Linear Transformations and Matrices Updated 11/20/03

Let $n \in \mathbb{Z}^{+}$be given. Let \mathbb{F} be a field and V be a vector space over \mathbb{F} with $\operatorname{dim} V=n$. Let $v_{1}, v_{2}, \ldots, v_{n}$ be a basis for V. We denote by $\mathbb{F}^{n \times 1}$ the set of all $n \times 1$ matrices with entries from \mathbb{F}. Consider the linear mapping $C: V \rightarrow \mathbb{F}^{n \times 1}$ defined by

$$
\begin{equation*}
C v_{i}=e_{i}^{t} \quad i=1,2, \ldots, n \tag{1}
\end{equation*}
$$

where e_{i}^{t} is the $n \times 1$ matrix whose i th entry (row) is 1 and all other entries are 0 . Notice that if $v=\lambda_{1} v_{1}+\lambda_{2} v_{2}+\ldots+\lambda_{n} v_{n}$ then

$$
C v=\left(\begin{array}{l}
\lambda_{1} \tag{2}\\
\lambda_{2} \\
\vdots \\
\lambda_{n}
\end{array}\right)
$$

We call C the component mapping for the basis $v_{1}, v_{2}, \ldots, v_{n}$.
I. Matrix for $T \in L(V, V)$:

Let $T \in L(V, V)$ be given. We want to find an $n \times n$ matrix A such that

$$
\begin{equation*}
C(T v)=A(C v) \quad \text { for all } v \in V \tag{3}
\end{equation*}
$$

Notice that if we have such a matrix, then we can compute $T v$ for a given $v \in V$ as follows: Choose $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n} \in \mathbb{F}$ such that

$$
\begin{equation*}
v=\lambda_{1} v_{1}+\lambda_{2} v_{2}+\ldots+\lambda_{n} v_{n} \tag{4}
\end{equation*}
$$

and let

$$
\left(\begin{array}{l}
c_{1} \tag{5}\\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)=A\left(\begin{array}{l}
\lambda_{1} \\
\lambda_{2} \\
\vdots \\
\lambda_{n}
\end{array}\right)
$$

Then we have

$$
\begin{equation*}
T v=c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n} . \tag{6}
\end{equation*}
$$

Let $x \in \mathbb{F}^{n \times 1}$ be given. If we put $v=C^{-1} x$ in (3) we obtain

$$
\begin{equation*}
A x=C\left(T C^{-1} x\right) \tag{7}
\end{equation*}
$$

In particular, we have

$$
\begin{align*}
A e_{j}^{t} & =C\left(T C^{-1} e_{j}^{t}\right) \tag{8}\\
& =C\left(T v_{j}\right) \quad j=1,2, \ldots, n .
\end{align*}
$$

Notice that $A e_{j}^{t}$ is simply the j th column of A. Therefore, the j th column of A simply consists of the coefficients needed to express $T v_{j}$ as a linear combination of $v_{1}, v_{2}, \ldots v_{n}$.

Change of Basis for $T \in L(V, V)$:
Let $T \in L(V, V)$ be given and let A be the matrix for T relative to the basis $v_{1}, v_{2}, \ldots, v_{n}$. Let $w_{1}, w_{2}, \ldots, w_{n}$ be a second basis for V satisfying

$$
\begin{equation*}
w_{i}=\sum_{j=1}^{n} \mu_{j i} v_{j}, i=1,2, \ldots, n \tag{9}
\end{equation*}
$$

Let B be the matrix for T relative to $w_{1}, w_{2}, \ldots, w_{n}$. We want to find the relationship between A and B.

Let S be the $n \times n$ matrix whose $i j$ entry is $\mu_{i j}$. Then, by (9), S is the matrix relative to $v_{1}, v_{2}, \ldots v_{n}$ of the linear transformation $\mathcal{S} \in L(V, V)$ characterized by

$$
\begin{equation*}
\mathcal{S} v_{i}=w_{i} \quad, \quad i=1,2, \ldots, n \tag{10}
\end{equation*}
$$

Let D be the component mapping for $w_{1}, w_{2}, \ldots w_{n}$ and observe that

$$
\begin{equation*}
B x=D T D^{-1} x \quad \text { for all } x \in \mathbb{F}^{n \times 1} \tag{11}
\end{equation*}
$$

by virtue of Part I. It follows from (10) that

$$
\begin{equation*}
D \mathcal{S} v=C v \text { for all } v \in V \tag{12}
\end{equation*}
$$

which yields

$$
\begin{equation*}
\mathcal{S} v=D^{-1} C v \text { for all } v \in V . \tag{13}
\end{equation*}
$$

Using the results of Part I, we find that

$$
\begin{align*}
S x & =C D^{-1} C C^{-1} x \\
& =C D^{-1} x . \tag{14}
\end{align*} \quad \text { for all } x \in \mathbb{F}^{n \times 1}
$$

Moreover, by (3), we have

$$
\begin{equation*}
T v=C^{-1} A C v \quad \forall v \in V \tag{15}
\end{equation*}
$$

Substitution of (15) into (11) yields

$$
\begin{align*}
B x & =D\left(C^{-1} A C\right) D^{-1} x \\
& =S^{-1} A S x \tag{16}
\end{align*}
$$

by virtue of (14).
III. Matrix for $T \in L(V, W)$:

Let $m \in \mathbb{Z}^{+}$be given and let W be a vector space over \mathbb{F} with $\operatorname{dim} W=m$. Let $u_{1}, u_{2}, \ldots u_{m}$ be a basis for W and let $E \in L\left(W, \mathbb{F}^{m \times 1}\right)$ be the component mapping for $u_{1}, u_{2}, \ldots, u_{m}$.

Let $T \in L(V, W)$ be given. We want to find an $m \times n$ matrix $A \in \mathbb{F}^{m \times n}$ such that

$$
\begin{equation*}
E T v=A C v \quad \forall v \in V \tag{17}
\end{equation*}
$$

Let $x \in \mathbb{F}^{n \times 1}$ be given. If we put $v=C^{-1} x$ in (17) we get

$$
\begin{equation*}
E T C^{-1} x=A x \quad \forall x \in \mathbb{F}^{n \times 1} \tag{18}
\end{equation*}
$$

To understand what the matrix A looks like, we set $x=e_{j}^{t}$ in (18) to get

$$
\begin{array}{ll}
E T C^{-1} e_{j}^{t} & =A e_{j}^{t} \tag{19}\\
E T v_{j} & =A e_{j}^{t}
\end{array}
$$

which says that the j th column of A consists of the coefficients required to express $T v_{j}$ as a linear combination of $u_{1}, u_{2}, \ldots u_{m}$. We call A the matrix for T relative to the bases $v_{1}, v_{2}, \ldots v_{n}$ and $u_{1}, u_{2}, \ldots u_{m}$.

IV. Inner Product Spaces:

Suppose that $\mathbb{F}=\mathbb{R},(\cdot, \cdot): V \times V \rightarrow \mathbb{R}$ is an inner product, and that $u_{1}, u_{2}, \ldots u_{n}$ is an orthormal basis for V. Since

$$
\begin{equation*}
v=\sum_{i=1}^{n}\left(v, u_{i}\right) u_{i} \quad \forall v \in V \tag{20}
\end{equation*}
$$

it follows that

$$
C v=\left(\begin{array}{c}
\left(v, u_{1}\right) \tag{21}\\
\left(v, u_{2}\right) \\
\vdots \\
\left(v, u_{n}\right)
\end{array}\right)
$$

Let $T \in L(V, V)$ be given. It follows from (8) and (21) that if A is the matrix for T relative to $u_{1}, u_{2}, \ldots u_{n}$ then

$$
\begin{equation*}
A_{i j}=\left(T u_{j}, u_{i}\right), \tag{22}
\end{equation*}
$$

where $A_{i j}$ is the entry of A from row i and column j.

