Department of Mathematical Sciences Carnegie Mellon University

21-476 Ordinary Differential Equations Fall 2003

I. Review of Some Solution Techniques for Single First-Order Equations

1. Linear Equations: Let I be an interval and assume that $p, q : I \to \mathbb{R}$ are continuous. Given $t_0 \in I$ and $x_0 \in \mathbb{R}$, consider the initial-value problem

(1.1)
$$\dot{x}(t) + p(t)x(t) = q(t), \quad x(t_0) = x_0.$$

To solve (1.1) we chose $P: I \to \mathbb{R}$ such that $\dot{P}(t) = p(t)$ for all $t \in I$ and put $\mu(t) = \exp(P(t))$ for all $t \in I$. (Such a function μ is called an *integrating factor*.) Observe that

(1.2)
$$\dot{\mu}(t) = \exp(P(t))\dot{P}(t) = \mu(t)p(t).$$

Multiplying the differential equation by μ and making use of (1.2) we find that

(1.3)
$$\mu(t)\dot{x}(t) + \dot{\mu}(t)x(t) = \mu(t)q(t)$$

or

(1.4)
$$\frac{d}{dt}(\mu(t)x(t)) = \mu(t)q(t),$$

which can be integrated to find x. The solution of (1.1) is given by

(1.5)
$$x(t) = \frac{1}{\mu(t)} \left[\mu(t_0) x_0 + \int_{t_0}^t \mu(s) q(s) ds \right].$$

2. Separation of Variables: Let I and J be open intervals and assume that $g: I \to \mathbb{R}$ is continuous and $h: J \to \mathbb{R}$ is continuously differentiable. Given $t_0 \in I$ and $x_0 \in J$, consider the initial value problem

(1.6)
$$\dot{x}(t) = g(t)h(x(t)); \ x(t_0) = x_0.$$

It can be shown that either the solution is constant, i.e. $x(t) = x_0$ for all $t \in I$ or h(x(t)) never vanishes. It is easy to check whether or not the constant function $x(t) = x_0$ satisfies the differential equation. Suppose the solution of (1.6) is nonconstant. Then h(x(t)) never vanishes and we may rewrite the differential equation as

(1.7)
$$\frac{1}{h(x(t))}\dot{x}(t) = g(t).$$

Let J_0 be the largest interval such that $x_0 \in J_0 \subset J$ and h does not vanish on J_0 . We choose $H: J_0 \to \mathbb{R}$ such that

(1.8)
$$H'(z) = \frac{1}{h(z)} \quad \text{for all } z \in J_0.$$

Then we may rewrite (1.7) as

(1.9)
$$\frac{d}{dt}H(x(t)) = g(t),$$

which can be integrated to obtain

(1.10)
$$H(x(t)) = H(x_0) + \int_{t_0}^t g(s) ds.$$

3. **Exact Equations**: Let D be a simply connected^{*} open subset of \mathbb{R}^2 and assume that $M, N : D \to \mathbb{R}$ are continuously differentiable. Consider the differential equation

(1.11)
$$M(t, x(t)) + N(t, x(t))\dot{x}(t) = 0.$$

Equation (1.11) is said to be *exact* if there exists a function $\psi: D \to \mathbb{R}$ such that

(1.12)
$$\psi_{,1} = M \text{ and } \psi_{,2} = N \text{ on } D,$$

where $\psi_{,1}$ and $\psi_{,2}$ are the partial derivatives of ψ with respect to the first and second argument. It can be shown that (1.11) is exact if and only if

^{*}See Definition 9.7.

(1.13)
$$M_{,2} = N_{,1}$$
 on D .

Let us assume now that (1.13) is satisfied and choose a function $\psi : D \to \mathbb{R}$ such that (1.12) holds. If c is constant, I is an interval, and $x : I \to \mathbb{R}$ is a differentiable function such that $(t, x(t)) \in D$ and $\psi(t, x(t)) = c$ for all $t \in I$, then x is a solution of (1.11).

- 4. **Remark**: Sometimes an equation that is not of any of the forms discussed above can be converted to one of these forms by a simple device. Three such devices are mentioned below.
 - (a) Sometimes a *substitution* or *change of variable* can be used to convert a nonlinear equation to a linear one or a nonseparable equation to a separable one.
 - (b) Occasionally a nonlinear equation becomes linear if we interchange the roles of the independent and dependent variables. What this really amounts to is looking a differential equation for the *inverse function*.
 - (c) In theory one can always find a nonzero function μ such that if we multiply equation (1.11) by μ it becomes exact. In practice, however, this approach is usually not of much use because it is very difficult to find a suitable μ .