## Eigenvalues \& Eigenvectors (Part I)

Let $\mathbb{F}$ be a field, $V$ be a vector space over $\mathbb{F}$ and let $T \in L(V, V)$ be given.
Definition 1: Let $\lambda \in \mathbb{F}$ be given. We say that $\lambda$ is an eigenvalue for $T$ if there exists $v \in V \backslash\{0\}$ such that

$$
\begin{equation*}
T v=\lambda v ; \tag{1}
\end{equation*}
$$

any $v \in V \backslash\{0\}$ that satisfies (1) is called an eigenvector for $T$ corresponding to the eigenvalue $\lambda$. If $\lambda$ is an eigenvalue for $T$ then $\mathcal{N}(T-\lambda \mathbb{1})$ is called the eigenspace corresponding to the eigenvalue $\lambda$.

Definition 2: Let $n \in \mathbb{N}^{+}, \lambda \in \mathbb{F}$, and $A \in \mathbb{F}^{n \times n}$ be given. (Recall that $\mathbb{F}^{n \times n}$ is the set of all $n \times n$ matrices with entries from $\mathbb{F}$.) We say that $\lambda$ is an eigenvalue for $A$ if there is a column vector $x \in \mathbb{F}^{n} \backslash\{0\}$ such that

$$
\begin{equation*}
A x=\lambda x ; \tag{2}
\end{equation*}
$$

any column vector $x \in \mathbb{F}^{n} \backslash\{0\}$ satisfying (2) is called an eigenvector for $A$ corresponding to the eigenvalue $\lambda$. If $\lambda$ is an eigenvalue of $A$, the subspace $\mathcal{N}(A-\lambda I)$ is called the eigenspace corresponding to the eigenvalue $\lambda$.

Definition 3: Assume that $V$ is finite dimensional. We say that $T$ is diagonalizable if there is a basis for $V$ such that the matrix for $T$ relative to this basis is diagonal.

Definition 4: Let $n \in \mathbb{N}^{+}$and $A \in \mathbb{F}^{n \times n}$ be given. We say that $A$ is diagonalizable if there is an invertible matrix $S \in \mathbb{F}^{n \times n}$ such that $S^{-1} A S$ is diagonal.

Proposition 1: Assume that $V$ is finite dimensional and let $A$ be the matrix for $T$ relative to any basis for $V$. Let $\lambda \in \mathbb{F}$ be given. Then $\lambda$ is an eigenvalue for $T$ if and only if it is an eigenvalue of $A$.

Proposition 2: Let $v_{1}, v_{2}, \ldots, v_{k}$ be eigenvectors for $T$ corresponding to distinct eigenvalues. Then the list $v_{1}, v_{2}, \ldots, v_{k}$ is linearly independent.

Proposition 5: Assume that $V$ is finite dimensional and let $\lambda \in \mathbb{F}$ be given. Then $\lambda$ is an eigenvalue for $T$ if and only if

$$
\begin{equation*}
\operatorname{det}(T-\lambda \mathbb{1})=0 . \tag{3}
\end{equation*}
$$

Definition 5: Assume that $V$ is finite dimensional. The polynomial $h: \mathbb{F} \rightarrow \mathbb{F}$ defined by

$$
\begin{equation*}
h(z)=\operatorname{det}(z \mathbb{1}-T) \quad \forall z \in \mathbb{F} \tag{4}
\end{equation*}
$$

is called the characteristic polynomial for T .
Proposition 6: Let $n \in \mathbb{Z}^{+}, A \in \mathbb{F}^{n \times n}$, and $\lambda \in \mathbb{F}$ be given. Then $\lambda$ is an eigenvalue for $A$ if and only if

$$
\begin{equation*}
\operatorname{det}(A-\lambda I)=0 \tag{5}
\end{equation*}
$$

Definition 6: Let $n \in \mathbb{Z}^{+}$and $A \in \mathbb{F}^{n \times n}$ be given. The polynomial $h: \mathbb{F} \rightarrow \mathbb{F}$ defined by

$$
\begin{equation*}
h(z)=\operatorname{det}(z I-A) \quad \forall z \in \mathbb{F} \tag{6}
\end{equation*}
$$

is called the characteristic polynomial for $A$.
Theorem 1: Let $n \in \mathbb{Z}^{+}$be given and assume that $\operatorname{dim} V=n$. If $T$ has $n$ distinct eigenvalues then there is a basis for $V$ consisting solely of eigenvectors for $T$.

Theorem 2: Assume that $\mathbb{F}=\mathbb{R}, V$ is finite dimensional and that $(\cdot, \cdot): V \times V \rightarrow \mathbb{R}$ is an inner product. Assume further that

$$
(T x, y)=(x, T y) \quad \forall x, y \in V .
$$

Then there is an orthonormal basis for $V$ consisting solely of eigenvectors for $T$.
Theorem 3: Let $\mathbb{F}=\mathbb{R}, n \in \mathbb{Z}^{+}$, and $A \in \mathbb{R}^{n \times n}$ be given. Assume that

$$
{ }^{t} A=A .
$$

Then there is an orthonormal basis for $\mathbb{R}^{n}$ consisting solely of eigenvectors for $A$.

