21 - 341

Linear Algebra I

Linear Transformations and Matrices Updated 11/20/03

Let $n \in \mathbb{Z}^+$ be given. Let \mathbb{F} be a field and V be a vector space over \mathbb{F} with $\dim V = n$. Let v_1, v_2, \ldots, v_n be a basis for V. We denote by $\mathbb{F}^{n \times 1}$ the set of all $n \times 1$ matrices with entries from \mathbb{F} . Consider the linear mapping $C: V \to \mathbb{F}^{n \times 1}$ defined by

(1)
$$Cv_i = e_i^t \qquad i = 1, 2, \dots, n$$

where e_i^t is the $n \times 1$ matrix whose *i*th entry (row) is 1 and all other entries are 0. Notice that if $v = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n$ then

(2)
$$Cv = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix}.$$

We call C the component mapping for the basis v_1, v_2, \ldots, v_n .

I. Matrix for $T \in L(V, V)$:

Let $T \in L(V, V)$ be given. We want to find an $n \times n$ matrix A such that

(3)
$$C(Tv) = A(Cv)$$
 for all $v \in V$.

Notice that if we have such a matrix, then we can compute Tv for a given $v \in V$ as follows: Choose $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{F}$ such that

(4)
$$v = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n$$

and let

(5)
$$\begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} = A \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix}.$$

Then we have

(6)
$$Tv = c_1v_1 + c_2v_2 + \ldots + c_nv_n.$$

Let $x \in \mathbb{F}^{n \times 1}$ be given. If we put $v = C^{-1}x$ in (3) we obtain

$$Ax = C(TC^{-1}x)$$

In particular, we have

(8)
$$Ae_{j}^{t} = C(TC^{-1}e_{j}^{t}) \\ = C(Tv_{j}) \quad j = 1, 2, \dots, n.$$

Notice that Ae_j^t is simply the *j*th column of *A*. Therefore, the *j*th column of *A* simply consists of the coefficients needed to express Tv_j as a linear combination of $v_1, v_2, \ldots v_n$.

Change of Basis for $T \in L(V, V)$:

Let $T \in L(V, V)$ be given and let A be the matrix for T relative to the basis v_1, v_2, \ldots, v_n . Let w_1, w_2, \ldots, w_n be a second basis for V satisfying

(9)
$$w_i = \sum_{j=1}^n \mu_{ji} v_j, \ i = 1, 2, \dots, n.$$

Let B be the matrix for T relative to w_1, w_2, \ldots, w_n . We want to find the relationship between A and B.

Let S be the $n \times n$ matrix whose ij entry is μ_{ij} . Then, by (9), S is the matrix relative to $v_1, v_2, \ldots v_n$ of the linear transformation $\mathcal{S} \in L(V, V)$ characterized by

(10)
$$\mathcal{S}v_i = w_i \quad , \quad i = 1, 2, \dots, n.$$

Let D be the component mapping for w_1, w_2, \ldots, w_n and observe that

(11)
$$Bx = DTD^{-1}x \text{ for all } x \in \mathbb{F}^{n \times 1}$$

by virtue of Part I. It follows from (10) that

$$DSv = Cv \text{ for all } v \in V$$

which yields

(13)
$$Sv = D^{-1}Cv \text{ for all } v \in V.$$

Using the results of Part I, we find that

(14)
$$Sx = CD^{-1}CC^{-1}x$$
for all $x \in \mathbb{F}^{n \times 1}$
$$= CD^{-1}x.$$

Moreover, by (3), we have

(15)
$$Tv = C^{-1}ACv \quad \forall v \in V.$$

Substitution of (15) into (11) yields

(16)
$$Bx = D(C^{-1}AC)D^{-1}x$$
$$= S^{-1}ASx$$

by virtue of (14).

III. Matrix for $T \in L(V, W)$:

Let $m \in \mathbb{Z}^+$ be given and let W be a vector space over \mathbb{F} with dimW = m. Let u_1, u_2, \ldots, u_m be a basis for W and let $E \in L(W, \mathbb{F}^{m \times 1})$ be the component mapping for u_1, u_2, \ldots, u_m .

Let $T \in L(V, W)$ be given. We want to find an $m \times n$ matrix $A \in \mathbb{F}^{m \times n}$ such that

(17)
$$ETv = ACv \quad \forall v \in V.$$

Let $x \in \mathbb{F}^{n \times 1}$ be given. If we put $v = C^{-1}x$ in (17) we get

(18)
$$ETC^{-1}x = Ax \quad \forall x \in \mathbb{F}^{n \times 1}.$$

To understand what the matrix A looks like, we set $x = e_j^t$ in (18) to get

(19)
$$ETC^{-1}e_j^t = Ae_j^t$$
$$ETv_j = Ae_j^t$$

which says that the *j*th column of A consists of the coefficients required to express Tv_j as a linear combination of $u_1, u_2, \ldots u_m$. We call A the matrix for T relative to the bases $v_1, v_2, \ldots v_n$ and $u_1, u_2, \ldots u_m$.

IV. Inner Product Spaces:

Suppose that $\mathbb{F} = \mathbb{R}$, $(\cdot, \cdot) : V \times V \to \mathbb{R}$ is an inner product, and that $u_1, u_2, \ldots u_n$ is an orthormal basis for V. Since

(20)
$$v = \sum_{i=1}^{n} (v, u_i) u_i \quad \forall v \in V,$$

it follows that

(21)
$$Cv = \begin{pmatrix} (v, u_1) \\ (v, u_2) \\ \vdots \\ (v, u_n) \end{pmatrix}$$

Let $T \in L(V, V)$ be given. It follows from (8) and (21) that if A is the matrix for T relative to $u_1, u_2, \ldots u_n$ then

where A_{ij} is the entry of A from row i and column j.