Department of Mathematical Sciences Carnegie Mellon University

21-476 Ordinary Differential Equations Fall 2003

V. Periodic Systems

Let T > 0 and $f : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ be given. Throughout this section we assume that f is continuous, has the uniqueness property, and satisfies

(5.1)
$$f(t+T,z) = f(t,z) \quad \forall t \in \mathbb{R}, \ z \in \mathbb{R}^n.$$

By a *T*-periodic solution of

$$(DE) \qquad \qquad \dot{x}(t) = f(t, x(t))$$

we mean a solution x of (DE) such that $Dom(x) = \mathbb{R}$ and

(5.2)
$$x(t+T) = x(t) \quad \forall t \in \mathbb{R}.$$

The following lemma is a direct consequence of the uniqueness property and (5.1).

Lemma 5.1: Let x be a noncontinuable solution of (DE) and let $t_0 \in Dom(x)$ be given. If $t_0 + T \in Dom(x)$ and $x(t_0 + T) = x(t_0)$ then x is a T-periodic solution.

By using Lemma 5.1, together with Theorem 4.11 and Brouwer's fixed point Theorem, we obtain the following important result.

Theorem 5.2: Let S be a nonempty, closed, bounded, convex subset of \mathbb{R}^n and let $t_0 \in \mathbb{R}$ be given. Assume that for every $x_0 \in S$ the unique noncontinuable solution x of

(IVP)
$$\dot{x}(t) = f(t, x(t)); \ x(t_0) = x_0$$

satisfies $t_0 + T \in \text{Dom}(x)$ and $x(t_0 + T) \in S$. Then (DE) has a T-periodic solution.

In order to apply Theorem 5.2 in practice, the key step is to find a suitable set S. The following lemma, which is a consequence of the Mean Value Theorem, is often helpful for this purpose.

Lemma 5.3: Let $I \subset \mathbb{R}$ be an open interval and let $t_0 \in I$ and α , α' , β , $\beta' \in \mathbb{R}$ with $\alpha' < \alpha$ and $\beta < \beta'$ be given.

- (a) If $F(t_0) \ge \alpha$ and $\dot{F}(s) \ge 0$ for all $s \in I \cap [t_0, \infty)$ such that $\alpha' \le F(s) \le \alpha$ then $F(t) \ge \alpha$ for all $t \in I \cap [t_0, \infty)$.
- (b) If $F(t_0) \leq \beta$ and $\dot{F}(s) \leq 0$ for all $s \in I \cap [t_0, \infty)$ such that $\beta \leq F(s) \leq \beta'$ then $F(t) \leq \beta$ for all $t \in I \cap [t_0, \infty)$.

Theorem 5.4: Let $\Gamma_1 \ge 0$ and $\Gamma_2 > 0$ be given. Assume that

(5.3) $z \cdot f(t, z) \le 0$ for all $t \in \mathbb{R}, z \in \mathbb{R}^n$ with $\Gamma_1 \le ||z||_2 \le \Gamma_2$.

Then (DE) has a T-periodic solution.