Department of Mathematical Sciences Carnegie Mellon University

21-476 Ordinary Differential Equations Fall 2003

XII. Some Remarks on Eigenvectors and Generalized Eigenvectors

Let $A \in \mathbb{C}^{n \times n}$ be given. A complex number λ is called an *eigenvalue* of A if the null space of $\lambda I - A$ is nontrivial, i.e. if $\mathcal{N}(\lambda I - A) \neq \{0\}$. Here I is the $n \times n$ identity matrix, and for each $B \in \mathbb{C}^{n \times n}$, $\mathcal{N}(B) = \{\xi \in \mathbb{C}^n : B\xi = 0\}$. If λ is an eigenvalue of A the nonzero elements of $\mathcal{N}(\lambda I - A)$ are called *eigenvectors* associated with λ . The set of all eigenvalues of A is called the *spectrum* of A and is denoted by $\sigma(A)$. The eigenvalues of A are precisely the roots of the *characteristic equation*.

(12.1)
$$P_A(\lambda) = 0,$$

where $P_A : \mathbb{C} \to \mathbb{C}$ is the *characteristic polynomial* and is defined by

(12.2)
$$P_A(\lambda) = \det(\lambda I - A)$$
 for all $\lambda \in \mathbb{C}$

 P_A is a polynomial of degree *n* and consequently $\sigma(A)$ is nonempty and contains at most *n* elements. The *algebraic multiplicity* of an eigenvalue λ of *A* is defined to be its multiplicity as a root of (12.1) and is denoted by $m_A(\lambda)$.

Proposition 12.1:

(i)
$$tr(A) = \sum_{\lambda \in \sigma(A)} m_A(\lambda)\lambda$$

(ii)
$$\det(A) = \prod_{\lambda \in \sigma(A)} \lambda^{m_A(\lambda)}$$

Notice that if λ is an eigenvalue of A and ξ is an associated eigenvector then $e^{tA}\xi = e^{\lambda t}\xi$ for all $t \in \mathbb{R}$. Consequently, if A has n linearly independent eigenvectors then we have a simple representation for e^{tA} .

Proposition 12.2: Assume that $\sigma(A)$ contains exactly *n* elements (i.e. that $m_A(\lambda) = 1$ for every $\lambda \in \sigma(A)$). Then dim $(\lambda I - A) = 1$ for every $\lambda \in \sigma(A)$ and there is a basis for \mathbb{C}^n consisting solely of eigenvectors of *A*.

If $\sigma(A)$ contains strictly less than *n* elements there may or may not be *n* linearly independent eigenvectors. However, there is always a basis that can be used to obtain a convenient representation for e^{tA} .

Definition 12.3: Let λ be an eigenvalue of A. A nonzero vector $\xi \in \mathbb{C}^n$ is called a *generalized eigenvector* associated with λ if there is a positive integer k such that $\xi \in \mathcal{N}((\lambda I - A)^k)$. **Remark 12.3**: Let λ be an eigenvalue of A and ξ be an associated generalized eigenvector, and choose a positive integer k such that $(\lambda I - A)^k \xi = 0$. Notice that $(\lambda I - A)^m \xi = 0$ for all integers $m \ge k$. Therefore, we have

$$e^{tA}\xi = e^{t\lambda I}e^{t(A-\lambda I)}\xi = e^{\lambda t}e^{t(A-\lambda I)}\xi$$
$$= e^{\lambda t}\left(\sum_{m=0}^{\infty} \frac{t^m}{m!}(A-\lambda I)^m\right)\xi$$
$$= e^{\lambda t}\left(\xi + t(A-\lambda I)\xi + \ldots + \frac{t^{k-1}}{(k-1)!}(A-\lambda I)^{k-1}\xi\right)$$

Theorem 12.4: For each $\lambda \in \sigma(A)$ there is exactly one integer $r_A(\lambda)$ satisfying

(i) $1 \le r_A(\lambda) \le m_A(\lambda)$ (ii) dim $\mathcal{N}\left((\lambda I - A)^{r_A(\lambda)}\right) = m_A(\lambda)$ (iii) $\mathcal{N}\left((\lambda I - A)^m\right) = \mathcal{N}\left((\lambda I - A)^{r_A(\lambda)}\right)$ for all $m \in \mathbb{N}$ with $m \ge r_A(\lambda)$ (iv) $\mathcal{N}\left((\lambda I - A)^{r_A(\lambda)-1}\right) \ne \mathcal{N}\left((\lambda I - A)^{r_A(\lambda)}\right)$

Theorem 12.5: There is a basis \mathcal{B} for \mathbb{C}^n with the following properties.

- (i) Every element of \mathcal{B} is a generalized eigenvector of A.
- (ii) For every $\lambda \in \sigma(A)$ there are exactly $m_A(\lambda)$ elements of \mathcal{B} that belong to $\mathcal{N}\left((\lambda I A)^{r_A(\lambda)}\right)$