XI. Matrix Exponential

In this section we consider homogeneous linear systems with constant coefficients, i.e. autonomous versions of (LH). It is convenient to allow the coefficients and solutions to be complex-valued.

Indeed, complex-valued solutions are often helpful for constructing real-valued solutions to systems with real coefficients. Let $A \in \mathbb{C}^{n \times n}$ be given and consider the system

$$
\begin{equation*}
\dot{x}(t)=A x(t) \tag{ALH}
\end{equation*}
$$

By a solution of (ALH) we mean a differentiable function $x: \mathbb{R} \rightarrow \mathbb{C}^{n}$ such that (ALH) holds for all $t \in \mathbb{R}$. By a matrix-valued solution of (ALH) we mean a differentiable function $X: \mathbb{R} \rightarrow \mathbb{C}^{n \times n}$ such that $\dot{X}(t)=A X(t)$ for all $t \in \mathbb{R}$. Notice that a function $X: \mathbb{R} \rightarrow \mathbb{C}^{n \times n}$ is a matrix-valued solution of (ALH) if and only if each column is a solution of (ALH). Notice also that if X is a matrix-valued solution of (ALH) and $\xi \in \mathbb{C}^{n}, C \in \mathbb{C}^{n \times n}$ then $t \rightarrow X(t) \xi$ is a solution of (ALH) and $t \rightarrow X(t) C$ is a matrix-valued solution of (ALH). It is straightforward to verify that a matrix -valued solution of (ALH) is invertible for all times if and only if it is invertible at 0 .
Definition 11.1 For each $t \in \mathbb{R}$ we define $e^{t A} \in \mathbb{C}^{n \times n}$ to be the value at t of the matrix-valued solution X of (ALH) satisfying $X(0)=I$, where I is the $n \times n$ identify matrix.
Proposition 11.2 Let $A, B \in \mathbb{C}^{n \times n}$ be given. Then
(i) $e^{0 A}=I$;
(ii) $e^{(t+s) A}=e^{t A} e^{s A}$ for all $s, t \in \mathbb{R}$;
(iii) $\left(e^{t A}\right)^{-1}=e^{-t A}$ for all $t \in \mathbb{R}$;
(iv) $A e^{t A}=e^{t A} A$ for all $t \in \mathbb{R}$;
(v) $e^{t A}=\sum_{m=0}^{\infty} \frac{(t A)^{m}}{m!}$ for all $t \in \mathbb{R}$;
(vi) If B is invertible then $B^{-1} e^{t A} B=e^{t B^{-1} A B}$ for all $t \in \mathbb{R}$;
(vii) If $A=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ then $e^{t A}=\operatorname{diag}\left(e^{\lambda_{1} t}, e^{\lambda_{2} t}, \ldots, e^{\lambda_{n} t}\right)$ for all $t \in \mathbb{R}$;
(viii) $\operatorname{det}\left(e^{t A}\right)=\exp [\operatorname{tr}(A) t]$ for all $t \in \mathbb{R}$;
(ix) $B e^{t A}=e^{t A} B$ for all $t \in \mathbb{R}$ if and only if $A B=B A$;
(x) $e^{t(A+B)}=e^{t A} e^{t B}$ for all $t \in \mathbb{R}$ if and only if $A B=B A$.

