XII. Some Remarks on Eigenvectors and Generalized Eigenvectors

Let $A \in \mathbb{C}^{n \times n}$ be given. A complex number λ is called an eigenvalue of A if the null space of $\lambda I-A$ is nontrivial, i.e. if $\mathcal{N}(\lambda I-A) \neq\{0\}$. Here I is the $n \times n$ identity matrix, and for each $B \in \mathbb{C}^{n \times n}, \mathcal{N}(B)=\left\{\xi \in \mathbb{C}^{n}: B \xi=0\right\}$. If λ is an eigenvalue of A the nonzero elements of $\mathcal{N}(\lambda I-A)$ are called eigenvectors associated with λ. The set of all eigenvalues of A is called the spectrum of A and is denoted by $\sigma(A)$. The eigenvalues of A are precisely the roots of the characteristic equation.

$$
\begin{equation*}
P_{A}(\lambda)=0 \tag{12.1}
\end{equation*}
$$

where $P_{A}: \mathbb{C} \rightarrow \mathbb{C}$ is the characteristic polynomial and is defined by

$$
\begin{equation*}
P_{A}(\lambda)=\operatorname{det}(\lambda I-A) \quad \text { for all } \lambda \in \mathbb{C} . \tag{12.2}
\end{equation*}
$$

P_{A} is a polynomial of degree n and consequently $\sigma(A)$ is nonempty and contains at most n elements. The algebraic multiplicity of an eigenvalue λ of A is defined to be its multiplicity as a root of (12.1) and is denoted by $m_{A}(\lambda)$.

Proposition 12.1:

(i) $\operatorname{tr}(A)=\sum_{\lambda \in \sigma(A)} m_{A}(\lambda) \lambda$
(ii) $\operatorname{det}(A)=\prod_{\lambda \in \sigma(A)} \lambda^{m_{A}(\lambda)}$

Notice that if λ is an eigenvalue of A and ξ is an associated eigenvector then $e^{t A} \xi=e^{\lambda t} \xi$ for all $t \in \mathbb{R}$. Consequently, if A has n linearly independent eigenvectors then we have a simple representation for $e^{t A}$.

Proposition 12.2: Assume that $\sigma(A)$ contains exactly n elements (i.e. that $m_{A}(\lambda)=$ 1 for every $\lambda \in \sigma(A))$. Then $\operatorname{dim}(\lambda I-A)=1$ for every $\lambda \in \sigma(A)$ and there is a basis for \mathbb{C}^{n} consisting solely of eigenvectors of A.

If $\sigma(A)$ contains strictly less than n elements there may or may not be n linearly independent eigenvectors. However, there is always a basis that can be used to obtain a convenient representation for $e^{t A}$.

Definition 12.3: Let λ be an eigenvalue of A. A nonzero vector $\xi \in \mathbb{C}^{n}$ is called a generalized eigenvector associated with λ if there is a positive integer k such that $\xi \in \mathcal{N}\left((\lambda I-A)^{k}\right)$.

Remark 12.3: Let λ be an eigenvalue of A and ξ be an associated generalized eigenvector, and choose a positive integer k such that $(\lambda I-A)^{k} \xi=0$. Notice that $(\lambda I-A)^{m} \xi=0$ for all integers $m \geq k$. Therefore, we have

$$
\begin{aligned}
e^{t A} \xi & =e^{t \lambda I} e^{t(A-\lambda I)} \xi=e^{\lambda t} e^{t(A-\lambda I)} \xi \\
& =e^{\lambda t}\left(\sum_{m=0}^{\infty} \frac{t^{m}}{m!}(A-\lambda I)^{m}\right) \xi \\
& =e^{\lambda t}\left(\xi+t(A-\lambda I) \xi+\ldots+\frac{t^{k-1}}{(k-1)!}(A-\lambda I)^{k-1} \xi\right)
\end{aligned}
$$

Theorem 12.4: For each $\lambda \in \sigma(A)$ there is exactly one integer $r_{A}(\lambda)$ satisfying
(i) $1 \leq r_{A}(\lambda) \leq m_{A}(\lambda)$
(ii) $\operatorname{dim} \mathcal{N}\left((\lambda I-A)^{r_{A}(\lambda)}\right)=m_{A}(\lambda)$
(iii) $\mathcal{N}\left((\lambda I-A)^{m}\right)=\mathcal{N}\left((\lambda I-A)^{r_{A}(\lambda)}\right)$ for all $m \in \mathbb{N}$ with $m \geq r_{A}(\lambda)$
(iv) $\mathcal{N}\left((\lambda I-A)^{r_{A}(\lambda)-1}\right) \neq \mathcal{N}\left((\lambda I-A)^{r_{A}(\lambda)}\right)$

Theorem 12.5: There is a basis \mathcal{B} for \mathbb{C}^{n} with the following properties.
(i) Every element of \mathcal{B} is a generalized eigenvector of A.
(ii) For every $\lambda \in \sigma(A)$ there are exactly $m_{A}(\lambda)$ elements of \mathcal{B} that belong to $\mathcal{N}\left((\lambda I-A)^{r_{A}(\lambda)}\right)$

