Department of Mathematical Sciences
Carnegie Mellon University

Assignment 3

Due on Friday, October 3

1. Assume that $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is continuously differentiable and that

$$
g(t, y, 0)=0 \quad \text { for all } t, y \in \mathbb{R} .
$$

Show that every solution of the second order scalar equation

$$
\begin{equation*}
\ddot{u}(t)=g(t, u(t), \dot{u}(t)) \tag{1}
\end{equation*}
$$

is monotonic.
2. Let $(\alpha, \beta) \in \mathbb{R}^{2}$ be given and let x be the unique noncontinuable solution of

$$
\left\{\begin{array}{l}
\dot{x}_{1}(t)=e^{-t} x_{1}(t)+e^{-2 t} x_{2}(t) \tag{2}\\
\dot{x}_{2}(t)=-e^{-2 t} x_{1}(t)+e^{-t} x_{2}(t) \\
x_{1}(0)=\alpha, x_{2}(0)=\beta
\end{array}\right.
$$

Show that $[0, \infty) \subset \operatorname{Dom}(x)$ and that x is bounded on $[0, \infty)$. What can you say about the behavior of $\|x(t)\|_{2}$ as $t \rightarrow \infty$?
3. Let $\epsilon>0$ be given and consider the Van der Pol equation

$$
\begin{equation*}
\ddot{u}(t)+\epsilon\left(u(t)^{2}-1\right) \dot{u}(t)+u(t)=0 . \tag{3}
\end{equation*}
$$

If we put $x_{1}=u, x_{2}=\dot{u}$, then (3) can be rewritten as the system

$$
\left\{\begin{array}{l}
\dot{x}_{1}(t)=x_{2}(t) \tag{4}\\
\dot{x}_{2}(t)=-x_{1}(t)+\epsilon\left(1-x_{1}(t)^{2}\right) x_{2}(t)
\end{array}\right.
$$

Let x be a noncontinuable solution of (4) with $0 \in \operatorname{Dom}(x)$. Show that $[0, \infty) \subset$ $\operatorname{Dom}(x)$.

4* Assume that $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous, has the uniqueness property, and satisfies

$$
f(t+1, y)=f(t, y) \quad \forall t, y \in \mathbb{R}
$$

Assume further that the differential equation

$$
\begin{equation*}
\dot{x}(t)=f(t, x(t)) \tag{5}
\end{equation*}
$$

has a solution x^{*} such that $[0, \infty) \subset \operatorname{Dom}\left(x^{*}\right)$ and x^{*} is bounded on $[0, \infty)$. Prove that (5) has a periodic solution x with period 1 .

