Department of Mathematical Sciences
Carnegie Mellon University

Assignment 9

1. For each choice of A given below, determine the stability of the zero solution of $\dot{x}=A x$.
a) $A=\left(\begin{array}{ll}0 & 1 \\ 4 & 0\end{array}\right)$
b) $A=\left(\begin{array}{ll}1 & 5 \\ -1 & 3\end{array}\right)$
c) $A=\left(\begin{array}{lll}-1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & -2\end{array}\right)$
2. For each autonomous system and corresponding critical point x^{*} given below, use the method of linearization to deduce as much as you can about the stability of x^{*}.

$$
\begin{aligned}
& \dot{x}_{1}=3 x_{1}-x_{2}+x_{3}^{3} \\
& \text { a) } \dot{x}_{2}=x_{1}-x_{2}+x_{2} x_{3} \quad x^{*}=(0,0,0) \\
& \dot{x}_{3}=2 x_{1}+x_{1} x_{2}-x_{3}+x_{3}^{2} \\
& \text { b) } \begin{array}{ll}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=-x_{1}-x_{1}^{2}
\end{array} \quad x^{*}=(-1,0) \\
& \text { c) } \begin{array}{l}
\dot{x}_{1}=x_{2}-x_{2}^{3} \\
\dot{x}_{2}=x_{1}
\end{array} \quad x^{*}=(0,1) \\
& \text { d) } \begin{array}{l}
\dot{x}_{1}=-2 \sin x_{1}+x_{1}^{2}-x_{2} \\
\dot{x}_{2}=x_{1} \cos x_{1}-2 x_{2}+x_{2}^{3}
\end{array} \quad x^{*}=(0,0)
\end{aligned}
$$

