Department of Mathematical Sciences Carnegie Mellon University

21-476 Ordinary Differential Equations Fall 2003

Assignment 7

Due on Monday, December 1

1. Assume that $g : \mathbb{R}^n \to \mathbb{R}^n$ is continuous, has the uniqueness property, and satisfies g(0) = 0, and consider the autonomous system

(1)
$$\dot{x} = g(x).$$

Let a continuously differentiable function $V : \mathbb{R}^n \to \mathbb{R}$ be given and define $\dot{V} : \mathbb{R}^n \to \mathbb{R}$ by $\dot{V}(z) = \nabla V(z) \cdot g(z)$. Show that if $\dot{V}(z) < 0$ for all $z \in \mathbb{R}^n \setminus \{0\}$ then (1) has no nonconstant periodic solutions.

2. Give an example of a planar autonomous system

$$\dot{x} = g(x),$$

where $g : \mathbb{R}^2 \to \mathbb{R}^2$ is smooth, and a point $p \in \mathbb{R}^2$ such that $\gamma^+(p)$ is bounded and $\omega(p)$ contains more than one critical point; or else show that such an example is impossible.

In problems 3 and 4 below determine as much as you can about solutions. Pay particular attention to issues concerning periodic orbits.

3.
$$\dot{x}_1 = x_2 - x_1^3$$

 $\dot{x}_2 = -x_2 - x_2^3 + x_1^3$

4.
$$\dot{x}_1 = x_1 - x_2 - x_1^3$$

 $\dot{x}_2 = x_1 + x_2 - x_2^3$