Eigenvalues & Eigenvectors (Part I)

Let \mathbb{F} be a field, V be a vector space over \mathbb{F} and let $T \in L(V, V)$ be given.

Definition 1: Let $\lambda \in \mathbb{F}$ be given. We say that λ is an eigenvalue for T if there exists $v \in V \setminus \{0\}$ such that

(1)
$$Tv = \lambda v;$$

any $v \in V \setminus \{0\}$ that satisfies (1) is called an eigenvector for T corresponding to the eigenvalue λ . If λ is an eigenvalue for T then $\mathcal{N}(T - \lambda \mathbb{1})$ is called the eigenspace corresponding to the eigenvalue λ .

Definition 2: Let $n \in \mathbb{N}^+$, $\lambda \in \mathbb{F}$, and $A \in \mathbb{F}^{n \times n}$ be given. (Recall that $\mathbb{F}^{n \times n}$ is the set of all $n \times n$ matrices with entries from \mathbb{F} .) We say that λ is an eigenvalue for A if there is a column vector $x \in \mathbb{F}^n \setminus \{0\}$ such that

(2)
$$Ax = \lambda x;$$

any column vector $x \in \mathbb{F}^n \setminus \{0\}$ satisfying (2) is called an eigenvector for A corresponding to the eigenvalue λ . If λ is an eigenvalue of A, the subspace $\mathcal{N}(A - \lambda I)$ is called the eigenspace corresponding to the eigenvalue λ .

Definition 3: Assume that V is finite dimensional. We say that T is diagonalizable if there is a basis for V such that the matrix for T relative to this basis is diagonal.

Definition 4: Let $n \in \mathbb{N}^+$ and $A \in \mathbb{F}^{n \times n}$ be given. We say that A is diagonalizable if there is an invertible matrix $S \in \mathbb{F}^{n \times n}$ such that $S^{-1}AS$ is diagonal.

Proposition 1: Assume that V is finite dimensional and let A be the matrix for T relative to any basis for V. Let $\lambda \in \mathbb{F}$ be given. Then λ is an eigenvalue for T if and only if it is an eigenvalue of A.

Proposition 2: Let v_1, v_2, \ldots, v_k be eigenvectors for T corresponding to distinct eigenvalues. Then the list v_1, v_2, \ldots, v_k is linearly independent.

Proposition 5: Assume that V is finite dimensional and let $\lambda \in \mathbb{F}$ be given. Then λ is an eigenvalue for T if and only if

(3)
$$\det(T - \lambda \mathbb{1}) = 0.$$

Definition 5: Assume that V is finite dimensional. The polynomial $h : \mathbb{F} \to \mathbb{F}$ defined by

(4)
$$h(z) = \det(z\mathbb{1} - T) \quad \forall z \in \mathbb{F}$$

is called the characteristic polynomial for T.

Proposition 6: Let $n \in \mathbb{Z}^+$, $A \in \mathbb{F}^{n \times n}$, and $\lambda \in \mathbb{F}$ be given. Then λ is an eigenvalue for A if and only if

(5)
$$\det(A - \lambda I) = 0$$

Definition 6: Let $n \in \mathbb{Z}^+$ and $A \in \mathbb{F}^{n \times n}$ be given. The polynomial $h : \mathbb{F} \to \mathbb{F}$ defined by

(6)
$$h(z) = \det(zI - A) \quad \forall z \in \mathbb{F}$$

is called the characteristic polynomial for A.

Theorem 1: Let $n \in \mathbb{Z}^+$ be given and assume that $\dim V = n$. If T has n distinct eigenvalues then there is a basis for V consisting solely of eigenvectors for T.

Theorem 2: Assume that $\mathbb{F} = \mathbb{R}$, V is finite dimensional and that $(\cdot, \cdot) : V \times V \to \mathbb{R}$ is an inner product. Assume further that

$$(Tx, y) = (x, Ty) \quad \forall x, y \in V.$$

Then there is an orthonormal basis for V consisting solely of eigenvectors for T.

Theorem 3: Let $\mathbb{F} = \mathbb{R}$, $n \in \mathbb{Z}^+$, and $A \in \mathbb{R}^{n \times n}$ be given. Assume that

$${}^{t}A = A.$$

Then there is an orthonormal basis for \mathbb{R}^n consisting solely of eigenvectors for A.