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XI. Matrix Exponential

In this section we consider homogeneous linear systems with constant coefficients,
i.e. autonomous versions of (LH). It is convenient to allow the coefficients and solu-
tions to be complex-valued.

Indeed, complex-valued solutions are often helpful for constructing real-valued
solutions to systems with real coefficients. Let A ∈ C

n×n be given and consider the
system

(ALH) ẋ(t) = Ax(t).

By a solution of (ALH) we mean a differentiable function x : R → C
n such that (ALH)

holds for all t ∈ R. By a matrix-valued solution of (ALH) we mean a differentiable
function X : R → C

n×n such that Ẋ(t) = AX(t) for all t ∈ R. Notice that a function
X : R → C

n×n is a matrix-valued solution of (ALH) if and only if each column is a
solution of (ALH). Notice also that if X is a matrix-valued solution of (ALH) and
ξ ∈ C

n, C ∈ C
n×n then t → X(t)ξ is a solution of (ALH) and t → X(t)C is a

matrix-valued solution of (ALH). It is straightforward to verify that a matrix -valued
solution of (ALH) is invertible for all times if and only if it is invertible at 0.

Definition 11.1 For each t ∈ R we define etA
∈ C

n×n to be the value at t of the
matrix-valued solution X of (ALH) satisfying X(0) = I, where I is the n×n identify
matrix.

Proposition 11.2 Let A,B ∈ C
n×n be given. Then

(i) e0A = I;

(ii) e(t+s)A = etAesA for all s, t ∈ R;

(iii)
(

etA
)

−1
= e−tA for all t ∈ R;

(iv) AetA = etAA for all t ∈ R;

(v) etA =
∞

∑

m=0

(tA)m

m!
for all t ∈ R;

(vi) If B is invertible then B−1etAB = etB−1AB for all t ∈ R;

(vii) If A = diag (λ1, λ2, . . . , λn) then etA = diag (eλ1t, eλ2t, . . . , eλnt) for all t ∈ R;
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(viii) det (etA) = exp[tr(A)t] for all t ∈ R;

(ix) BetA = etAB for all t ∈ R if and only if AB = BA;

(x) et(A+B) = etAetB for all t ∈ R if and only if AB = BA.
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