Linear Algebra I

Supplementary Problems for Assignment 6

- 1. Let $n \in \mathbb{Z}^+$ be given. The citizens of a town of population n want to form clubs. There are two basic rules governing club membership:
 - (a) Every club must have an odd number of members.
 - (b) Every pair of distinct clubs must have an even number of members in common.

Show that there can be at most n clubs.

Suggestion: Let $\mathbb{F} = \mathbb{Z}_2$ and $V = \mathbb{F}^n$. Suppose that there are *m* clubs and consider the list u_1, u_2, \ldots, u_m of vectors in *V* such that $(u_i)_j = 1$ if citizen *j* belongs to club *i*, and equals zero otherwise. The function $(\cdot, \cdot) : V \times V \to \mathbb{F}$ defined by

$$(x,y) = \sum_{i=1}^{n} x_i y_i$$

may be useful.

In Problems 2 through 6 let V be a real vector space with inner product (\cdot, \cdot) and associated norm $||\cdot||$.

2. Show that

$$(x,y) = \frac{1}{4}(||x+y||^2 - ||x-y||^2) \quad \forall x,y \in V.$$

- 3. Let $u, v \in V$ be given and assume that ||u|| = 6, ||u+v|| = 4, and ||u-v|| = 6. Determine ||v|| if possible.
- 4. Show that

$$||x+y||^{2} + ||x-y||^{2} = 2(||x||^{2} + ||y||^{2}) \quad \forall x, y \in V.$$

5. Let $\epsilon > 0$ be given. Show that

$$|(x,y)| \le \epsilon ||x||^2 + \frac{1}{4\epsilon} ||y||^2 \quad \forall x, y \in V.$$

6. $T \in L(V, V)$, $v_1, v_2 \in V$, and $\lambda_1, \lambda_2 \in \mathbb{R}$ with $||v_1|| = ||v_2|| = 1$ and $\lambda_1 \neq \lambda_2$ be given. Assume that (Tx, y) = (x, Ty) for all $x, y \in V$ and that $Tv_1 = \lambda_1 v_1$, $Tv_2 = \lambda_2 v_2$. Show that $(v_1, v_2) = 0$.