III. Some Remarks on Uniform Convergence

Let $a, b \in \mathbb{R}$ with $a<b$ and a norm $\|\cdot\|$ on \mathbb{R}^{n} be given. Let $\left\{y_{(m)}\right\}_{m=1}^{\infty}$ be a sequence of functions from $[a, b]$ to \mathbb{R}^{n} and y be a function from $[a, b]$ to \mathbb{R}^{n}. Finally, let $\mathbb{N}=\{1,2,3, \ldots\}$ denote the set of natural numbers.

Recall that $y_{(m)} \rightarrow y$ uniformly on $[a, b]$ as $m \rightarrow \infty$ if there is a sequence $\left\{a_{m}\right\}_{m=1}^{\infty}$ of real numbers such that $a_{m} \rightarrow 0$ as $m \rightarrow \infty$ and

$$
\begin{equation*}
\left\|y_{(m)}(t)-y(t)\right\| \leq a_{m} \quad \text { for all } t \in[a, b], m \in \mathbb{N} . \tag{3.1}
\end{equation*}
$$

Lemma 3.1: Assume that $y_{(m)}$ is continuous on $[a, b]$ for every $m \in \mathbb{N}$ and that $y_{(m)} \rightarrow y$ uniformly on $[a, b]$ as $m \rightarrow \infty$. Then y is continuous on $[a, b]$ and

$$
\begin{equation*}
\int_{a}^{b} y_{(m)}(t) d t \rightarrow \int_{a}^{b} y(t) d t \text { as } m \rightarrow \infty \tag{3.2}
\end{equation*}
$$

Lemma 3.2: Assume that $f:[a, b] \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is continuous and that $y_{(m)}$ is continuous on $[a, b]$ for every $m \in \mathbb{N}$. Define $z_{(m)}, z:[a, b] \rightarrow \mathbb{R}^{n}$ by

$$
\begin{equation*}
z_{(m)}(t)=f\left(t, y_{(m)}(t)\right) \quad \text { for all } t \in[a, b], m \in \mathbb{N} \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
z(t)=f(t, y(t)) \quad \text { for all } t \in[a, b] . \tag{3.4}
\end{equation*}
$$

If $y_{(m)} \rightarrow y$ uniformly on $[a, b]$ as $m \rightarrow \infty$ then $z_{(m)} \rightarrow z$ uniformly on $[a, b]$ as $m \rightarrow \infty$ and consequently

$$
\begin{equation*}
\int_{a}^{b} f\left(t, y_{(m)}(t)\right) d t \rightarrow \int_{a}^{b} f(t, y(t)) d t \text { as } m \rightarrow \infty \tag{3.5}
\end{equation*}
$$

Ascoli-Arzela Theorem (Special Case): Suppose that there exist $K, M \in \mathbb{R}$ such that

$$
\begin{equation*}
\left\|y_{(m)}(t)\right\| \leq K \quad \text { for all } t \in[a, b], m \in \mathbb{N} \tag{3.6}
\end{equation*}
$$

$$
\begin{equation*}
\left\|y_{(m)}(t)-y_{(m)}(s)\right\| \leq M|t-s| \quad \text { for all } s, t \in[a, b], m \in \mathbb{N} \tag{3.7}
\end{equation*}
$$

Then $y_{(m)}$ is continuous on $[a, b]$ for every $m \in \mathbb{N}$ and the sequence $\left\{y_{(m)}\right\}_{m=1}^{\infty}$ has a subsequence that converges uniformly on $[a, b]$ as $m \rightarrow \infty$.

Theorem (Weierstrass M-Test): Let $\left\{M_{m}\right\}_{m=1}^{\infty}$ be a sequence of real numbers such that

$$
\begin{equation*}
\left\|y_{(m)}(t)\right\| \leq M_{m} \quad \text { for all } t \in[a, b], m \in \mathbb{N} \tag{3.8}
\end{equation*}
$$

and define

$$
\begin{equation*}
S_{(m)}(t)=\sum_{k=1}^{m} y_{(k)}(t) \quad \text { for all } t \in[a, b], m \in \mathbb{N} \tag{3.9}
\end{equation*}
$$

If $\sum_{m=1}^{\infty} M_{m}<\infty$ then the sequence $\left\{S_{(m)}\right\}_{m=1}^{\infty}$ converges uniformly on $[a, b]$.

