Review Problems for Test 3

Let \mathbb{F} be a field and V be a finite-dimensional vector space over \mathbb{F}.
Given $m, n, \in \mathbb{Z}^{+}, \mathbb{F}^{m \times n}$ denotes the set of all $m \times n$ matrices with entries from \mathbb{F}.

1. Let $\mathbb{F}=\mathbb{R}$ and

$$
A=\left(\begin{array}{rrrr}
1 & 2 & 3 & 4 \\
1 & 0 & 4 & 7 \\
2 & 4 & 9 & 9 \\
-1 & -2 & -3 & -3
\end{array}\right)
$$

Find $\operatorname{det}(A)$.
2. Let $\mathbb{F}=\mathbb{R}$ and assume that $(\cdot, \cdot): V \times V \rightarrow \mathbb{R}$ is an inner product. Let $T \in L(V, V)$ be given and assume that $(T x, y)=-(x, T y) \quad \forall x, y \in V$. Let U be a subspace of V and let

$$
U^{\perp}=\{x \in V:(x, y)=0 \quad \forall y \in U\} .
$$

Show that if U is T-invariant then U^{\perp} is T-invariant.
3. Let $A \in \mathbb{F}^{9 \times 8}$ and $B \in \mathbb{F}^{8 \times 9}$ be given and let $C=A B$. Show that $\operatorname{det}(C)=0$.
4. Let $T \in L(V, V)$ be given and assume that $T^{3}=T$. What are the possible values of $\operatorname{det}(T)$? What are the possible eigenvalues for T ?
5. Let $T \in L(V, V)$ and $k \in \mathbb{Z}^{+}$be given. Assume that $T^{k}=0$ (Such a linear transformation is called nilpotent.) Show that 0 is an eigenvalue for T and that T has no other eigenvalues.
6. Let $\mathbb{F}=\mathbb{Z}_{5}$ and let

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
2 & 1 & 1
\end{array}\right)
$$

Compute $\operatorname{det}(A)$.
7. Assume that $\operatorname{dim} V$ is odd and that $(\cdot, \cdot): V \times V \rightarrow \mathbb{R}$ is an inner product. Let $T \in L(V, V)$ be given and assume that $(T x, y)=-(x, T y)$ for all $x, y \in V$. Show that $\operatorname{det}(T)=0$.
8. Let $\mathbb{F}=\mathbb{R}$ and let

$$
A=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

(a) Find the minimal polynomial for A.
(b) Find the characteristic polynomial for A.
(c) Find all eigenvalues and eigenvectors for A.
(d) Is A diagonalizable? Explain.
9. Let $\mathbb{F}=\mathbb{R}$ and let

$$
A=\left(\begin{array}{ll}
1 & 3 \\
3 & 5
\end{array}\right)
$$

Find all eigenvalues and eigenvectors for A.
10. Let $\mathbb{F}=\mathbb{R}$ and

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 2 & 0 \\
1 & 2 & 3
\end{array}\right)
$$

Find all eigenvalues and eigenvectors for A.
11. Let $\mathbb{F}=\mathbb{C}$ and

$$
A=\left(\begin{array}{rrr}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 3
\end{array}\right)
$$

(a) Find all eigenvalues and eigenvectors for A.
(b) Is A diagonalizable? If so, find $S \in \mathbb{C}^{3 \times 3}$ such that $S^{-1} A S$ is diagonal.
12. Let $T \in L(V, V)$ and $\lambda \in \mathbb{F} \backslash\{0\}$ be given. Assume that T is invertible. Show that λ is an eigenvalue for T if and only if λ^{-1} is an eigenvalue for T^{-1}.
13. Let $n \in \mathbb{Z}$ and $A \in \mathbb{F}^{n \times n}$ be given. Assume that A has n distinct eigenvalues $\lambda_{1}, \lambda_{2} \ldots, \lambda_{n}$. Show that

$$
\operatorname{det}(A)=\prod_{i=1}^{n} \lambda_{i}, \quad \text { and } \operatorname{tr}(A)=\sum_{i=1}^{n} \lambda_{i} .
$$

