Supplementary Problems for Assignment 5

1. Let \mathbb{F} be a field and let $T \in L\left(\mathbb{F}^{4}, \mathbb{F}^{2}\right)$ be given such that

$$
\mathcal{N}(T)=\left\{<x_{1}, x_{2}, x_{3}, x_{4}>\in \mathbb{F}^{4}: x_{1}=x_{2} \text { and } x_{3}=x_{4}\right\}
$$

Show that T is surjective.
2. Let \mathbb{F} be a field. Show that there is no $T \in L\left(\mathbb{F}^{5}, \mathbb{F}^{2}\right)$ such that

$$
\mathcal{N}(T)=\left\{<x_{1}, x_{2}, x_{3}, x_{4}, x_{5}>\in \mathbb{F}^{5}: x_{1}=x_{2} \quad \text { and } \quad x_{3}=x_{4}=x_{5}\right\} .
$$

3. Let $\mathbb{F}=\mathbb{Z}_{2}$ and $V=\mathbb{F}^{2}$. Find linear transformations $S, T \in L(V, V)$ such that

$$
S T-T S=\mathbb{1}
$$

4. Let $\mathbb{F}=\mathbb{R}$ and $V=\mathbb{R}^{2}$. do there exist linear transformations $S, T \in L(V, V)$ such that $S T-T S=\mathbb{1}$.
5. Prove or Disprove: Let \mathbb{F} be a field, V be a vector space over \mathbb{F} and $S, T \in$ $L(V, V)$ be given. Then

$$
\operatorname{dim}(\mathcal{N}(S T)) \leq \operatorname{dim}(\mathcal{N}(S))+\operatorname{dim}(\mathcal{N}(T))
$$

