Department of Mathematical Sciences Carnegie Mellon University

21-476 Ordinary Differential Equations Fall 2003

III. Some Remarks on Uniform Convergence

Let $a, b \in \mathbb{R}$ with a < b and a norm $\|\cdot\|$ on \mathbb{R}^n be given. Let $\{y_{(m)}\}_{m=1}^{\infty}$ be a sequence of functions from [a, b] to \mathbb{R}^n and y be a function from [a, b] to \mathbb{R}^n . Finally, let $\mathbb{N} = \{1, 2, 3, \ldots\}$ denote the set of natural numbers.

Recall that $y_{(m)} \to y$ uniformly on [a, b] as $m \to \infty$ if there is a sequence $\{a_m\}_{m=1}^{\infty}$ of real numbers such that $a_m \to 0$ as $m \to \infty$ and

(3.1)
$$||y_{(m)}(t) - y(t)|| \le a_m$$
 for all $t \in [a, b], m \in \mathbb{N}$.

Lemma 3.1: Assume that $y_{(m)}$ is continuous on [a, b] for every $m \in \mathbb{N}$ and that $y_{(m)} \to y$ uniformly on [a, b] as $m \to \infty$. Then y is continuous on [a, b] and

(3.2)
$$\int_{a}^{b} y_{(m)}(t)dt \to \int_{a}^{b} y(t)dt \text{ as } m \to \infty.$$

Lemma 3.2: Assume that $f : [a,b] \times \mathbb{R}^n \to \mathbb{R}^n$ is continuous and that $y_{(m)}$ is continuous on [a,b] for every $m \in \mathbb{N}$. Define $z_{(m)}, z : [a,b] \to \mathbb{R}^n$ by

(3.3)
$$z_{(m)}(t) = f(t, y_{(m)}(t)) \text{ for all } t \in [a, b], m \in \mathbb{N},$$

(3.4)
$$z(t) = f(t, y(t)) \quad \text{for all } t \in [a, b].$$

If $y_{(m)} \to y$ uniformly on [a, b] as $m \to \infty$ then $z_{(m)} \to z$ uniformly on [a, b] as $m \to \infty$ and consequently

(3.5)
$$\int_{a}^{b} f\left(t, y_{(m)}(t)\right) dt \to \int_{a}^{b} f(t, y(t)) dt \quad \text{as} \quad m \to \infty.$$

Ascoli-Arzela Theorem (Special Case): Suppose that there exist $K, M \in \mathbb{R}$ such that

(3.6)
$$||y_{(m)}(t)|| \le K \quad \text{for all } t \in [a, b], \ m \in \mathbb{N},$$

(3.7)
$$||y_{(m)}(t) - y_{(m)}(s)|| \le M|t-s|$$
 for all $s, t \in [a,b], m \in \mathbb{N}$.

Then $y_{(m)}$ is continuous on [a, b] for every $m \in \mathbb{N}$ and the sequence $\{y_{(m)}\}_{m=1}^{\infty}$ has a subsequence that converges uniformly on [a, b] as $m \to \infty$.

Theorem (Weierstrass M-Test): Let $\{M_m\}_{m=1}^{\infty}$ be a sequence of real numbers such that

(3.8)
$$||y_{(m)}(t)|| \le M_m \quad \text{for all } t \in [a, b], \ m \in \mathbb{N},$$

and define

(3.9)
$$S_{(m)}(t) = \sum_{k=1}^{m} y_{(k)}(t) \quad \text{for all } t \in [a, b], \ m \in \mathbb{N}.$$

If
$$\sum_{m=1}^{\infty} M_m < \infty$$
 then the sequence $\{S_{(m)}\}_{m=1}^{\infty}$ converges uniformly on $[a, b]$.