Department of Mathematical Sciences Carnegie Mellon University

21-476 Ordinary Differential Equations Fall 2003

Assignment 6

Due on Monday, November 17

1. Determine as much as you can about the stability of (0,0,0) by studying Liapunov functions of the form $V(z_1, z_2, z_3) = az_1^2 + bz_2^2 + cz_3^2$.

$$\dot{x}_{1} = -2x_{2} + x_{2}x_{3}$$
(a) $\dot{x}_{2} = x_{1} - x_{1}x_{3}$
 $\dot{x}_{3} = x_{1}x_{2}$

$$\dot{x}_{1} = -2x_{2} + x_{2}x_{3} - x_{1}^{3}$$
(b) $\dot{x}_{2} = x_{1} - x_{1}x_{3} - x_{2}^{3}$
 $\dot{x}_{3} = x_{1}x_{2} - x_{3}^{3}$

2. Assume that $\alpha, f : \mathbb{R} \to \mathbb{R}$ are continuously differentiable and define $F : \mathbb{R} \to \mathbb{R}$ by

$$F(z) = \int_0^z f(\lambda) d\lambda$$
 for all $z \in \mathbb{R}$.

Assume further that $\alpha(z) > 0$, for all $z \in \mathbb{R}$, zf(z) > 0 for all $z \in \mathbb{R} \setminus \{0\}$, and that $F(z) \to \infty$ as $|z| \to \infty$. Consider the second order equation

(1)
$$\ddot{u} + \alpha(u)\dot{u} + f(u) = 0.$$

If we let $x_1 = u$, $x_2 = \dot{u}$, then(1) can be rewritten as

$$\dot{x}_1 = x_2$$

 $\dot{x}_2 = -\alpha(x_1)x_2 - f(x_1).$

Show that for every $p \in \mathbb{R}^2$, $\varphi(t,p) \to 0$ as $t \to \infty$.

3. Let $f, c : \mathbb{R} \to \mathbb{R}$ and $\alpha : \mathbb{R}^2 \to \mathbb{R}$ be given and consider the system (of scalar equations)

(3)
$$\begin{aligned} \ddot{u} + f(u) + \alpha(u,\theta)\theta &= 0\\ \dot{\theta} + c(\theta) - \alpha(u,\theta)\dot{u} &= 0. \end{aligned}$$

If we let $x_1 = u$, $x_2 = \dot{u}$, $x_3 = \theta$, then (3) can be rewritten as

(4)
$$\begin{aligned} \dot{x}_1 &= x_2 \\ \dot{x}_2 &= -f(x_1) - \alpha(x_1, x_3)x_3 \\ \dot{x}_3 &= -c(x_3) + \alpha(x_1, x_3)x_2. \end{aligned}$$

Give conditions on f, c, α which ensure that for every $p \in \mathbb{R}^3$, $\varphi(t, p) \to 0$ as $t \to \infty$.

4. If you would like to turn in a solution (or a revision of a previous solution) to Problem 2 on Assignment 5 you may do so now.