Supplementary Problems for Assignment 4

Let \mathbb{F} be a field and V, W be finite-dimensional vector spaces over \mathbb{F}.

1. Let $a_{1}, a_{2}, \ldots, a_{n} \in V$ and $T \in L(V, W)$ be given. Show that if $\operatorname{span}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=$ V and T is surjective then $\operatorname{span}\left(T a_{1}, T a_{2}, \ldots, T a_{n}\right)=W$.
2. Let $T \in L(V, V)$ be given. Prove that the following three statements are equivalent
(a) T is invertible.
(b) T is injective.
(c) T is surjective.

Do not use Theorem 13.9 from the book. You may use the result of Problem 8 from Test 1.
3. Let U be a subspace of V. Show that there exists $T \in L(V, V)$ such that $\{u \in V: T u=0\}=U$.
4. Show that there exists a surjective linear mapping $T \in L(V, W)$ if and only if $\operatorname{dim} W \leq \operatorname{dim} V$.
5. Show that there exists an injective linear mapping $T \in L(V, W)$ if and only if $\operatorname{dim} V \leq \operatorname{dim} W$.
6. Show $S, T \in L(V, V)$ be given. Show that the product $S T$ is invertible if and only if both S and T are invertible.

