Supplementary Problems for Assignment 7

1. Determinant Tic-Tac-Toe: This is a game involving two players, labelled 0 and 1. Player 1 starts by putting a 1 in some location in a 3×3 matrix. Player 0 then places a zero in different location. The players alternate turns until the matrix is filled in with five 1's and four 0's. Player 0 wins if the determinant is 0 ; otherwise player 1 wins. Does either player having a winning strategy? If so, give such a strategy.
2. Prove or Disprove: Let V be a finite dimensional vector space over \mathbb{R} with inner product (\cdot, \cdot). Let $T \in L(V, V)$ be given and assume that

$$
(T x, y)=-(x, T y)
$$

for all $x, y \in V$. Then $\operatorname{det}(T)=0$.
3. Let $\mathbb{F}=\mathbb{Z}_{3}$. Compute $\operatorname{det}(A)$ and $\operatorname{det}(B)$, where

$$
A=\left(\begin{array}{lll}
1 & 1 & 2 \\
0 & 1 & 1 \\
1 & 0 & 2
\end{array}\right) \quad B=\left(\begin{array}{llll}
1 & 1 & 0 & 1 \\
2 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 \\
1 & 2 & 1 & 2
\end{array}\right)
$$

4. Let $\mathbb{F}=\mathbb{R}$. Let A be a 3×3 matrix all of whose entries are 1 or -1 , and B be a 3×3 matrix all of whose entries are 0 or 1 .
(a) What is the largest possible value for $\operatorname{det}(A)$?
(b) What is the largest possible value for $\operatorname{det}(B)$?
