X. Linear System: Basic Concepts

Let n be a positive integer and $\|\cdot\|$ be a norm on \mathbb{R}^{n}. We denote by $\mathbb{R}^{n \times n}$ the set of all $n \times n$ matrices with real entries. With the usual notions of matrix addition and multiplication of a matrix by a scalar, $\mathbb{R}^{n \times n}$ is a real linear space of dimension n^{2}. We define a norm $\left\|\|\cdot\| \mid\right.$ on $\mathbb{R}^{n \times n}$ by

$$
\begin{equation*}
\|\mid B\| \|=\max \left\{\|B z\|: z \in \mathbb{R}^{n},\|z\|=1\right\} \quad \text { for all } B \in \mathbb{R}^{n \times n} \tag{10.1}
\end{equation*}
$$

[The elements of \mathbb{R}^{n} are to be treated as column vectors in situations involving matrix multiplication.] It follows easily from (10.1) that

$$
\begin{equation*}
\|\|B z\| \leq\| B\|\|\cdot\| z\| \quad \text { for all } B \in \mathbb{R}^{n \times n}, z \in \mathbb{R}^{n} \tag{10.2}
\end{equation*}
$$

Observe that different norms on \mathbb{R}^{n} lead to different norms on $\mathbb{R}^{n \times n}$.
Let $I \subset \mathbb{R}$ be a nonempty open interval and let $A: I \rightarrow \mathbb{R}^{n \times n}$ and $g: I \rightarrow \mathbb{R}^{n}$ be given. We assume throughout this section that A and g are continuous on I. Consider the linear system of differential equations

$$
\begin{equation*}
\dot{x}(t)=A(t) x(t)+g(t) . \tag{L}
\end{equation*}
$$

If we put $D=I \times \mathbb{R}^{n}$ and define $f: D \rightarrow \mathbb{R}^{n}$ by

$$
f(t, z)=A(t) z+g(t) \quad \text { for all }(t, z) \in D
$$

it is easy to see that f is continuous and locally Lipschitzean on D. Consequently, for each $t_{0} \in I, x_{0} \in \mathbb{R}^{n}$ we have existence of exactly one noncontinuable solution x of (L) satisfying $x\left(t_{0}\right)=x_{0}$. Moreover, it is straightforward to show that every noncontinuable solution x of (L) has $\operatorname{Dom}(x)=I$. Therefore, when we speak of a solution of (L) we shall mean a solution with domain I, unless stated otherwise.

Observe that if x and x^{*} are solutions of (L) then $x-x^{*}$ is a solution of the corresponding homogeneous equation

$$
\begin{equation*}
\dot{x}(t)=A(t) x(t) \tag{LH}
\end{equation*}
$$

Since multiplication by an element of $\mathbb{R}^{n \times n}$ maps $\mathbb{R}^{n \times n}$ into $\mathbb{R}^{n \times n}$, it is possible to consider matrix-valued solutions of (LH). By a matrix-valued solution of (LH) we mean a differentiable function $X: I \rightarrow \mathbb{R}^{n \times n}$ such that $\dot{X}(t)=A(t) X(t)$ for all $t \in I$. Note that a matrix-valued function $X: I \rightarrow \mathbb{R}^{n \times n}$ is a solution of (LH) if and only if each column is a solution of (LH).

Proposition 10.1:

(i) If x and x^{*} are solutions of (L) then $x-x^{*}$ is a solution of (LH).
(ii) The set of all solutions of (LH) is a (real) linear space.
(iii) If x is a solution of (L) and y is a solution of (LH) then $x+y$ is a solution of (L).

Proposition 10.2: Let X be a matrix-valued solution of (LH) and let $\xi \in \mathbb{R}^{n}$, $C \in \mathbb{R}^{n \times n}$ be given. Define $x: I \rightarrow \mathbb{R}^{n}$ by $x(t)=X(t) \xi$ and $Y: I \rightarrow \mathbb{R}^{n \times n}$ by $Y(t)=X(t) C$ for all $t \in I$. Then x is a solution of (LH) and Y is a matrix-valued solution of (LH).

Proposition 10.3: Let X be a matrix-valued solution of (LH). Then either $X(t)$ is invertible for all $t \in I$ or $X(t)$ is singular for all $t \in I$.

Definition 10.4: A matrix-valued solution X of (LH) is called a fundamental matrix solution if $X(t)$ is invertible for all $t \in I$.

Proposition 10.5: (LH) has a fundamental matrix solution. (In fact, there are many.)

Proposition 10.6: Let X be a fundamental matrix solution of (LH) and define $Y: I \rightarrow \mathbb{R}^{n \times n}$ by $Y(t)=(X(t))^{-1}$ for all $t \in I$. Then Y satisfies $\dot{Y}(t)=-Y(t) A(t)$ for all $t \in I$.

Proposition 10.7: (Abel's Equation): Let X be a matrix-valued solution of (LH) and define $\varphi(t)=\operatorname{det}(X(t))$ for all $t \in I$. Then φ satisfies

$$
\dot{\varphi}=[\operatorname{tr} A(t)] \varphi(t) \quad \text { for all } t \in I,
$$

where $\operatorname{tr} A(t)$ denotes the trace of $A(t)$, i.e. the sum of the entries on the main diagonal.

Proposition 10.8 (Variation of Constants) Let X be a fundamental matrix solution of (LH) and let $t_{0} \in I, x_{0} \in \mathbb{R}^{n}$ be given. The solution x of (L) satisfying $x\left(t_{0}\right)=x_{0}$ is given by

$$
x(t)=X(t) X\left(t_{0}\right)^{-1} x_{0}+\int_{t_{0}}^{t} X(t) X(s)^{-1} g(s) d s
$$

