IX. Poincáre-Bendixson Theory for Planar Autonomous System

For autonomous systems with $n=2$ there is a very rich and elegant theory concerning periodic orbits. The basis for this theory is the Jordan Curve Theorem. A Jordan curve in \mathbb{R}^{2} is a set $J \subset \mathbb{R}^{2}$ that is homeomorphic to $\left\{z \in \mathbb{R}^{2}: z_{1}^{2}+z_{2}^{2}=1\right\}$. A set $S \subset \mathbb{R}^{2}$ is said to be arcwise connected if for every $p, q \in S$ there is a continuous function $F:[0,1] \rightarrow \mathbb{R}^{2}$ such that $F(0)=p, F(1)=q$ and $F(t) \in S$ for all $t \in[0,1]$.

Theorem 9.1 (Jordan Curve Theorem): Let J be a Jordan curve in \mathbb{R}^{2}. Then there exist unique, nonempty, open sets $U_{i}, U_{e} \subset \mathbb{R}^{2}$ such that $U_{i} \cap U_{e}=\emptyset, U_{i}$ is bounded and $\mathbb{R}^{2} \backslash J=U_{i} \cup U_{e}$. The sets U_{i} and U_{e} are arcwise connected; U_{i} is called the region interior to J and U_{e} is called the region exterior to J.
Although it may seem almost self-evident, the Jordan Curve Theorem is a deep result in Topology.

Theorem 9.2 (Schoenflies Theorem): Let J be a Jordan curve in \mathbb{R}^{2} and U_{i} be the region interior to J. Then $J \cup U_{i}$ is homeomorphic to $\left\{z \in \mathbb{R}^{2}:\|z\|_{2} \leq 1\right\}$.

Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given and consider the autonomous system

$$
\begin{equation*}
\dot{x}=g(x) . \tag{9.1}
\end{equation*}
$$

Throughout this section we assume that g is continuous and satisfies the uniqueness property.

Lemma 9.3: Let J be a Jordan curve and U_{i}, U_{e} be the regions interior to J and exterior to J, respectively. Let $p \in \mathbb{R}^{2}$ be given. If $\gamma^{+}(p) \cap U_{i} \neq \emptyset$ and $\gamma^{+}(p) \cap U_{e} \neq \emptyset$, then $\gamma^{+}(p) \cap J \neq \emptyset$.

Lemma 9.4: Let $p \in \mathbb{R}^{2}$ be given and assume that $\gamma(p)$ is a periodic orbit. Then $\gamma(p)$ is a Jordan curve.

Theorem 9.5: Let $p \in \mathbb{R}^{2}$ be given and assume that $\gamma(p)$ is a periodic orbit. Then the region interior to $\gamma(p)$ must contain a critical point.

Theorem 9.6: Assume that g is continuously differentiable. Let $p \in \mathbb{R}^{2}$ be given and assume that $\gamma(p)$ is a periodic orbit. Then

$$
\iint_{U_{i}} \operatorname{div} g d A=0
$$

where U_{i} denotes the region interior to $\gamma(p)$.
Definition 9.7: Let S be an open subset of \mathbb{R}^{2}. We say that S is simply connected if it is arcwise connected and for every Jordan curve $J \subset S$ we have $U_{i} \subset S$, where U_{i} is the region interior to J.

Corollary 9.8: (Negativity Criterion of Bendixson): Assume that g is continuously differentiable and let S be a simply connected open subset of \mathbb{R}^{2}. Assume further that for every nonempty bounded open set $D \subset S$ we have

$$
\iint_{D} \operatorname{div} g d A \neq 0 .
$$

Then there are no periodic orbits that lie entirely in S.

Theorem 9.9: Let $p \in \mathbb{R}^{2}$ be given and assume that $\gamma^{+}(p)$ is bounded. If $\gamma^{+}(p) \cap$ $\omega(p) \neq \emptyset$ then either p is a critical point or $\gamma(p)$ is a periodic orbit.

Theorem 9.10: (Poincaré-Bendixson) Let $p \in \mathbb{R}^{2}$ be given and assume that $\gamma^{+}(p)$ is bounded. If $\omega(p)$ contains no critical points then $\omega(p)$ is a periodic orbit.

Corollary 9.11: Let S be a nonempty, closed, bounded subset of \mathbb{R}^{2}. If S is positively invariant and contains no critical points, then S contains a periodic orbit.

