Department of Mathematical Sciences
Carnegie Mellon University

Assignment 8

Due on Friday, December 5

1. Let $A: \mathbb{R} \rightarrow \mathbb{R}^{n \times n}$ and $T>0$ be given. Assume that A is continuous and $A(t+T)=A(t)$ for all $t \in \mathbb{R}$. Let X be the fundamental matrix solution of

$$
\begin{equation*}
\dot{x}(t)=A(t) x(t) \tag{LH}
\end{equation*}
$$

satisfying $X(0)=I$.
(a) Show that (LH) has a nontrivial T-periodic solution if and only 1 is an eigenvalue of $X(T)$.
(b) What is the situation regarding periodic solutions of (LH) if -1 is an eigenvalue of $X(T)$?
2. Assume that $A: \mathbb{R} \rightarrow \mathbb{R}^{n \times n}$ is continuous and satisfies $(A(t))^{T}=-A(t)$ for all $t \in \mathbb{R}$. Let X be the fundamental matrix solution of

$$
\begin{equation*}
\dot{x}(t)=A(t) x(t) \tag{LH}
\end{equation*}
$$

satisfying $X(0)=I$. Show that $(X(t))^{-1}=(X(t))^{T}$ for all $t \in \mathbb{R}$.
3. Assume that $q: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and consider the second-order scalar equation

$$
\begin{equation*}
\ddot{u}(t)+q(t) u(t)=0 . \tag{1}
\end{equation*}
$$

If we let $x_{1}=u, x_{2}=\dot{u}$ then (1) can be rewritten as

$$
\begin{align*}
& \dot{x}_{1}(t)=x_{2}(t) \\
& \dot{x}_{2}(t)=-q(t) x_{1}(t) . \tag{2}
\end{align*}
$$

Show that if (2) has a fundamental matrix solution that is bounded on $[0, \infty)$ then no nontrivial solution of (2) can tend to zero as $t \rightarrow \infty$.
4. Assume that $p, q: \mathbb{R} \rightarrow \mathbb{R}$ are continuous and consider the second-order scalar equation

$$
\begin{equation*}
\ddot{u}(t)+p(t) \dot{u}(t)+q(t) u(t)=0 . \tag{3}
\end{equation*}
$$

Let u_{1}, u_{2} be solutions of (3) satisfying

$$
u_{1}(0) \dot{u}_{2}(0)-\dot{u}_{1}(0) u_{2}(0) \neq 0
$$

and let $\alpha, \beta \in \mathbb{R}$ with $\alpha<\beta$ be given. Show that if $u_{1}(\alpha)=u_{1}(\beta)=0$, then there is a $t^{*} \in(\alpha, \beta)$ such that $u_{2}\left(t^{*}\right)=0$. (Suggestion: Suppose that no such t^{*} exists and consider the function $F:[\alpha, \beta] \rightarrow \mathbb{R}$ defined by $F(t)=\frac{u_{1}(t)}{u_{2}(t)}$ for all $t \in[\alpha, \beta]$.

