Linear Algebra I

Review Problems for Test 1

- 1. Let $\mathbb{F} = \mathbb{R}$ and $V = \mathbb{R}^4$. Determine whether or not the list of vectors is linearly independent.
- 2. Let $\mathbb{F} = \mathbb{R}$ and $V = \mathbb{R}^5$. Find a basis for the solution set of the equation $x_1 + 2x_2 x_3 + x_4 2x_5 = 0$.
- 3. Prove or Disprove: Let V be a finitely generated vector space and let S, T, R be subspaces of V. Then $S + (T \cap R) = (S + T) \cap (S + R)$.
- 4. Let $\mathbb{F} = \mathbb{R}$ and let $n \in \mathbb{Z}^+$ be given. Let $P_n(\mathbb{R})$ denote the vector space of all real polynomials of the degree $\leq n$. Assume that $f_0, f_1, \ldots, f_n \in P_n(\mathbb{R})$ satisfy $f_0(\pi) = f_1(\pi) = f_2(\pi) = \ldots = f_n(\pi) = 0$. Show that the list $f_0, f_1, f_2, \ldots, f_n$ is linearly dependent.
- 5. Let \mathbb{F} be a field and V, W be vector spaces over \mathbb{F} . Let $L : V \to W$ be a mapping such that L(u+v) = L(u) + L(v) and $L(\lambda u) = \lambda L(u)$ for all $u, v \in V, \lambda \in \mathbb{F}$. Let

$$T = \{L(u) : u \in V\}.$$

Show that T is a subspace of W.

6. Let $\mathbb{F} = \mathbb{R}$ and let $P_3(\mathbb{R})$ be the vector space of all real polynomials of degree ≤ 3 . Let $S = \{f \in \mathbb{P}_3(\mathbb{R}) : f(1) = 2\int_0^1 f(x)dx\}.$

Show that S is a subspace of $P_3(\mathbb{R})$ and find a basis for S.

7. Let
$$\mathbb{F} = \mathbb{R}$$
 and $A = \begin{pmatrix} 1 & 2 & 1 & -1 \\ 1 & 5 & 2 & 1 \\ -2 & 5 & 5 & 4 \end{pmatrix}$.

Find a 3×2 matrix A' such that A' is row equivalent to A, all zero rows of A' are below the nonzero rows, and the nonzero rows of A' are in echelon form.

- 8. Let V be an eight dimensional vector space and let S, T be subspaces of V with $\dim(S) = 5$ and $\dim(T) = 6$. What is the smallest possible dimension of $S \cap T$.
- 9. Prove or Disprove: Let S, T, R be subspaces of a finitely generated vector space V. If S + T = S + R then T = R.
- 10. In this problem, we will write complex numbers in the form a+bi where $a, b \in \mathbb{R}$ and $i^2 = -1$; for such a number we write

$$Re(a+bi) = a,$$
 $Im(a+bi) = b.$

Let $V = \mathbb{C}^4$.

(a) Assume that $\mathbb{F} = \mathbb{R}$. Which of the following are subspaces?

i. $\{ < z_1, z_2, z_3, z_4 >: z_1 + z_4 = 0 \}$ ii. $\{ < z_1, z_2, z_3, z_4 >: z_1 + z_4 = 1 \}$ iii. $\{ < z_1, z_2, z_3, z_4 >: z_1 + z_4 = z_2 \}$ iv. $\{ < z_1, z_2, z_3, z_4 : Re(z_1) = 0 \}$ v. $\{ < z_1, x_2, z_3, z_4 >: Im(z_1) = 0 \}$ vi. $\{ < z_1, z_2, z_3, z_4 >: z_1 z_2 = 0 \}$

- (b) How would the answers to part (a) change if the field were changed from \mathbb{R} to \mathbb{C} .
- 11. Let $\mathbb{F} = \mathbb{R}$ and $V = \mathcal{F}(\mathbb{R})$ the set of all real-valued functions $f : \mathbb{R} \to \mathbb{R}$. Let $f_1(x) = e^x$, $f_2(x) = e^{2x}$, $f_3(x) = e^{3x}$. Determine whether or not f_1, f_2, f_3 are linearly independent.