more nearly
linear. The curvature sign-change occurs at a prestrain of

L + 6a* + 3v/3L%a?
1A — 12a4 ’

(3.8)
which in this geometry is 165%.

3.2. VERTICAL LOADING

Another forcing which will produce a symmetric response is one whose
resultant is a purely vertical loading at the centroid of the triangle abc.
We consider the relation between the applied force and the height h
of the triangle. Since h and ¢ are related by (2.4), we can find h as a
function of 0 as

h(6) = \/ 12 — a2(2 + V3 cos 0 + sin). (3.9)

This function is invertible in the feasible domain. Using (2.4) and (2.6),
we can solve to find the elastic energy as a function of h; the derivative
of this function with respect to h is the force F' required to displace
the triangle vertically. The resulting equations are not particularly en-
lightening. It is easier to express this force (taking it positive if directed
downwards) in terms of 0 as

F() - —U’(G)%

= M(0)/n'(6)

_ 2h(0)
= M(®) {aQ(COSQ —/3sin ) } ' (3-10)

This force must approach infinity as the derivative h'(6) approaches
zero, which occurs at § = 7/6, the point where the legs interfere, and
at § = —57/6, the point where the legs are vertical.
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Next we define the (downwards) displacement from the equilibrium
position as
0(8) = h(0) — h(0) (3.11)

and regard (3.10) and (3.11), using (3.9), as parametric equations de-
scribing the response function.

The derivatives of the force-displacement relation are calculated in
these terms as

F(h) = f(éfg - ((96)2 (R"(0)). (3.12)
i 2 MO B e )]

W) H(9) W5 (o)

Evaluation at 6 = 0 gives the initial modulus and the initial curvature
of the response as

M’(O) 3V3

/ 4 _
F"(hg) = w0 ()g) 144\/3 hoafAi/\o Av) (3.15)

The initial modulus is zero if there is no prestress, and is linear in
the prestress, as for the previous loading. The initial curvature of the
response, however, now is zero only for null prestress, and otherwise is
negative and proportional to the prestress.

Figures 5 7 are graphs of F' versus ¢§ for the same values of L and a
and the same assortment of prestresses as in the previous calculations.
Figure 5 shows the response over a small range of displacement for
the cases of zero prestress and small prestress (prestrain of 0.2%). The
next two figures show more distinctly the discrepancy between this
response and the “perturbation” loading previously analysed. Figure
6 shows the response over a range of 6 values from —0.8 to 0.3 for
various prestresses. Finally, Figure 7 shows the response over the range
of 6 between the infinities of F', for the zero prestress and the highest
prestress (300% prestrain). The responses for the other prestress values
are trapped between these two.

3.3. NATURAL MODE RESPONSE

Finally, to relate the current calculations to those obtained using the
structural-matrix approach, we may look at the direction of infinitesi-
mal flexure of the structure. The direction of infinitesimal flexure is that
in which the structure may move with no initial extension of any of its
edges; this vector is the null vector of the transpose of the structural
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matrix. Of course, once the structure is forced out of the tensegrity
placement by an imposed force, this direction is no longer defined. To
model what might be meant by a finite “displacement in the direction
of the natural mode”, we shall consider the path of a node of our
structure in the continued symmetric deformation. We will calculate
the relation between arc-length along this path and the corresponding
force directed tangential to that path. The tangent vector to that path
at the equilibrium position is the direction of infinitesimal flexure, and
the corresponding force the initial forcing needed in that direction to
drive the deformation.

As a function of the angle ¢ of rotation, the position of node a is
given by

Pa(®) = h(p) k+ acos pi— asinej, (3.16)

where h(¢) is given by (2.4). Its derivative is

p.(¢)=a _ahs(i;)qﬁ k —singi—cos¢j|, (3.17)
which has squared length
2 at
a” + AL sin” ¢. (3.18)
Thus the arc-length along the curve is
J at
s(¢p) =a /57r/6 \/1 + AL sin® ¢ do, (3.19)

and we can, in principle, invert this to determine ¢ in terms of s. Then
we could express the elastic energy in terms of s; its derivative with
respect to s is the magnitude T of the tangential force required to drive
the deformation. In this way we find

M(9)
a,/1+ﬁsin2¢

Finally, we can express both T and s in term of the rotation-past-
equilibrium 6. As before, we use this parameterization to plot the
relation of T" and s.

Figure 8 shows the response for the geometry already used, for var-
ious prestresses, verifying that the response in this mode is essentially
the same as the torque-rotation response.

T(¢) =

(3.20)
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4. Remarks

The response of tensegrity structures has been observed to show a
geometric stiffening, and we have found an analytic demonstration
verifying this behavior, despite our assumption that the elastic elements
are linear in response for all extensions. We hope that this solution may
be useful, in particular, as a benchmark for development of numerical
analysis of tensegrity structures.

The torque-rotation relation describes the fundamental response of
the system. As we have noted, the initial modulus is linear in the
prestress, and, since the initial value of the second derivative is zero
regardless of the prestress, the graph shows an initially cubic behavior.
The geometric non-linearization of response clearly is more pronounced
for lower values of the prestress; for higher values the linear term dom-
inates within the small-deformation range of motion. There is even a
change in values of curvature near equilibrium (always zero at equi-
librium) from negative to positive as the prestress becomes large. The
departure from the upwards curvature form of response occurs at values
of prestress which would be obtainable only in materials which could
tolerate very large extensions (for the geometry we use for the plots,
165% strain) ; with metal cross-cables, for example, it would not be
observable in practice.

As we have noted, the system may allow large rotations in the “un-
winding” direction (€ negative), and the torque reaches a maximum,
which can be calculated from (3.4). It is interesting that this occurs
before the point where the cross cables are at maximum length (the
point of maximum energy). As the unwinding continues, the geometry
of the truss begins to allow the torque to be exercised more efficiently
in counteracting the elastic forces. Continuing, one arrives at the point
where the cross-cables are at their maximum length and the torque is
zero. This is a point of unstable equilibrium.

It can be seen that the torque-angle loading and the natural mode
loading yield essentially the same response. The natural-mode loading
effects the torquing of the structure with no extraneous “equilibrium”
loading, in contrast to the vertical loading or an = — y plane loading.

The vertical loading response presumably is more typical of the
response of an tensegrity structure to an arbitrary applied force. The
force-displacement relation is clearly distinguished from that of the
natural mode loading. To begin, the response is not symmetric about
zero, as in the other cases. And, although the same sort of prestress-
initial modulus relation and non-linear response occur as in the other
cases, the stiffening is much more pronounced under this loading, due
to the geometric relation prescribed by the constraints. There is also a
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distinct difference in the curvature of the response for small values of
displacement. Finally, we note the approach to infinity of the response
shown in Figure 7 is related to, but not directly caused by, the approach
to physical interference of the structural elements.

This analysis is interestingly similar to that of a well-known model
problem (c¢f.[1]). The system shown in Figure 2 is an under-constrained
prestressible system..

Figure 2. Two-dim. Model

When the nodes are colinear a prestress state is possible and an
infinitesimal flex is present. If the distance between the supports is 2 L,
the natural length of each bar is Ly, and each bar has a spring constant
of k, then it is easy to see that the force required to displace the central
node by a distance x is

Ly
VIL? + 2

The response shows a geometric stiffening effect, asymptotic to a linear
graph. The small displacement approximation to (4.1) is

2k (1 ) 7. (4.1)

2k <1 - T) T+ g+ o(z”), (4.2)

verifying that the initial modulus is zero if the system is not prestressed,
but proportional to the prestress if it exists. Our results for natural-

mode loading for our tensegrity structure are remarkably similar to
(4.1).
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Figure 3. Torque-rotation Response for small Rotations; Prestrains of 0%, 0.2%
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Figure 4. Torque-rotation Response over Feasible Range; Prestrains of 0%, 10%,

50%, and 300%



16

Force
(pos. downwar ds)

Displacement
(pos. downwar ds)
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Figure 5. Force-displacement Relations for a Downwards Force; No Prestress and
Small Prestress
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Figure 6. Force-displacement Relations for a Downwards Force; Various Prestresses
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Displacement
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Figure 7. Force-displacement Relations for a Downwards Force; Zero and Large
Prestress
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Figure 8. Force-displacement Relations for a Natural-mode Force under Various
Prestresses






