V. Periodic Systems

Let $T>0$ and $f: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be given. Throughout this section we assume that f is continuous, has the uniqueness property, and satisfies

$$
\begin{equation*}
f(t+T, z)=f(t, z) \quad \forall t \in \mathbb{R}, z \in \mathbb{R}^{n} \tag{5.1}
\end{equation*}
$$

By a T-periodic solution of

$$
\begin{equation*}
\dot{x}(t)=f(t, x(t)) \tag{DE}
\end{equation*}
$$

we mean a solution x of (DE) such that $\operatorname{Dom}(x)=\mathbb{R}$ and

$$
\begin{equation*}
x(t+T)=x(t) \quad \forall t \in \mathbb{R} \tag{5.2}
\end{equation*}
$$

The following lemma is a direct consequence of the uniqueness property and (5.1).
Lemma 5.1: Let x be a noncontinuable solution of (DE) and let $t_{0} \in \operatorname{Dom}(x)$ be given. If $t_{0}+T \in \operatorname{Dom}(x)$ and $x\left(t_{0}+T\right)=x\left(t_{0}\right)$ then x is a T-periodic solution.

By using Lemma 5.1, together with Theorem 4.11 and Brouwer's fixed point Theorem, we obtain the following important result.

Theorem 5.2: Let S be a nonempty, closed, bounded, convex subset of \mathbb{R}^{n} and let $t_{0} \in \mathbb{R}$ be given. Assume that for every $x_{0} \in S$ the unique noncontinuable solution x of

$$
\begin{equation*}
\dot{x}(t)=f(t, x(t)) ; x\left(t_{0}\right)=x_{0} \tag{IVP}
\end{equation*}
$$

satisfies $t_{0}+T \in \operatorname{Dom}(x)$ and $x\left(t_{0}+T\right) \in S$. Then (DE) has a T-periodic solution.
In order to apply Theorem 5.2 in practice, the key step is to find a suitable set S. The following lemma, which is a consequence of the Mean Value Theorem, is often helpful for this purpose.

Lemma 5.3: Let $I \subset \mathbb{R}$ be an open interval and let $t_{0} \in I$ and $\alpha, \alpha^{\prime}, \beta, \beta^{\prime} \in \mathbb{R}$ with $\alpha^{\prime}<\alpha$ and $\beta<\beta^{\prime}$ be given.
(a) If $F\left(t_{0}\right) \geq \alpha$ and $\dot{F}(s) \geq 0$ for all $s \in I \cap\left[t_{0}, \infty\right)$ such that $\alpha^{\prime} \leq F(s) \leq \alpha$ then $F(t) \geq \alpha$ for all $t \in I \cap\left[t_{0}, \infty\right)$.
(b) If $F\left(t_{0}\right) \leq \beta$ and $\dot{F}(s) \leq 0$ for all $s \in I \cap\left[t_{0}, \infty\right)$ such that $\beta \leq F(s) \leq \beta^{\prime}$ then $F(t) \leq \beta$ for all $t \in I \cap\left[t_{0}, \infty\right)$.

Theorem 5.4: Let $\Gamma_{1} \geq 0$ and $\Gamma_{2}>0$ be given. Assume that

$$
\begin{equation*}
z \cdot f(t, z) \leq 0 \quad \text { for all } t \in \mathbb{R}, z \in \mathbb{R}^{n} \text { with } \Gamma_{1} \leq\|z\|_{2} \leq \Gamma_{2} \tag{5.3}
\end{equation*}
$$

Then (DE) has a T-periodic solution.

