Supplementary Problems for Assignment 4

Let $\mathbb{F}=\mathbb{R}$ and let $\mathbb{R}^{3 \times 3}$ denote the set of all real 3×3 matrices. For each $u, v \in \mathbb{R}^{3}$ define $u \otimes v \in \mathbb{R}^{3 \times 3}$ by

$$
(u \otimes v)_{i j}=u_{i} v_{j} \quad \text { for all } i, j=1,2,3
$$

1. (a) Let $u, v \in \mathbb{R}^{3}$ be given. Show that $\operatorname{rank}(u \otimes v) \leq 1$.
(b) Let $A \in \mathbb{R}^{3 \times 3}$ be given and assume that $\operatorname{rank}(A) \leq 1$. Show that there exist $w, z \in \mathbb{R}^{3}$ such that $A=w \otimes z$.
2. For each $a, b \in \mathbb{R}^{3}$ define $a \times b \in \mathbb{R}^{3}$ by

$$
\left\langle a_{1}, a_{2}, a_{3}\right\rangle \times\left\langle b_{1}, b_{2}, b_{3}\right\rangle=\left\langle a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right\rangle
$$

Find a linear transformation $L: \mathbb{R}^{3 \times 3} \rightarrow \mathbb{R}^{3}$ such that

$$
L(u \otimes v)=u \times v \quad \forall u, v \in \mathbb{R}^{3} .
$$

3. Let $a, b \in \mathbb{R}^{3}$ be given. Find a "nice" formula for $\operatorname{det}(I+a \otimes b)$.
