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I. Review of Some Solution Techniques for Single First-Order Equations

1. Linear Equations: Let I be an interval and assume that p, q : I → R are
continuous. Given t0 ∈ I and x0 ∈ R, consider the initial-value problem

(1.1) ẋ(t) + p(t)x(t) = q(t), x(t0) = x0.

To solve (1.1) we chose P : I → R such that Ṗ (t) = p(t) for all t ∈ I and
put µ(t) = exp(P (t)) for all t ∈ I. (Such a function µ is called an integrating

factor.) Observe that

(1.2) µ̇(t) = exp(P (t))Ṗ (t) = µ(t)p(t).

Multiplying the differential equation by µ and making use of (1.2) we find that

(1.3) µ(t)ẋ(t) + µ̇(t)x(t) = µ(t)q(t)

or

(1.4)
d

dt
(µ(t)x(t)) = µ(t)q(t),

which can be integrated to find x. The solution of (1.1) is given by

(1.5) x(t) =
1

µ(t)

[

µ(t0)x0 +

∫ t

t0

µ(s)q(s)ds

]

.

2. Separation of Variables: Let I and J be open intervals and assume that
g : I → R is continuous and h : J → R is continuously differentiable. Given
t0 ∈ I and x0 ∈ J , consider the initial value problem

(1.6) ẋ(t) = g(t)h(x(t)); x(t0) = x0.
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It can be shown that either the solution is constant, i.e. x(t) = x0 for all t ∈ I or
h(x(t)) never vanishes. It is easy to check whether or not the constant function
x(t) = x0 satisfies the differential equation. Suppose the solution of (1.6) is
nonconstant. Then h(x(t)) never vanishes and we may rewrite the differential
equation as

(1.7)
1

h(x(t))
ẋ(t) = g(t).

Let J0 be the largest interval such that x0 ∈ J0 ⊂ J and h does not vanish on
J0. We choose H : J0 → R such that

(1.8) H ′(z) =
1

h(z)
for all z ∈ J0.

Then we may rewrite (1.7) as

(1.9)
d

dt
H(x(t)) = g(t),

which can be integrated to obtain

(1.10) H(x(t)) = H(x0) +

∫ t

t0

g(s)ds.

3. Exact Equations: LetD be a simply connected∗ open subset of R
2 and assume

that M,N : D → R are continuously differentiable. Consider the differential
equation

(1.11) M(t, x(t)) +N(t, x(t))ẋ(t) = 0.

Equation (1.11) is said to be exact if there exists a function ψ : D → R such
that

(1.12) ψ,1 = M and ψ,2 = N on D,

where ψ,1 and ψ,2 are the partial derivatives of ψ with respect to the first and
second argument. It can be shown that (1.11) is exact if and only if

∗See Definition 9.7.
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(1.13) M,2 = N,1 on D.

Let us assume now that (1.13) is satisfied and choose a function ψ : D → R

such that (1.12) holds. If c is constant, I is an interval, and x : I → R is a
differentiable function such that (t, x(t)) ∈ D and ψ(t, x(t)) = c for all t ∈ I,
then x is a solution of (1.11).

4. Remark: Sometimes an equation that is not of any of the forms discussed
above can be converted to one of these forms by a simple device. Three such
devices are mentioned below.

(a) Sometimes a substitution or change of variable can be used to convert a
nonlinear equation to a linear one or a nonseparable equation to a separable
one.

(b) Occasionally a nonlinear equation becomes linear if we interchange the
roles of the independent and dependent variables. What this really amounts
to is looking a differential equation for the inverse function.

(c) In theory one can always find a nonzero function µ such that if we multiply
equation (1.11) by µ it becomes exact. In practice, however, this approach
is usually not of much use because it is very difficult to find a suitable µ.
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