Review Problems for Test 1

1. Let $\vec{a}=<1,3,-1>, \vec{b}=<0,4,2>, \vec{c}=<5,-1,3>$. Compute each of the following:
(a) $|\vec{a}|$
(b) $\vec{a} \cdot \vec{c}$
(c) the angle between \vec{a} and \vec{c}
(d) the vector projection of \vec{b} onto \vec{a}
(e) the direction cosines of \vec{c}
(f) $\vec{a} \cdot(\vec{b} \times \vec{c})$
2. (a) Write an equation for the plane which passes through $(3,-6,8)$ and is normal to $<7,-2,-3>$.
(b) Write the symmetric and parametric equations of the line which passes through $(1,3,-5)$ and is parallel to $\langle 7,-2,-3\rangle$.
3. Find the line of intersection of the planes $x+y+z=4$ and $2 x-y+5 z=-1$.
4. Find a number d such that the distance from the point $P=(4,3,0)$ to the plane $x-2 y+z=d$ is 3 .
5. Find the distance from the point $(1,0,-1)$ to the line $x=t, y=-1-t, z=$ $1+2 t$.
6. Let $\vec{a}=<2,0,-1>$ and $\vec{b}=<1,2,0>$. Write \vec{b} as the sum of a vector \vec{b}_{1} parallel to \vec{a} and a vector \vec{b}_{2} perpendicular to \vec{a}.
7. Find the points of intersection of the line $\frac{x}{-2}=\frac{y-1}{3}=\frac{z}{\sqrt{3}}$ and the sphere $x^{2}+3 x+y^{2}+z^{2}=2$.
8. Find the plane that contains the line $x=y=z$ and the point $P_{0}=(1,2,3)$.
9. Given that $\stackrel{\rightharpoonup}{a}$ and $\stackrel{\rightharpoonup}{b}$ are vectors with $|\vec{a}|=1$ and $|\stackrel{\rightharpoonup}{a}-\vec{b}|=|\stackrel{\rightharpoonup}{b}|$, find $\stackrel{\rightharpoonup}{a} \cdot \stackrel{\rightharpoonup}{b}$.
10. Let $\vec{a}=<1,1,1>, \vec{b}=<2,-3,1>$ and $\vec{c}=<1,0,2>$. Find a vector \vec{v} satisfying

$$
\begin{gathered}
\vec{a} \cdot \vec{v}=\vec{b} \cdot \vec{v}=0 \\
\vec{c} \cdot \vec{v}=2
\end{gathered}
$$

11. Let $\stackrel{\rightharpoonup}{v}$ be a vector satisfying $|\stackrel{\rightharpoonup}{v} \times \vec{i}|=A,|\stackrel{\rightharpoonup}{v} \times \vec{j}|=B,|\stackrel{\rightharpoonup}{v} \times \vec{k}|=C$ Express $|\vec{v}|$ in terms of A, B, C.
12. (a) A space curve is described by a vector function $\vec{r}(t)$ satisfying

$$
\stackrel{\rightharpoonup}{r^{\prime}}(t)=<e^{t} \cos 2 t, e^{t} \sin 2 t, e^{t}>
$$

Find the unit tangent vector $\stackrel{\rightharpoonup}{T}(t)$, the principal unit normal vector $\stackrel{\rightharpoonup}{N}(t)$, the binormal vector $\vec{B}(t)$, and the curvature $\kappa(t)$.
(b) The torsion τ of a space curve is defined by $\tau=-\vec{N} \cdot \frac{d \vec{B}}{d S}$.

Find the torsion of the curve from part (a) when $t=0$.
13. Find the length of the curve described by

$$
\stackrel{\rightharpoonup}{r}(t)=<\sin 3 t, \cos 3 t, 2 t^{3 / 2}>
$$

for $1 \leq t \leq 3$.
14. Find the limit, or show that the limit does not exist.
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+y^{2}+2 x^{4}}{x^{2}+y^{2}}$
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}}{x y^{2}+y^{3}}$
15. Suppose that $f(x, y)=\left(y-x^{2}\right)^{2}$. Sketch the level curves of f for $c=0$ and $c=1$.
16. Suppose that $f(x, y)=\sin (x+3 y)+x^{2} y^{3}+2 y^{2}$. Compute $f_{x}, f_{y}, f_{x x}, f_{x y}$, and $f_{y y}$.

