Review Problems for Test 1

1. Let $\mathbb{F}=\mathbb{R}$ and $V=\mathbb{R}^{4}$. Determine whether or not the list of vectors is linearly independent.
(a) $\langle 1,1,2,1\rangle, \quad<1,1,2,2\rangle$
(b) $\langle 1,-1,1,0\rangle,<1,2,3,4\rangle,<1,2,3,1\rangle,\langle-1,1,-1,1\rangle$, $<1,0,1,0>$
(c) $\langle 1,-1,1,1\rangle,<0,0,0,0\rangle,<1,3,2,1\rangle$
(d) $\langle 1,2,-1,0\rangle,<2,1,0,1\rangle,<4,5,-2,4\rangle$
2. Let $\mathbb{F}=\mathbb{R}$ and $V=\mathbb{R}^{5}$. Find a basis for the solution set of the equation $x_{1}+2 x_{2}-x_{3}+x_{4}-2 x_{5}=0$.
3. Prove or Disprove: Let V be a finitely generated vector space and let S, T, R be subspaces of V. Then $S+(T \cap R)=(S+T) \cap(S+R)$.
4. Let $\mathbb{F}=\mathbb{R}$ and let $n \in \mathbb{Z}^{+}$be given. Let $P_{n}(\mathbb{R})$ denote the vector space of all real polynomials of the degree $\leq n$. Assume that $f_{0}, f_{1}, \ldots f_{n} \in P_{n}(\mathbb{R})$ satisfy $f_{0}(\pi)=f_{1}(\pi)=f_{2}(\pi)=\ldots=f_{n}(\pi)=0$. Show that the list $f_{0}, f_{1}, f_{2}, \ldots, f_{n}$ is linearly dependent.
5. Let \mathbb{F} be a field and V, W be vector spaces over \mathbb{F}. Let $L: V \rightarrow W$ be a mapping such that $L(u+v)=L(u)+L(v)$ and $L(\lambda u)=\lambda L(u)$ for all $u, v \in V, \lambda \in \mathbb{F}$. Let

$$
T=\{L(u): u \in V\} .
$$

Show that T is a subspace of W.
6. Let $\mathbb{F}=\mathbb{R}$ and let $P_{3}(\mathbb{R})$ be the vector space of all real polynomials of degree ≤ 3. Let $S=\left\{f \in \mathbb{P}_{3}(\mathbb{R}): f(1)=2 \int_{0}^{1} f(x) d x\right\}$.
Show that S is a subspace of $P_{3}(\mathbb{R})$ and find a basis for S.
7. Let $\mathbb{F}=\mathbb{R}$ and $A=\left(\begin{array}{llll}1 & 2 & 1 & -1 \\ 1 & 5 & 2 & 1 \\ -2 & 5 & 5 & 4\end{array}\right)$.

Find a 3×2 matrix A^{\prime} such that A^{\prime} is row equivalent to A, all zero rows of A^{\prime} are below the nonzero rows, and the nonzero rows of A^{\prime} are in echelon form.
8. Let V be an eight dimensional vector space and let S, T be subspaces of V with $\operatorname{dim}(S)=5$ and $\operatorname{dim}(T)=6$. What is the smallest possible dimension of $S \cap T$.
9. Prove or Disprove: Let S, T, R be subspaces of a finitely generated vector space V. If $S+T=S+R$ then $T=R$.
10. In this problem, we will write complex numbers in the form $a+b i$ where $a, b \in \mathbb{R}$ and $i^{2}=-1$; for such a number we write

$$
\operatorname{Re}(a+b i)=a, \quad \operatorname{Im}(a+b i)=b .
$$

Let $V=\mathbb{C}^{4}$.
(a) Assume that $\mathbb{F}=\mathbb{R}$. Which of the following are subspaces?
i. $\left\{<z_{1}, z_{2}, z_{3}, z_{4}>: z_{1}+z_{4}=0\right\}$
ii. $\left\{<z_{1}, z_{2}, z_{3}, z_{4}>: z_{1}+z_{4}=1\right\}$
iii. $\left\{<z_{1}, z_{2}, z_{3}, z_{4}>: z_{1}+z_{4}=z_{2}\right\}$
iv. $\left\{<z_{1}, z_{2}, z_{3}, z_{4}: \operatorname{Re}\left(z_{1}\right)=0\right\}$
v. $\left\{<z_{1}, x_{2}, z_{3}, z_{4}>: \operatorname{Im}\left(z_{1}\right)=0\right\}$
vi. $\left\{<z_{1}, z_{2}, z_{3}, z_{4}>: z_{1} z_{2}=0\right\}$
(b) How would the answers to part (a) change if the field were changed from \mathbb{R} to \mathbb{C}.
11. Let $\mathbb{F}=\mathbb{R}$ and $V=\mathcal{F}(\mathbb{R})$ the set of all real-valued functions $f: \mathbb{R} \rightarrow \mathbb{R}$. Let $f_{1}(x)=e^{x}, \quad f_{2}(x)=e^{2 x}, \quad f_{3}(x)=e^{3 x}$. Determine whether or not f_{1}, f_{2}, f_{3} are linearly independent.

