Department of Mathematical Sciences
Carnegie Mellon University

Assignment 4
Due on Friday, October 10

1. Let $(\alpha, \beta) \in \mathbb{R}^{2}$ be given. Let x be the unique noncontinuable solution of

$$
\left\{\begin{array}{l}
\dot{x}_{1}(t)=e^{-t} x_{1}(t)+e^{-2 t} x_{2}(t) \\
\dot{x}_{2}(t)=-e^{-2 t} x_{1}(t)+e^{-t} x_{2}(t) \\
x_{1}(0)=\alpha, x_{2}(0)=\beta
\end{array}\right.
$$

and let y be the unique noncontinuable solution of

$$
\left\{\begin{array}{l}
\dot{y}_{1}(t)=e^{-t} y_{1}(t)+e^{2 t} y_{2}(t) \\
\dot{y}_{2}(t)=-e^{2 t} y_{1}(t)+e^{-t} y_{2}(t) \\
y_{1}(0)=\alpha, y_{2}(0)=\beta
\end{array}\right.
$$

In Problem 2 of Assignment 3, you showed that $[0, \infty) \subset \operatorname{Dom}(x)$ and you studied the behavior as $t \rightarrow \infty$ of $\|x(t)\|_{2}$.
(a) Show that $[0, \infty) \subset \operatorname{Dom}(y)$.
(b) What can you say about the behavior of $\|y(t)\|_{2}$ as $t \rightarrow \infty$?
(c) What, if anything, is the difference between the behavior of $x(t)$ as $t \rightarrow \infty$ and the behavior of $y(t)$ as $t \rightarrow \infty$?
2. Show that the system

$$
\begin{gathered}
\dot{x}_{1}(t)=x_{2}(t)-x_{1}(t)+\sin t \\
\dot{x}_{2}(t)=-x_{1}(t)+\left(1-x_{1}(t)^{2}-x_{2}(t)^{2}\right) x_{2}(t)
\end{gathered}
$$

has a 2π-periodic solution.
3. Show that the system

$$
\begin{aligned}
& \dot{x}_{1}(t)=2+\cos t+\left(1+x_{2}(t)^{2}\right)\left(1-x_{1}(t)^{2}\right) \\
& \dot{x}_{2}(t)=3-\sin t+\left(2+x_{1}(t)^{2}\right)\left(4-x_{2}(t)^{2}\right)
\end{aligned}
$$

has a 2π-period solution.
4. Draw the phase portrait for the autonomous system

$$
\begin{gathered}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=-x_{1}+x_{1}^{3} .
\end{gathered}
$$

What can you deduce about the behavior of solutions form the phase portrait?
5. If you did not turn in a solution to Problem 4 on Assignment 3 or if you wish to revise your solution to that problem, you may do so now.

