Review Problems for Test 1

- 1. Let $\vec{a} = <1, 3, -1 >, \vec{b} = <0, 4, 2 >, \vec{c} = <5, -1, 3 >$. Compute each of the following:
 - (a) $\left| \overrightarrow{a} \right|$
 - (b) $\vec{a} \cdot \vec{c}$
 - (b) $a \cdot c$
 - (c) the angle between \vec{a} and \vec{c}
 - (d) the vector projection of \vec{b} onto \vec{a}
 - (e) the direction cosines of \overrightarrow{c}
 - (f) $\vec{a} \cdot (\vec{b} \times \vec{c})$
- 2. (a) Write an equation for the plane which passes through (3, -6, 8) and is normal to < 7, -2, -3 >.
 - (b) Write the symmetric and parametric equations of the line which passes through (1, 3, -5) and is parallel to < 7, -2, -3 >.
- 3. Find the line of intersection of the planes x + y + z = 4 and 2x y + 5z = -1.
- 4. Find a number d such that the distance from the point P = (4, 3, 0) to the plane x 2y + z = d is 3.
- 5. Find the distance from the point (1, 0, -1) to the line x = t, y = -1 t, z = 1 + 2t.
- 6. Let $\vec{a} = \langle 2, 0, -1 \rangle$ and $\vec{b} = \langle 1, 2, 0 \rangle$. Write \vec{b} as the sum of a vector \vec{b}_1 parallel to \vec{a} and a vector \vec{b}_2 perpendicular to \vec{a} .
- 7. Find the points of intersection of the line $\frac{x}{-2} = \frac{y-1}{3} = \frac{z}{\sqrt{3}}$ and the sphere $x^2 + 3x + y^2 + z^2 = 2$.
- 8. Find the plane that contains the line x = y = z and the point $P_0 = (1, 2, 3)$.
- 9. Given that \vec{a} and \vec{b} are vectors with $\left|\vec{a}\right| = 1$ and $\left|\vec{a} \vec{b}\right| = \left|\vec{b}\right|$, find $\vec{a} \cdot \vec{b}$.
- 10. Let $\vec{a} = <1, 1, 1>$, $\vec{b} = <2, -3, 1>$ and $\vec{c} = <1, 0, 2>$. Find a vector \vec{v} satisfying

$$\vec{a} \cdot \vec{v} = \vec{b} \cdot \vec{v} = 0$$
$$\vec{c} \cdot \vec{v} = 2.$$

- 11. Let \vec{v} be a vector satisfying $\left| \vec{v} \times \vec{i} \right| = A$, $\left| \vec{v} \times \vec{j} \right| = B$, $\left| \vec{v} \times \vec{k} \right| = C$ Express $\left| \vec{v} \right|$ in terms of A, B, C.
- 12. (a) A space curve is described by a vector function $\vec{r}(t)$ satisfying

$$\vec{r'}(t) = \langle e^t \cos 2t, e^t \sin 2t, e^t \rangle$$

Find the unit tangent vector $\vec{T}(t)$, the principal unit normal vector $\vec{N}(t)$, the binormal vector $\vec{B}(t)$, and the curvature $\kappa(t)$.

- (b) The torsion τ of a space curve is defined by $\tau = -\vec{N} \cdot \frac{dB}{dS}$. Find the torsion of the curve from part (a) when t = 0.
- 13. Find the length of the curve described by

$$\vec{r}(t) = <\sin 3t, \cos 3t, 2t^{3/2} >$$

for $1 \le t \le 3$.

14. Find the limit, or show that the limit does not exist.

(a)
$$\lim_{(x,y)\to(0,0)} \frac{x^2 + y^2 + 2x^4}{x^2 + y^2}$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{x^3}{xy^2 + y^3}$$

- 15. Suppose that $f(x,y) = (y x^2)^2$. Sketch the level curves of f for c = 0 and c = 1.
- 16. Suppose that $f(x, y) = \sin(x + 3y) + x^2y^3 + 2y^2$. Compute f_x, f_y, f_{xx}, f_{xy} , and f_{yy} .