I. Review of Some Solution Techniques for Single First-Order Equations

1. Linear Equations: Let I be an interval and assume that $p, q: I \rightarrow \mathbb{R}$ are continuous. Given $t_{0} \in I$ and $x_{0} \in \mathbb{R}$, consider the initial-value problem

$$
\begin{equation*}
\dot{x}(t)+p(t) x(t)=q(t), \quad x\left(t_{0}\right)=x_{0} . \tag{1.1}
\end{equation*}
$$

To solve (1.1) we chose $P: I \rightarrow \mathbb{R}$ such that $\dot{P}(t)=p(t)$ for all $t \in I$ and put $\mu(t)=\exp (P(t))$ for all $t \in I$. (Such a function μ is called an integrating factor.) Observe that

$$
\begin{equation*}
\dot{\mu}(t)=\exp (P(t)) \dot{P}(t)=\mu(t) p(t) \tag{1.2}
\end{equation*}
$$

Multiplying the differential equation by μ and making use of (1.2) we find that

$$
\begin{equation*}
\mu(t) \dot{x}(t)+\dot{\mu}(t) x(t)=\mu(t) q(t) \tag{1.3}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{d}{d t}(\mu(t) x(t))=\mu(t) q(t) \tag{1.4}
\end{equation*}
$$

which can be integrated to find x. The solution of (1.1) is given by

$$
\begin{equation*}
x(t)=\frac{1}{\mu(t)}\left[\mu\left(t_{0}\right) x_{0}+\int_{t_{0}}^{t} \mu(s) q(s) d s\right] . \tag{1.5}
\end{equation*}
$$

2. Separation of Variables: Let I and J be open intervals and assume that $g: I \rightarrow \mathbb{R}$ is continuous and $h: J \rightarrow \mathbb{R}$ is continuously differentiable. Given $t_{0} \in I$ and $x_{0} \in J$, consider the initial value problem

$$
\begin{equation*}
\dot{x}(t)=g(t) h(x(t)) ; x\left(t_{0}\right)=x_{0} . \tag{1.6}
\end{equation*}
$$

It can be shown that either the solution is constant, i.e. $x(t)=x_{0}$ for all $t \in I$ or $h(x(t))$ never vanishes. It is easy to check whether or not the constant function $x(t)=x_{0}$ satisfies the differential equation. Suppose the solution of (1.6) is nonconstant. Then $h(x(t))$ never vanishes and we may rewrite the differential equation as

$$
\begin{equation*}
\frac{1}{h(x(t))} \dot{x}(t)=g(t) \tag{1.7}
\end{equation*}
$$

Let J_{0} be the largest interval such that $x_{0} \in J_{0} \subset J$ and h does not vanish on J_{0}. We choose $H: J_{0} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
H^{\prime}(z)=\frac{1}{h(z)} \quad \text { for all } z \in J_{0} \tag{1.8}
\end{equation*}
$$

Then we may rewrite (1.7) as

$$
\begin{equation*}
\frac{d}{d t} H(x(t))=g(t) \tag{1.9}
\end{equation*}
$$

which can be integrated to obtain

$$
\begin{equation*}
H(x(t))=H\left(x_{0}\right)+\int_{t_{0}}^{t} g(s) d s \tag{1.10}
\end{equation*}
$$

3. Exact Equations: Let D be a simply connected* open subset of \mathbb{R}^{2} and assume that $M, N: D \rightarrow \mathbb{R}$ are continuously differentiable. Consider the differential equation

$$
\begin{equation*}
M(t, x(t))+N(t, x(t)) \dot{x}(t)=0 \tag{1.11}
\end{equation*}
$$

Equation (1.11) is said to be exact if there exists a function $\psi: D \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\psi_{, 1}=M \text { and } \psi_{, 2}=N \text { on } D \tag{1.12}
\end{equation*}
$$

where $\psi_{, 1}$ and $\psi_{, 2}$ are the partial derivatives of ψ with respect to the first and second argument. It can be shown that (1.11) is exact if and only if

[^0]\[

$$
\begin{equation*}
M_{, 2}=N_{, 1} \quad \text { on } D . \tag{1.13}
\end{equation*}
$$

\]

Let us assume now that (1.13) is satisfied and choose a function $\psi: D \rightarrow \mathbb{R}$ such that (1.12) holds. If c is constant, I is an interval, and $x: I \rightarrow \mathbb{R}$ is a differentiable function such that $(t, x(t)) \in D$ and $\psi(t, x(t))=c$ for all $t \in I$, then x is a solution of (1.11).
4. Remark: Sometimes an equation that is not of any of the forms discussed above can be converted to one of these forms by a simple device. Three such devices are mentioned below.
(a) Sometimes a substitution or change of variable can be used to convert a nonlinear equation to a linear one or a nonseparable equation to a separable one.
(b) Occasionally a nonlinear equation becomes linear if we interchange the roles of the independent and dependent variables. What this really amounts to is looking a differential equation for the inverse function.
(c) In theory one can always find a nonzero function μ such that if we multiply equation (1.11) by μ it becomes exact. In practice, however, this approach is usually not of much use because it is very difficult to find a suitable μ.

[^0]: *See Definition 9.7.

