Department of Mathematical Sciences Carnegie Mellon University

21-476 Ordinary Differential Equations Fall 2003

XI. Matrix Exponential

In this section we consider homogeneous linear systems with constant coefficients, i.e. autonomous versions of (LH). It is convenient to allow the coefficients and solutions to be complex-valued.

Indeed, complex-valued solutions are often helpful for constructing real-valued solutions to systems with real coefficients. Let $A \in \mathbb{C}^{n \times n}$ be given and consider the system

(ALH)
$$\dot{x}(t) = Ax(t).$$

By a solution of (ALH) we mean a differentiable function $x : \mathbb{R} \to \mathbb{C}^n$ such that (ALH) holds for all $t \in \mathbb{R}$. By a matrix-valued solution of (ALH) we mean a differentiable function $X : \mathbb{R} \to \mathbb{C}^{n \times n}$ such that $\dot{X}(t) = AX(t)$ for all $t \in \mathbb{R}$. Notice that a function $X : \mathbb{R} \to \mathbb{C}^{n \times n}$ is a matrix-valued solution of (ALH) if and only if each column is a solution of (ALH). Notice also that if X is a matrix-valued solution of (ALH) and $\xi \in \mathbb{C}^n, C \in \mathbb{C}^{n \times n}$ then $t \to X(t)\xi$ is a solution of (ALH) and $t \to X(t)C$ is a matrix-valued solution of (ALH). It is straightforward to verify that a matrix -valued solution of (ALH) is invertible for all times if and only if it is invertible at 0.

Definition 11.1 For each $t \in \mathbb{R}$ we define $e^{tA} \in \mathbb{C}^{n \times n}$ to be the value at t of the matrix-valued solution X of (ALH) satisfying X(0) = I, where I is the $n \times n$ identify matrix.

Proposition 11.2 Let $A, B \in \mathbb{C}^{n \times n}$ be given. Then

(i)
$$e^{0A} = I;$$

(ii)
$$e^{(t+s)A} = e^{tA}e^{sA}$$
 for all $s, t \in \mathbb{R}$;

(iii)
$$(e^{tA})^{-1} = e^{-tA}$$
 for all $t \in \mathbb{R}$;

(iv) $Ae^{tA} = e^{tA}A$ for all $t \in \mathbb{R}$;

(v)
$$e^{tA} = \sum_{m=0}^{\infty} \frac{(tA)^m}{m!}$$
 for all $t \in \mathbb{R}$;

(vi) If B is invertible then $B^{-1}e^{tA}B = e^{tB^{-1}AB}$ for all $t \in \mathbb{R}$;

(vii) If $A = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ then $e^{tA} = \text{diag}(e^{\lambda_1 t}, e^{\lambda_2 t}, \dots, e^{\lambda_n t})$ for all $t \in \mathbb{R}$;

- (viii) det $(e^{tA}) = \exp[tr(A)t]$ for all $t \in \mathbb{R}$;
 - (ix) $Be^{tA} = e^{tA}B$ for all $t \in \mathbb{R}$ if and only if AB = BA;
 - (x) $e^{t(A+B)} = e^{tA}e^{tB}$ for all $t \in \mathbb{R}$ if and only if AB = BA.