Linear Algebra I

Review Problems for Test 3

Let \mathbb{F} be a field and V be a finite-dimensional vector space over \mathbb{F} .

Given $m, n \in \mathbb{Z}^+$, $\mathbb{F}^{m \times n}$ denotes the set of all $m \times n$ matrices with entries from \mathbb{F} .

1. Let $\mathbb{F} = \mathbb{R}$ and

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 4 & 7 \\ 2 & 4 & 9 & 9 \\ -1 & -2 & -3 & -3 \end{pmatrix}$$

Find det(A).

2. Let $\mathbb{F} = \mathbb{R}$ and assume that $(\cdot, \cdot) : V \times V \to \mathbb{R}$ is an inner product. Let $T \in L(V, V)$ be given and assume that $(Tx, y) = -(x, Ty) \quad \forall x, y \in V$. Let U be a subspace of V and let

$$U^{\perp} = \{ x \in V : (x, y) = 0 \quad \forall y \in U \}.$$

Show that if U is T-invariant then U^{\perp} is T-invariant.

- 3. Let $A \in \mathbb{F}^{9 \times 8}$ and $B \in \mathbb{F}^{8 \times 9}$ be given and let C = AB. Show that $\det(C) = 0$.
- 4. Let $T \in L(V, V)$ be given and assume that $T^3 = T$. What are the possible values of det(T)? What are the possible eigenvalues for T?
- 5. Let $T \in L(V, V)$ and $k \in \mathbb{Z}^+$ be given. Assume that $T^k = 0$ (Such a linear transformation is called nilpotent.) Show that 0 is an eigenvalue for T and that T has no other eigenvalues.
- 6. Let $\mathbb{F} = \mathbb{Z}_5$ and let

$$A = \left(\begin{array}{rrr} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 2 & 1 & 1 \end{array}\right).$$

Compute det(A).

7. Assume that dimV is odd and that $(\cdot, \cdot) : V \times V \to \mathbb{R}$ is an inner product. Let $T \in L(V, V)$ be given and assume that (Tx, y) = -(x, Ty) for all $x, y \in V$. Show that det(T) = 0. 8. Let $\mathbb{F} = \mathbb{R}$ and let

$$A = \left(\begin{array}{rrr} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array}\right)$$

- (a) Find the minimal polynomial for A.
- (b) Find the characteristic polynomial for A.
- (c) Find all eigenvalues and eigenvectors for A.
- (d) Is A diagonalizable? Explain.
- 9. Let $\mathbb{F} = \mathbb{R}$ and let

$$A = \left(\begin{array}{rrr} 1 & 3 \\ 3 & 5 \end{array}\right).$$

Find all eigenvalues and eigenvectors for A.

10. Let $\mathbb{F} = \mathbb{R}$ and

$$A = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 2 & 3 \end{array}\right).$$

Find all eigenvalues and eigenvectors for A.

11. Let $\mathbb{F} = \mathbb{C}$ and

$$A = \left(\begin{array}{rrr} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 3 \end{array} \right).$$

- (a) Find all eigenvalues and eigenvectors for A.
- (b) Is A diagonalizable? If so, find $S \in \mathbb{C}^{3 \times 3}$ such that $S^{-1}AS$ is diagonal.
- 12. Let $T \in L(V, V)$ and $\lambda \in \mathbb{F} \setminus \{0\}$ be given. Assume that T is invertible. Show that λ is an eigenvalue for T if and only if λ^{-1} is an eigenvalue for T^{-1} .
- 13. Let $n \in \mathbb{Z}$ and $A \in \mathbb{F}^{n \times n}$ be given. Assume that A has n distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$. Show that

$$det(A) = \prod_{i=1}^{n} \lambda_i$$
, and $tr(A) = \sum_{i=1}^{n} \lambda_i$.