Department of Mathematical Sciences Carnegie Mellon University

21-476 Ordinary Differential Equations Fall 2003

VIII. Autonomous Systems: Stability and Liapunov Function

Let $g: \mathbb{R}^n \to \mathbb{R}^n$ be given and consider the autonomous system

$$\dot{x} = g(x).$$

We assume throughout this section that g is continuous and has the uniqueness property. For each $y \in \mathbb{R}^n$, $\delta > 0$ we put

(8.1)
$$B_{\delta}(y) = \{ z \in \mathbb{R}^n : ||z - y|| < \delta \}.$$

Definition 8.1: Let x^* be a critical point for (A). We say that x^* is

- (a) stable if $\forall \epsilon > 0$, $\exists \delta > 0$ such that for every $p \in B_{\delta}(x^*)$ we have $\eta_+(p) = \infty$ and $||\varphi(t,p) x^*|| < \epsilon$ for all $t \ge 0$.
- (b) asymptotically stable if it is stable and $\exists \delta' > 0$ such that for every $p \in B_{\delta'}(x^*)$ we have $\eta_+(p) = \infty$ and $\varphi(t, p) \to x^*$ as $t \to \infty$.
- (c) unstable if it is not stable.

Theorem 8.2 (Liapunov): Let x^* be a critical point for (A) and U be an open subset of \mathbb{R}^n with $x^* \in U$. Assume that $V : U \to \mathbb{R}$ is continuously differentiable and define $\dot{V} : U \to \mathbb{R}$ by

$$\dot{V}(z) = \nabla V(z) \cdot g(z) \quad \forall z \in U.$$

- (a) If V is locally positive definite at x^* and \dot{V} is locally negative semidefinite at x^* then x^* is stable.
- (b) If V is locally positive definite at x^* and \dot{V} is locally negative definite at x^* then x^* is asymptotically stable.
- (c) If $V(x^*) = 0$, \dot{V} is locally positive definite at x^* and $\forall \delta > 0$, $\exists z \in B_{\delta}(x^*) \cap U$ with V(z) > 0 then x^* is unstable.